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Abstract: This study aims to evaluate the influence of using a bleached Curauá fiber (CF) as filler
in a novel rigid polyurethane foam (RPUF) composite. The influence of 0.1, 0.5 and 1 wt.% of the
reinforcements on the processing characteristics, cellular structure, mechanical, dynamic-mechanical,
thermal, and flame behaviors were assessed and discussed for RPUF freely expanded. The results
showed that the use of 0.5 wt.% of CF resulted in RPUF with smoother cell structure with low
differences on the processing times and viscosity for the filled pre-polyol. These morphological
features were responsible for the gains in mechanical properties, in both parallel and perpendicular
rise directions, and better viscoelastic characteristics. Despite the gains, higher thermal conductivity
and lower flammability were reported for the developed RPUF composites, related to the high
content of cellulose and hemicellulose on the bleached CF chemical composition. This work shows
the possibility of using a Brazilian vegetable fiber, with low exploration for the manufacturing of
composite materials with improved properties. The developed RPUF presents high applicability as
enhanced cores for the manufacturing of structural sandwich panels, mainly used in civil, aircraft,
and marine industries.

Keywords: rigid polyurethane foams; cellular composite; bleached Curauá fiber; high-performance foams

1. Introduction

Bio-based filled rigid polyurethane foams (RPUF) are a new class of polymer com-
posite materials that present interesting properties. Some recent studies on the field
proved that when a vegetable fiber, or a filler, is introduced, as a second phase, the cel-
lular composite presents increases of properties, such as thermal stability, fire resistance,
and photodegradation performance [1–6]. Technological properties, as decreases of ther-
mal conductivity, water/moisture uptake, greater dimensional stability, and aesthetical
appearance, antibacterial/anti-aging properties are also achieved [7–14]. Moreover, bio-
based polyols can be used, instead of petrochemical ones, as feedstock, aiming to produce
environmentally-friendly RPUF [15–18]. However, to improve the mechanical properties
of RPUF, to designate the material as a structural component, some issues need to be
taken into account, as the filler’s type/aspect ratio, as well as its compatibility with the PU
matrix [19].

It was shown in previous reports that these fillers characteristics influence directly
the foaming process and foams’ curing kinetics, which affects directly its cellular foams’
morphology (cells’ anisotropy, size, distribution, and closed cells content) and consequently
on the final foam’s performance [9,20]. In this sense, some strategies have been developed
to improve mechanical properties of filled-RPUF, as the chemical surface treatment of fillers,
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by the use of silanes, maleic anhydride, alkali treatments [2,21,22], aminopropylisobutyl-
polyhedral oligomeric silsesquioxanes [23], ionic liquids [24–26], plant oils [27], and by the
incorporation of combined fillers [8,28].

Bleaching is another and cheaper surface pre-treatment that can be beneficial for
the production of vegetable reinforcements. By the combination of sodium-based salts
and peroxides, fibers with lower polymerization degree, extractives, and lignin contents,
as well as higher aspect ratio, cellulose, and hemicellulose contents are expected [29].
Furthermore, bleaching pre-treatment may be beneficial for the production of micro or nano-
fibrillated cellulose, due to the lower tendency to form aggregates, when the milling process
is applied [30,31]. The reduction of particles’ surface free energy, promoted by surface
treatments, may decrease the agglomeration of fillers when they are dispersed into the
polyol. These clusters can actuate as a discontinuity for the cells’ formation, and then rupture
the cells’ edges during the foams’ rising, reducing the foams’ performance [13,30–32].

Fibrillated fillers are also more interesting alternatives when improvements on me-
chanical properties (compressive, flexural, or tensile) and viscoelastic characteristics are
desired [31,33,34]. Due to the alignment of the fibrils, by shear forces, when the foam
is rising, improved mechanical properties parallel to the rise direction are expected [35].
Besides, thinner cells with consequent decreases of cells’ diameter and increases of cells’
anisotropy are expected, due to the action of such fillers as nucleating agents for the bubbles’
formation, which, in turn, influence apparent density and thermal conductivity [32].

Tough fibrillated fillers, like glass fibers, may also be used to reinforce RPUF, promot-
ing dramatic improvement in its mechanical performance. Structural components, like
those used in the liquefied natural gas industry and when the component is destined for
core bumpers fabrication, used in the automotive industry, are some applications’ examples
of such components [36,37]. However, synthetic fillers present some drawbacks, as the
use of non-renewable materials and the high consumption of energy for reinforcement
production. In this sense, vegetable fibers, like sisal, jute, ramie, kenaf, coconut, flax,
and Curauá, become a greener alternative to substitute synthetic fillers. Moreover, the pro-
duction of vegetable fibers is associated with social and economic developments of less
favored regions, where the reinforcements are commonly cultivated [38].

Specifically, Curauá (Ananas erectifolius) fiber (CF) is highlighted among the vegetable
fibers. Depending on the CF crop, it is expected that its stiffness may reach 5–9 times greater
than sisal or jute, also presenting lower density among the aforementioned fibers [39].
Interestingly, Curauá in nature is constituted of 70–74% of cellulose, which responsible
for the high strength and stiffness of vegetable fibers [40]. According to Satyanarayana
et al. [39], CF can reach tensile strength ≈3 GPa and modulus ≈80 GPa, with a density
30 times lower than E-glass, depending on the fiber diameter and source. These character-
istics make CF a good candidate to substitute glass fibers in many applications, aiming to
produce environmentally friendly composites [30,41].

As presented, CF has outstanding physical-mechanical properties. Due to it, they
have been applied as reinforcement for non-porous composites [42,43]. To the best of our
knowledge, there are no attempts reported in the literature reinforcing RPUF by bleached
CF. Apart from it, the novelty of this paper is the manufacturing and characterization
of RPUF/CF. Different contents of CF were used and a deep discussion, relating the
morphological aspects, when the CF content is varied, with RPUF properties is presented,
aiming to diffuse and extend the applications of CF for polymer composite materials.

2. Results and Discussion

Figure 1 presents the SEM images for the unbleached (UCF) and bleached Curauá
fibers (BCF). It is possible to see that the treatment removed a large amount of dirty and
constituents of the fibers, like lignin, hemicelluloses, and waxes from the CF surface.
Moreover, greater defibrillation is also achieved for BCF, corroborating with other studies
of bleached vegetable fibers, like sugar cane and Sisal [44–46]. Furthermore, bleaching
decreased the polymerization degree (PD) (from 842 ± 13, for UCF to 562 ± 10, for BCF),



Int. J. Mol. Sci. 2021, 22, 11203 3 of 15

fiber diameter (from 77.5, for UCF to 4.6 for BCF), and increased the CI (from 70, for UCF
to 74, for CF) and increased the cellulose content, as also expected [45,46].
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Figure 1. Unbleached CF (a) and bleached CF (b).

The mean viscosity of each premixed polyols with the specific amount of CF filler
is presented in Table 1, as well as the results for the kinetic expansion for the produced
RPUF composites. As expected, the greater amount of CF increased the dynamic viscosity
significantly, with a higher result for CF 1 [3]. The higher reaction temperature is observed
for CF 0.1, which can be related to the high contact between fillers and isocyanate, compared
to the other groups.

Table 1. Rheological properties and processing times for the studied RPUF.

Sample Temperature
(◦C)

Viscosity
(mPa·s)

Cream Time
(s)

Total Expansion Time
(s)

Tack-Free Time
(s)

Neat RPUF 154 ± 4 870 ± 10 42 ± 1 295 ± 5 358 ± 7
CF 0.1 155 ± 5 910 ± 12 44 ± 2 310 ± 6 360 ± 9
CF 0.5 152 ± 5 1110 ± 14 44 ± 2 325 ± 6 350 ± 7
CF 1 146 ± 3 1480 ± 15 46 ± 3 365 ± 5 345 ± 8

The great content of hydroxyls on the CF surface can increase the reactivity of the
system and also improve the tack-free time for those CF 0.1. However, when a content
greater than 0.1 wt.% is employed, the particles’ surface starts to touch each other and,
consequently, the contact between fiber-isocyanate decreases, which in turn decreases the
reaction temperature and increases cream and total expansion times.

Figure 2 presents SEM images for all studied RPUF composites. Different magnifica-
tions are used, aiming to evaluate the RPUF’s overall aspect and the cells’ aspects. In a
general way, a rectangular cell structure is presented for all RPUF composites, as also
observed in previous reports [28]. Some factors, as pre-polyol viscosity, filler concentra-
tion/interaction, and dispersion influence directly the regularity of the cells’ structure [35].
For that neat RPUF a regular cell structure is observed with an apparent low content
of open cells. The number of cells increases when CF is used. However, for the foams
with a CF amount greater than 0.1 wt.%, an evident higher number of ruptured cells is
observed (Figure 2e–h). Closed cells’ content is presented below and related to these
morphological features.

Figure 3 presents the cells’ size distribution for the studied RPUF composites. In a
general way, the use of CF shifts the cells’ distribution to higher values. Although fillers
generally act as nucleating agents and, consequently, shift the cells’ distribution to lower
ranges [28], fibrillated fillers seem to behave somewhat differently from particle one [24].
Due to the alignment of the fibers, when RPUF is rising, cells’ elongations are expected,
especially when the filler is used above the matrix saturation (i.e., those CF 1). Further-
more, the changing of the cells’ mechanism formation, from homogenous to heterogonous,
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contribute to the overall distribution and lower uniformity of the RPUF cells’ structure [47],
highlighting, again, those CF 1.
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Figure 3. Cell size distribution for the studied RPUF composites.

Table 2 presents the results of apparent density and calculated morphological char-
acteristics. Significant differences for cell size are presented for the RPUF with a higher
amount of CF (i.e., 0.5 and 1.0 wt.%). A linear relation between apparent density and
cell size is evident, for all RPUF composites. Similar results were reported in previous
works [8,28], and are related to the increasing dynamic viscosity of RPUF systems, contain-
ing solid particles. Moreover, due to the high affinity of such fillers with PU, they are able
to act as nucleation agents for the bubble’s formation, which, in turn increases the number
of cells and decreases the apparent density [31]. This also affects the value of R constant
which is related to the cells’ elongation. When compared with Neat RPUF, the addition of
CF increases the value of R and this effect is more prominent for those CF 1.
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Table 2. Morphological characteristics for the studied RPUF composites.

Sample Apparent Density (kg m−3) * Cell Size (µm) * R (µm) *

Neat RPUF 38.10.5 B 4801.0 C 1.113.0 A
CF 0.1 38.40.4 C 4850.8 C 1.617.2 B
CF 0.5 37.90.6 B 4701.1 B 1.59.1 B
CF 1 37.60.4 A 4501.1 A 1.79.2 B

F (p < 0.01) 28.7 31.6 7.4

* Coefficient of variance are the superscript values; different letters represent statistical differences between means for that property;
F = test statistic.

Figure 4 presents the median curves for the compressive parallel and flexural mechan-
ical tests of the studied RPUF composites. Typical elastic–plastic behavior is presented for
the compressive tests (Figure 4a) and it is in agreement for stiff RPUF [31]. After sample
accommodation (nearly 6% strain), the load increases linearly with strain up to a peak that
depends on anisotropy and cell size [48]. After that, the cells start to collapse with each
other and microcracks start to take place, which is ascribed as an abrupt decrease in the
stress (i.e., close to 10% of strain). The RPUF reinforced by CF, up to 0.5 wt.%, presented a
higher apparent modulus compared to the neat one, which is related to the stiffer cell wall
of such composites. On the other hand, those CF 1 presented a lower apparent modulus,
which may be related to the poorer and irregular cells’ formation, with a greater cells’ edge
rupture compared to the others.
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Figure 4. Median curves for compressive (a) and flexural (b) tests parallel to the rise direction of the studied RPUF composites.

For the flexural tests (Figure 4b), all RPUF composites presented a higher apparent
modulus (the linear region on the stress–strain curve) compared to the neat foam. For the
flexural tests, issues as cell size, distribution, and anisotropy seem to influence minor
significance [28]. However, filler saturation and agglomeration represent a great influence
for this property, as presented below.

Table 3 presents the calculated results for the RPUF’s mechanical properties. Signif-
icant increments for compressive strength parallel/perpendicular and flexural strength
are observed when the RPUF are reinforced with CF up to 0.5 wt.%. The latter with ≈9%
increment for all calculated mechanical strengths. Until this amount of reinforcement,
the saturation of the filler is not reached on the PU matrix, then, the cells are formed
without significant irregularity, as presented on SEM images (see Figure 2). Moreover,
CF alignment, when RPUF is rising takes place, as aforementioned, which also influences
the mechanical properties improvement. On the other hand, those CF 1 presented a signifi-
cant reduction in all properties, also with an improvement on the maximum elongation at
the flexural strength. These results are probably related to the morphological features and
filler saturation on the PU matrix, as discussed above.
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Table 3. Mechanical properties and mechanical reinforcement efficiency for compression (ΓC) and flexural (ΓF) tests for the
studied RPUF composites.

Sample
Compressive

Strength
(Parallel) (kPa) *

Compressive
Strength

(Perpendicular)
(kPa) *

Flexural
Strength
(kPa) *

Maximum
Elongation at

Flexural Strength
(%) *

ΓCparallel ΓCperpendicular ΓF

Neat RPUF 239.62.3 B 140.42.9 B 325.20.7 B 11.22.7 A
CF 0.1 250.21.3 C 145.82.3 C 335.41.1 C 10.82.8 A 0.71 1.00 0.70
CF 0.5 260.41.2 D 154.81.2 D 354.80.7 D 10.63.8 A 0.79 1.09 0.79
CF 1 225.41.3 A 120.23.0 A 309.60.6 A 13.52.2 B 0.61 0.82 0.62

F (p < 0.01) 75.2 94.6 231.6 50.1

* Values in superscript are the coefficient of variance; different letters represent statistical differences between means for that property;
F = test statistic.

As presented at [31] and discussed by Hamilton et al. [49], the evaluation of spe-
cific properties (i.e., when the mechanical property is divided by the density), for foamy
composites is not a realistic evaluation of the influence of reinforcements. Morphological
characteristics, due to the high influence of fillers on rising, as cells’ anisotropy and distri-
bution, need to be taken into account. Then, aiming to evaluate the real influence of the CF
on the mechanical properties, reinforcement efficiency factors (Γ) were calculated for both
compressive and flexural tests (Table 3).

Despite those CF 0.5 presented greater results for mechanical properties, no significant
differences for ΓCparallel/perpendicular or ΓF are reported, when they are compared
with CF 0.1. Indeed, no significant differences are reported for rheological properties and
processing times for both groups, which supports the hypothesis that even in low amounts,
CF can reinforce the RPUF cell walls, due to its high aspect ratio and high amount of
cellulose/hemicellulose. However, when a high agglomeration of such reinforcements
takes place, the fillers start to touch themselves and the cells’ rupture mechanism takes
place (as described above), which significantly reduces the values of Γ, for CF 1.

Figure 5 presents the DMA curves for all RPUF composites and Table 4 summarizes
the main results. Polymers are viscoelastic materials and exhibit three main regions: glassy,
transition, and rubbery. Due to this, storage modulus (E’) in glassy and rubbery will be
discussed separately [50,51]. Storage modulus (elastic behavior) vs temperature curves are
displayed in Figure 5a and Table 4 summarizes the main values extracted from those curves.
All RPUF and its composites show the well-defined glassy region, transition region, and the
rubbery plateau, respectively at 50–80 ◦C, 90–150 ◦C, and above 150 ◦C, corroborating
with [23,52].

Figure 5. Dynamic mechanical analysis curves for the studied RPUF composites—(a) tan δ and (b) storage modulus.
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Table 4. Compilation of results from the DMA curves (Figure 5).

Sample
E’ Curves Tan Delta Curves

E’g (kPa) E’r (kPa) C Peak Height FWHM (◦C) Tg (◦C)

Neat RPUF 735 30 - 0.51 52.9 146
CF 0.1 887 36 1.00 0.53 58.3 162
CF 0.5 959 155 0.25 0.49 53.9 165
CF 1.0 644 105 0.24 0.46 66.0 144

E′g at 50 ◦C; E′r at 200 ◦C.

The results presented in Table 4 indicates that CF 0.1 and CF 0.5 increased 20.6% and
30.4%, respectively, E′g, compared to the neat RPUF. In other words, the incorporation of
CF in lower contents improved stiffness, since the incorporation of rigid fillers, such as
CF into a polymeric material may change the chain packaging at a glassy state (below Tg).
The results corroborate with Kerche, et al., when they analyzed the influence of MFC onto
RPUF [31] and Ye, et al. when they filled RPUF with decabrominated diphenyl ethane and
expandable graphite [53]. On the other hand, the incorporation of CF at 1.0 wt.% decreased
around 12% E′g, compared to the neat RPUF, probably due to the poor dispersion of higher
contents of CF. Additionally, this result can be caused by a weaker interaction between
the PU matrix and CF. This behavior was previous observed in [52], when RPUF were
reinforced with cellulose nanocrystal and by industrial potato protein in [33].

Regarding E’r, the trend among the samples changed, compared to the E’g values,
and all the composites showed higher values, compared to the neat RPUF. Once again,
CF 0.5 showed higher values, comparing all composites, and increased more than 400% the
value, compared to the matrix. It suggests the effect of the CF is pronounced in rubbery,
as explained by Neves et al. [50]. A similar trend was also reported in [31,54,55]. At the
transition region, a drop on the curves is reported, characteristic of polymeric materials,
and may be related to the reinforcement Effectiveness Coefficient (C), (Equation (2)). From
Table 4, it is observed lower C values for CF 1.0 and CF 0.5, respectively. These results
indicate that, in the aforementioned samples, a smaller difference between E′g and E′r was
achieved, which confirms the high effectiveness of CF.

Tan delta measures the material’s viscoelastic properties and from that, it is possible to
determine the full width at half maximum (FWHM), which relates to the system homogene-
ity [50]. From tan delta curves (Figure 5b) and Table 4, it is possible to observe that there
were no significant changes, among the composites, regarding peak height. On the other
hand, Tg values increased around 16 ◦C and 19 ◦C, for CF 0.1 and 0.5 samples, respectively,
compared to the neat RPUF. Similar behavior was also reported in [53]. The incorporation
of CF at 0.1 and 0.5 wt.% also causes a broad peak compared to the neat RPUF. According
to Czlonka et al. [56], this may be related to the different relaxation mechanisms of the filler
and matrix, characteristic of RPUF composites.

Figure 6 presents the results for closed cell content and thermal conductivity coefficient
(λ) for the studied RPUF composites. A linear relation between closed cells’ content and
λ is reported and they are in agreement with previous reports [2,8,9,33]. Briefly, λ values
depend on heat transfer of a solid phase, gas-phase, and convection across the voids.
Then, if a higher number of ruptured cells edges are observed, lower values for closed-cell
content are expected, corroborating to higher convection of gas through the voids and
higher values for λ, as presented here. Besides, the diffusion of CO2 through the RPUF
cell walls (and replace to atmospheric air) is the main reason for the overall increases of λ
(CO2 = 0.014 Wm−1 K−1; air = 0.025 Wm−1 K−1), and higher values for λ are expected for
RPUF that was post-cured for at least 7 days, as the studied one. Finally, the results are in
agreement with the SEM images (see Figure 2), where the filled foams presented a more
irregular cell structure and consequently lower values for closed-cell contents.
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Figure 6. Closed-cell content and thermal conductivity relation for the studied RPUF composites.

Figure 7 presents the TGA/DTG results for the studied RPUF composites and Table 5
the main events related to the thermal decomposition of such foams. The results for the 1st
stage of thermal decomposition (Tmax1) are related to the low-molecular-weight compounds
dissociation, as polyurethane hard segments [57]. Lower values for Tmax1 are expected
for filled RPUF and are related to the poor dispersion and aggregates formation into the
PU system, which, consequently, changes the RPUF’s cross-link density [3]. At the 2nd
degradation stage (Tmax2), fillers decomposition, urea hard segments and higher-molecular-
weight compounds (as soft segments) dissociate. A slight increment is expected for filled
RPUF, due to the partial linkage of reinforcements to the soft PU-matrix segments [31,57],
and also due to the high amount of cellulose of CF.
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Figure 7. Thermogravimetric curves for the studied RPUF composites.
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Table 5. Main results from thermogravimetric analysis (TGA) of the studied RPUF composites.

Sample
Tmax (◦C)

Residue (at 600 ◦C) (wt.%)
1st Stage 2nd Stage 3rd Stage

Neat RPUF 221 307 579 30.4
CF 0.1 215 309 583 29.8
CF 0.5 219 310 595 29.7
CF 1 229 311 593 29.6

The last step for thermal decomposition (Tmax3) is related to the decomposition of
cellulose and hemicellulose, from vegetable fibers when used in RPUF [23,58]. Higher
values for Tmax3 are expected, when a higher amount of CF is used into the RPUF, due to
the high content of cellulose of such reinforcements [45]. Finally, a slight decrease in the
amount of residue (at 600 ◦C) is reported for the RPUF with higher contents of CF, related,
again, to the high amount of cellulose and hemicellulose on the CF chemical structure.
These features facilitate the conversion of polyurethane to volatile gases.

Table 6 presents the compiled results from cone calorimetry for the studied RPUF
composites and Figure 8 presents the results of cone calorimetry. It is possible to observe
that the ignition time (IT) presented a slight decrease by the use of CF in a content greater
than 0.5 wt.%, but no differences were reported for those CF 0.1. This behavior may be
related to the high content of cellulose on the CF chemical composition, which has high
flammability. Heat peak release (pHRR) is related to the release of low molecular weight
compounds, for RPUF, such as isocyanate, olefins, and amines [28]. All RPUF composites
presented higher results for pHRR, which may be related to the higher flammability of
the foams. However, when the results for the total amount of CO2Y are evaluated, lower
values are observed as well as the results for limiting oxygen index (LOI).

Table 6. Main results from the cone calorimeter tests for the studied RPUF composites.

Sample IT
(s)

pHRR
(kW m−2)

TSR
(m2 m−2)

THR
(MJ m−2)

COY
(kg kg−1)

CO2Y
(kg kg−1)

COY/CO2Y
(-)

LOI
(%)

Neat RPUF 4 257 1513 21.7 0.35 0.27 1.3 20.1
CF 0.1 4 264 1720 21.8 0.41 0.29 1.4 19.8
CF 0.5 3 285 1990 22.4 0.47 0.27 1.7 19.00
CF 1 3 290 1995 23.9 0.48 0.24 2.0 18.1

In a general way, as higher the value of COY/CO2Y ratio higher is the incomplete
combustion of RPUF and greater amount of toxic smoke is released. All RPUF composites
presented higher values for this ratio. Although the flammability of the reinforced foams
was impaired, the results from cone calorimetry are in agreement with other studies.
In addition, RPUF/CF composites presented lower flammability and indexes, compared
with other reports, and lower pHRR and TSR [20,23,28].

Figure 9 presents SEM images of the RPUF residue from the cone calorimetry tests.
From the images, it is possible to see a deteriorated cell structure, due to the RPUF burning.
Moreover, some burned CF is presented on those foams with high content of the filler,
as those CF 0.5 and 1 (Figure 9c,d). As shown in Figure 9a, after the combustion process,
the char residue of Neat RPUF presents a compact structure, which may act as a physical
barrier against the combustion process. On the other hand, the structure of RPUF compos-
ites’ residue seems to be loose and the voids, which are formed during the releasing of the
flammable gases are visible in the structure. This effect is most prominent in the case of CF
1. The obtained results indicate that the addition of CF increases the flammability of RPUF
due to the biodegradable nature of the filler [6,8,28].
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Figure 8. Results from cone calorimetry tests for the studied RPUF composites. (a) Heat release rate curve (HRR), (b) total
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3. Materials and Methods
3.1. Bleaching of CF and Characterization

The bleaching process of CF was previously described at [45,46]. Briefly, as received
CF (UCF) (Support Center for Community Action Projects from Pará state—Brazil) were
immersed in 12% (v/v) NaClO2 solution and 5% (w/v) NaOH solution for 2 h at 50 ◦C,
maintaining 1:10, CF: solution ratio. After this step, the fibers were washed with distilled
water until neutralized solution pH, measured by an indicator paper, and oven-dried
(Quimis model Q317M) for 12 h at 60◦C for further characterization. Scanning Electron
Microscopy (SEM, JEOL LTD, Akishima, Japan—conditions described below) was per-
formed for the UCF and BCF, to evaluate the quality of the bleaching process. Other fibers
characteristics, as Polymerization degree (PD, determined by viscosity method with the aid
of an Ubbelohde viscometer, number 1), crystallinity index (CI), and chemical composition
from Fourier transform infrared spectroscopy (FT-IR) and strong acid hydrolysis were
previously reported [45,46].
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3.2. RPUF Preparation and Characterization

The reactant used for the RPUF manufacturing is presented below. All amounts were
used in parts by weight (pbw) of the total RPUF mass and the NCO:OH ratio was kept at
160:100. 100.0 pbw—Polyether polyol (Stepanpol PS-2352, Stepan Company (Northfield,
IL, USA); 240 mgKOH g−1, functionality of 2 and molecular weight of 460 g mol−1).

• 160.0 pbw—Polymeric diphenylmethane diisocyanate (MDI) (31% of NCO groups;
Purocyn B, Purinova Company; Bydgoszcz, Poland);

• Catalysts: Kosmos 75 (6.0 pbw) (potassium octoate) and Kosmos 33 (0.8 pbw) (potas-
sium acetate) (Evonik Industry; Essen, Germany);

• 2.5 pbw—Silicone-based surfactant: Tegostab B8513 (Evonik Industry (Essen, Germany));
• Blowing agents: (11.0 pbw) Pentane and cyclopentane (50:50 v/v; Sigma-Aldrich

Corporation; Saint Louis, MO, USA). (0.5 pbw) distilled water.

Firstly, CF bleached pulp was fragmented by cutting for small (5 × 5 mm) squares
then minced in a knife homogenizer (MPW-120) for 2 min. Rigid polyurethane foams
(RPUF) were synthesized, based on previous reports [3,22]. Briefly, polyol, catalysts,
surfactant, and blowing agents were mixed for 60 s at 4500 RPM (rotations per minute).
The mixture was then incorporated with 0.1; 0.5 and 1 wt.% (named here as CF 0.1; CF 0.5
and CF 1, respectively) of bleached CF and, again, mechanically homogenized for 60 s
at 4500 RPM. After that, MDI was added to the mixture and mixed again for 10–20 s at
4500 RPM. The obtained mixture was poured into an open, plastic box and allowed to
grow freely in the vertical direction. All prepared foams were cured at room conditions
(average temperature and moisture), for 24 h. After that, the samples were cut for further
characterization. A schematic procedure of RPUF composite synthesis is presented in
Figure 10.
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Figure 10. Flowchart for the manufacturing of rigid polyurethane foam composites.

Filled pre-polyol systems’ viscosities were evaluated using a Viscometer DVII+ (Brook-
field, Dresden, Germany) in the function of a shear rate, according to ISO 2555 standard.
The measurements were performed at room temperature.

RPUF cell structure was evaluated using a scanning electron microscope (SEM), JSM-
5500 LV equipment (JEOL Ltd., Tokio, Japan). The samples were scanned parallel to the
rise direction, at the accelerating voltage of 10 kV.

RPUF’s apparent density (10 samples for each group) was determined as the ratio
of the foam’s mass to its volume, according to ISO 845 standard. Closed-cell content was
evaluated based on PN-EN ISO 4590 standard, using the helium pycnometer AccuPyc
1340 with the Foam Pyc option (Micrometrics, Norcross, Norcross, GA, USA) in S.Z.T.K.
‘TAPS’—Maciej Kowalski Company (Lodz, Poland).
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RPUF’s compressive strength (σ10%) (5 samples for each group) was evaluated ac-
cording to ISO 844 standard, perpendicular and parallel to the foams’ rise direction, using
a Zwick Z100 universal testing Machine (Zwick/Roell Group, Ulm, Germany, load cell
of 2 kN, constant speed of 2 mm min−1). The measurements were performed up to 10%
of samples’ deformation. Flexural strengths were also evaluated, according to ISO 178
standard. The measurements were performed using the same aforementioned universal
testing machine and speed.

Mechanical reinforcement efficiency for foam strength (Γσ), according to Equation (1),
was calculated for compressive (parallel and perpendicular to the rise direction) and
flexural properties, as in [31]. ησ was considered as 1, due to the cell-wall stretching
mechanism, presented for closed-cell foams and also due to the low anisotropy of the
foams’ cells, as described in [59].

(ΓC,F)σ =
(σC,F)c
(σC,F)f

(
ρf
ρc

)nσ fσ(Rf)

fσ(RC)
(1)

where: (σC,F) is the compressive or flexural strength; ρ is the apparent density; fσ (Rf, Rc) is
a function that depends on the shape anisotropy ratio (R = cell length/cell width) and the
property direction evaluation (parallel or perpendicular), and subscripts c and f represent
the RPUF filled with CF and the neat RPUF, respectively.

Statistical analysis was performed for morphological and mechanical properties, using
as a factor the wt.% of CF employed into the RPUF. Normality and homogeneity of each
level were verified by Shapiro–Wilk and Levane tests, respectively. After that, one-way
ANOVA and averaging tests were performed following the LSD Fischer procedure with
95% confidence.

RPUF’s dynamic mechanical analysis (DMA) was performed in an ARES rheometer
(TA Instruments, New Castle, DE, USA). Measurements were carried out in the temperature
range of 40–250 ◦C at a heating rate of 10 ◦C min−1, using a frequency of 1 Hz and the
constant strain of 0.1%. To evaluate the influence of the content of CF used, the effectiveness
of filler reinforcement constant, C, was calculated, as at [30,31], following Equation (2),
from DMA tests:

C =

((
E′g/E′r

)
Composite(

E′g/E′r
)

Matrix

)
(2)

where: E′g and E′r are the storage moduli related to the glassy and rubbery regions, respectively.
Thermogravimetric analysis (TGA) was performed for the studied RPUF, using Mettler

Toledo thermogravimetric analyzer TGA/DSC1 (Columbus, OH, USA), at an argon heated
atmosphere up to 600 ◦C. Decomposition temperatures (Tmax1, Tmax2, Tmax3, and residue,
above 600 ◦C) were determined. RPUF’s thermal conductivities were measured using the
heat flow meter apparatus Laser Comp 50 (TA Instruments, New Castle, DE, USA), with
a 2.5 cm × 2.5 cm size heat flow transducer. The upper and lower plates of the HFMA
instrument were set with a mean temperature of 25 ◦C.

RPUF’s flammability was evaluated by the cone calorimeter tests, according to ISO
5660 standard, in a S.Z.T.K. ‘TAPS’ equipment (Maciej Kowalski Company, Lodz, Poland).
Each specimen with dimensions of 100 × 100 × 25 mm3 was wrapped with aluminum foil
and burned at an external heat flux of 35 kW m−2. The parameters were recorded during
the time (s).

4. Conclusions

Bleaching of Curauá fiber (CF) produced a fiber with lower impurities, dirty on its
surface and higher aspect ratio, which enabled the use of the filler as a real reinforcement
for the production of rigid polyurethane foams with high performance. Different amounts
of CF (0.1, 0.5, and 1 wt.% in relation to the total RPUF mass) were investigated, aiming to
evaluate the filler’s saturation on the PU matrix. At lower contents of CF (as those CF 0.1),
improvements in mechanical properties were reported. However, those CF 0.5 presented
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the best mechanical performance, among the composites, due to the formation of a thinner
and elongated cell structure. A ≈9% increment for all calculated mechanical strengths was
reported for this content, compared to the neat RPUF.

Better dynamical mechanical and viscoelastic characteristics were also reported for
CF 0.5. 19 ◦C improvements on Tg, 23% higher values for E′g and 80% for E′r, for those,
compared to the neat foam. Better thermal stability was also achieved for those CF 0.5, com-
pared to the neat foam, especially the temperatures related to the second and third steps of
thermal decomposition. However, improvements in the fire resistance and flammability of
the RPUF were not achieved, due to the high content of cellulose and hemicellulose on the
CF chemical composition. This study focused on the use of CF, a high-performance veg-
etable Brazilian fiber, with low exploration on the current literature, for the manufacturing
of cellular composite materials. The results presented in the current study, indicate that
the use of CF, at an optimized content, enables the production of RPUF composites with
improved physical-mechanical properties.
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13. Kairytė, A.; Vaitkus, S.; Kremensas, A.; Pundienė, I.; Członka, S.; Strzelec, K. Moisture-mechanical performance improvement of
thermal insulating polyurethane using paper production waste particles grafted with different coupling agents. Constr. Build.
Mater. 2019, 208, 525–534. [CrossRef]
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