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Abstract: Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor.
The median survival rate from diagnosis ranges from 15 to 17 months because the tumor is resistant
to most therapeutic strategies. GBM exhibits microvascular hyperplasia and pronounced necrosis
triggered by hypoxia. Sulforaphane (SFN), an isothiocyanate derived from cruciferous vegetables,
has already demonstrated the ability to inhibit cell proliferation, by provoking cell cycle arrest, and
leading to apoptosis in many cell lines. In this study, we investigated the antineoplastic effects of
SFN [20–80 µM for 48 h] in GBM cells under normoxic and hypoxic conditions. Cell viability assays,
flow cytometry, and Western blot results revealed that SFN could induce apoptosis of GBM cells in a
dose-dependent manner, under both conditions. In particular, SFN significantly induced caspase
3/7 activation and DNA fragmentation. Moreover, our results demonstrated that SFN suppressed
GBM cells proliferation by arresting the cell cycle at the S-phase, also under hypoxic condition, and
that these effects may be due in part to its ability to induce oxidative stress by reducing glutathione
levels and to increase the phosphorylation of extracellular signal-regulated kinases (ERKs). Overall,
we hypothesized that SFN treatment might serve as a potential therapeutic strategy, alone or in
combination, against GBM.
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1. Introduction

Glioblastoma multiforme (GBM) is the most invasive and deadly primary brain tumor.
GBM has an annual incidence of 3–5 cases per 100,000 people, while the disease can occur
both in children and adults, median age at diagnosis is 65 years [1]. It is approximately
1.6 times more common in males than females, the reason for which remains uncertain.
The vast majority of patients with glioblastoma do not have any identifiable risk factors for
tumor development [2]. The only established non-genetic risk is a history of exposure to
ionizing radiation [3]. The overall survival period for GBM patients without postoperative
treatment is 3–6 months. The introduction of radiotherapy increased the survival period
to 9–12 months. Temozolomide has been added to radiotherapy, resulting in yet another
increase in survival. Despite this progress and the enormous progress in diagnostics, the
treatment protocol for GBM has remained essentially unchanged in past years [4]. For this
reason, novel therapeutic strategies are urgently needed to treat this lethal disease. GBM is
characterized by a heterogeneous microenvironment that considerably complicates mecha-
nistic studies of GBM cell invasion. Furthermore, GBM undergoes malignant progression
under hypoxic conditions [5]. Hypoxia is a feature found in several solid tumors, and it
indicates a poor prognosis. Hypoxia drives malignancy by promoting chemo- and radio-
therapy resistance, alters the tumor cells’ metabolism, generates strong genome instability,
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and increases angiogenesis [6]. Oxidative stress is critically involved in the development
of malignant tumors [7]. Cancer cells can adapt to maintain redox homeostasis through a
variety of mechanisms. Due to the poor vascularization of solid tumors and rapid nutrient
consumption by tumor cells, oxygen and nutrients such as glucose in the tumor microen-
vironment are often limited [8]. Cancer cells develop metabolic adaptation to the tumor
microenvironment, exhibiting metabolic flexibility (alternative material and energy sources)
and metabolic plasticity (rewired metabolic pathways) [9]. These metabolic modifications
not only increase key metabolic pathways such as glycolysis, pentose phosphate pathway
(PPP), and glutaminolysis but also interact with multiple oncogenic signaling pathways
such as phosphoinositide 3-kinase/protein kinase B- (PI3K/AKT), Ras-, p53-, Myc-, and
reactive oxygen species (ROS)-related pathways [10]. Several studies have demonstrated
massive production of ROS and the negative regulation of antioxidant system in cancer
cells, because of hypoxia and metabolic alterations. In these conditions, different onco-
genes are activated to stimulate cellular proliferation, transformation, and metastasis [11].
Mitochondria are central organelles at the crossroad of various energetic metabolisms. In
addition to their pivotal roles in bioenergetic metabolism, they control redox homeostasis,
biosynthesis of macromolecules and apoptotic signals, all of which are linked to carcinogen-
esis. Mitochondria also represent “stress sensors” that coordinate metabolic adaptation of
cells to their microenvironment [12]. A decline in antioxidant capacity arising from genetic
mutations may increase the mitochondrial flux of free radicals resulting in misfiring of cel-
lular signaling pathways. Often, a metabolic reprogramming arising from these mutations
in metabolic enzymes leads to the overproduction of so called ’oncometabolites’ in a state
of ‘pseudohypoxia’. This can inactivate several of the intracellular molecules involved
in epigenetic and redox regulations, thereby increasing oxidative stress and giving rise
to growth advantages for cancerous cells [13]. Glutathione (GSH) is the most important
antioxidative agent in cells and is essential in the detoxification of carcinogens [14]. It
is reported that targeting GSH could be a potential strategy to render cancer cells more
sensitive to the standard therapies [15].

Sulforaphane (SFN), 1-isothiocyanate-4-(methylsulfinyl)-butane is an isothiocyanate
(ITC) from cruciferous vegetables, in particular broccoli and broccoli sprouts [16,17]. By
monitoring quinone reductase induction in cultured murine hepatoma cells in biological
assays, Zhang et al. were able to isolate SFN from broccoli. Approximately 9 mg of SFN
was isolated from 640 g of fresh broccoli florets (ca. 14 µg/g of fresh weight) [18]. SFN has
attracted the attention of researchers for its remarkable properties in disease treatment, and
very low toxicity in healthy tissue [19]. Indeed, it shows pleiotropic activities by modulating
several pathways involved in the pathogenesis of cancer [20]. The chemopreventive
effects of the ITCs are traditionally attributed to their ability to prevent tumorigenesis
through enhancement of carcinogen phase 2 detoxification, which is strictly related to
the translocation of the nuclear factor NF-E2–related factor 2 (Nrf2) into the nucleus [21].
Nrf2 controls both the basal and stress-inducible expression and function of key metabolic
components belonging to metabolic reactions, such as GSH biosynthesis and recycling [22].
Moreover, SFN can easily cross the blood-brain barrier (BBB) and reach the central nervous
system (CNS) after intraperitoneal administration [23]. Recent studies have demonstrated
the possible application of SFN in GBM by promoting apoptosis and inhibiting both growth
and invasion of tumoral cells. Moreover, SFN has demonstrated the feasibility of targeting
the chemoresistance of cancer cells [24].

Despite the recognized properties of SFN in relation to cancers, little information is
available on the properties of SFN in GBM under hypoxic condition, which is a distinct
feature of this tumor. Here, we investigated the effects of SFN on U87MG and U373MG
GBM cells. Our study is aimed at providing a new insight for a novel potential therapeutic
agent in the treatment of GBM. Our results showed that SFN causes cell-cycle arrest and
reduces cell growth in GBM cells also under hypoxic condition and these effects may be
attributed to its ability to increase oxidative status and phosphorylation of extracellular
signal-regulated kinases (ERKs).
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2. Results
2.1. The Effects of SFN on Cell Viability

The anti-proliferative effect of SFN was estimated using alamarBlue assay under
hypoxic and normoxic conditions (Figure 1). Hypoxia is crucially involved in tumor
aggressiveness by causing resistance to radiotherapy and chemotherapy [25]. Nevertheless,
we did not observe any cell culture suffering under severely hypoxic conditions. The cells
were incubated with various concentration of SFN [20–80 µM] under hypoxic or normoxic
conditions for 48 h. The results indicated that all SFN concentrations induced a significant
decrease in cells viability in both U87MG (Figure 1A) and U373MG (Figure 1B) cell lines.
Interestingly, in all tested cell lines, SFN decreased cell viability in a comparable manner in
both normoxia and hypoxia.
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Figure 1. Effects of SFN on cell viability after 48 h of treatment [20–80 µM] in normoxic (green) or hypoxic (red) conditions.
All SFN concentrations induced a significant decrease in cells viability in U87MG (A) and U373MG (B) cell lines. Data are
expressed as fold increases in the percentage of cell viability versus corresponding controls and reported as mean ± SD of
three independent experiments (**** p < 0.0001 vs. normoxic Ctrl group; ## p < 0.01 and #### p < 0.0001 vs. hypoxic Ctrl
group. Two-way ANOVA, post hoc test Bonferroni).

2.2. The Effects of SFN on Apoptotic Cell Death

We hypothesized that the reduced cell number observed upon SFN treatment might
be associated with apoptosis. SFN has already demonstrated apoptotic effects on different
GBM cells in normoxia [26–28]. Therefore, SFN-treated cells were assessed for the classical
apoptosis indicators, caspases activation, and DNA fragmentation.

Caspases are key proteases of apoptosis; in order to examine whether caspase activity
was related to apoptosis in U87MG and U373MG cells, a multi-caspase assay was performed
using the Muse™ Cell Analyzer after cells were exposed to different concentrations of SFN
(Figure 2A,B) under hypoxic and normoxic conditions.

After the treatment, the cells that were positive for caspase-3/-7 and 7-AAD staining
were detected. The ratio of apoptotic cell populations, early and late apoptosis, increased
compared to the higher concentration of SFN. Thus, in both tested cell lines and normoxic
and hypoxic conditions, 48 h of SFN treatment significantly induced early- and/or late-
stage apoptosis, and the highest proportion of apoptotic cells was found in the U87MG
cell line.

Additionally, another key feature of apoptosis, DNA fragmentation, was also investi-
gated using an ELISA kit. The results of DNA fragmentation assay consistently indicated
that SFN induced apoptosis in both cell lines (Figure 2C,D). The apoptotic effect of SFN
is more marked in hypoxia than normoxia, especially for U87MG, where it is already
significant at the concentration of 20 µM (Figure 2C).
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normoxic or hypoxic conditions. Caspases-3/-7 were detected in U87MG (A) and U373MG (B) cell lines to identify early
(green) and late (blue) apoptosis. The SFN treatment induced apoptosis at 48 h of treatment both in normoxic and hypoxic
conditions. DNA fragmentation was detected in U87MG (C) and U373MG (D) and SFN induced apoptosis in normoxic
(green) and hypoxic (red) conditions. Data are expressed as percentage of live, early and late apoptotic cells (A,B) or as fold
increases in DNA fragmentation versus corresponding controls (C,D) and reported as mean ± SD of three independent
experiments (* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 vs. normoxic Ctrl group; # p < 0.05, ### p < 0.001, and
#### p < 0.0001 vs. hypoxic Ctrl group; § p < 0.05, §§§ p < 0.001 and §§§§ p < 0.0001 vs. the respective normoxic treatment
group. Two-way ANOVA, post hoc test Bonferroni).

2.3. The Effects of SFN on Cell Cycle and Cell Motility

Prompted by the above findings, we examined whether SFN influenced the cell cycle
of GBM cells. SFN has been implicated in the regulation of cell proliferation in human
cancer cells in several research studies [19,29]. The GBM cells were treated with 20, 40 and
80 µM of SFN for 48 h under hypoxic or normoxic conditions. Flow cytometry analysis of
cell cycle distribution revealed that as SFN concentration increased, the number of cells
in the S-phase increased in U87MG (Figure 3A) and U373MG (Figure 3B) cells in both
normoxic and hypoxic conditions.

These results indicated that SFN suppressed GBM cell proliferation by arresting the
cell cycle at the S -hase and this effect was more significant in the U373MG cells than in the
U87MG cells.

Subsequently, we examined whether SFN has any effect on GBM cell motility. The
monolayer cells of U87MG and U373MG were wounded and treated with 40 µM of SFN
up to 72 h in normoxic and hypoxic conditions.

Cell motility after wound generation revealed that untreated cells migrated more
than SFN treated cells (Figure 3C–F). These results indicated that SFN suppressed GBM
cell migration and proliferation both in hypoxic and normoxic conditions. Interestingly,
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SFN has already demonstrated invasion inhibiting effects in GBM cells by influencing
E-cadherin, Galectin-3 and matrix metalloproteinases 2 and 9 [26].
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Figure 3. Effects of SFN on cell cycle (A,B) after 48 h of treatment [20–80 µM] and cell motility after
[40 µM] treatment up to 72 h in normoxic or hypoxic conditions. SFN reduces GBM cell proliferation
increasing the number of cells in the S-phase in both U87MG (A) and U373MG (B) cell lines. Cell
motility showed in U87MG (C,D) and U373MG (E,F) that SFN suppressed GBM cell migration and
proliferation both in hypoxic and normoxic conditions. Quantitative analysis of the area percentage
of the wound not covered by U87MG (C) and U373MG (E) cells. Representative images of U87MG
(D) and U373MG (F) cells at 0 h, 24 h and 48 h, 10× magnification, scale bar 100 µm. Data are
expressed as the percentage of cells in the G0/G1, S, and G2/M phases (A,B) or as the percentage
of the wound area not covered (C,E) and reported as mean ± SD of three independent experiments
(A,B): *** p < 0.001 and **** p < 0.0001 vs. normoxic Ctrl group; ## p < 0.01 vs. hypoxic Ctrl group;
§ p < 0.05, vs. the respective normoxic treatment group. (C,D): **** p < 0.0001 vs. normoxic Ctrl
group at time 0 h; #### p < 0.0001 vs. hypoxic Ctrl group at time 0 h. Two-way ANOVA, post hoc test
Bonferroni).

2.4. The Effects of SFN on Mitochondrial and Oxidative Status

Two distinct pathways of apoptotic cell death have been described: the intrinsic
mitochondrial-mediated pathway and the extrinsic death receptor (DR)-mediated path-
way [30]. The collapse of mitochondrial structural integrity is an early event of the intrinsic
apoptotic pathway [31]. In this pathway, a variety of apoptotic stimuli cause cytochrome
c release from mitochondria, which in turn induces a series of biochemical reactions that
result in caspase activation and consequent cell death [32]. Subsequently, the expression
of cytochrome c protein in U87MG and U373MG cells was assayed by Western Blotting.
As shown in Figure 4A,B, under hypoxia, SFN significantly increased the release of cy-
tochrome c, and this effect is more significant in U87MG than in U373MG cells, suggesting



Int. J. Mol. Sci. 2021, 22, 11201 6 of 15

that SFN could induce apoptosis through the mitochondria-dependent pathway. These
results confirm Zhang’s study in which SFN induced apoptosis in GBM cells most likely
through a Bad–Bax/Bcl-2-cytochrome C signaling pathway [26].
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Figure 4. Effects of SFN on mitochondrial (A,B) and oxidative status (C,D) after 48 h of treatment [20–80 µM] in normoxic
(green) or hypoxic (red) conditions. (A,B) top: representative images of cytochrome C and β-actin expressions in U87MG
(A) and in U373MG (B) cells. (A,B) bottom: quantitative analysis of the Western Blotting results. SFN treatment significantly
increased the release of cytochrome c under hypoxia in both cell lines. SFN treatment reduced the levels of GSH in a
dose-dependent manner both in normoxic and hypoxic conditions (C,D). Data are expressed as fold increases and reported
as mean ± SD of three independent experiments (**** p < 0.0001 vs. normoxic Ctrl group; # p < 0.05, ## p < 0.01 and
#### p < 0.0001 vs. hypoxic Ctrl group; § p < 0.05, §§ p < 0.01, §§§ p < 0.001 and §§§§ p < 0.0001 vs. the respective normoxic
treatment group. Two-way ANOVA, post hoc test Bonferroni).

ROS-mediated oxidative damage represents one of the most important mechanisms
of drug-induced cancer-cell apoptosis [33]. Therefore, the oxidative status of SFN-treated
U87MG and U373MG cells was investigated by measuring GSH levels. Cells require
the maintenance of cellular redox balance, and GSH represents the principal cellular
redox buffer. Interestingly, SFN reduced cellular GSH levels in colon cancer cell lines
comparable to that caused by phenethyl ITC (a compound previously reported to induce
GSH depletion [34]) suggesting that SFN elevates ROS at least in part by disabling the GSH
antioxidant system [35]. We hypothesized that the ROS excess was caused by a flaw in the
antioxidant system, which is incapable of removing ROS. Consequently, we investigated
whether SFN exacerbates oxidative stress by causing depletion of intracellular GSH. As
shown in Figure 4C,D, treatment with SFN considerably reduced the levels of GSH in a
dose-dependent manner both in normoxic and hypoxic conditions.
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2.5. The Effect of SFN on MAPK Signaling Pathway

The mitogen-activated protein kinase (MAPK) signaling pathway has been linked
to the pharmacological effects of some ITCs [36]; thus, we detected the effects of SFN
on human GBM cells. As shown in Figure 5, SFN significantly activated ERK1/2 in
human GBM cells after 48 h treatment, which was in agreement with previous studies
that demonstrated SFN-cysteine, an analog of SFN, contributed to the phosphorylation
of ERK1/2 in GBM cells [37]. However, the activation of ERK was considerably different
between two human GBM cell lines. The phosphorylation of ERK was significant only at
80 µM in U87MG (Figure 5A); while the phosphorylation was dose-dependent in U373MG
and significant at 40 µM both in hypoxic and normoxic conditions.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 15 
 

 

whether SFN exacerbates oxidative stress by causing depletion of intracellular GSH. As 
shown in Figure 4C,D, treatment with SFN considerably reduced the levels of GSH in a 
dose-dependent manner both in normoxic and hypoxic conditions. 

2.5. The Effect of SFN on MAPK Signaling Pathway 
The mitogen-activated protein kinase (MAPK) signaling pathway has been linked to 

the pharmacological effects of some ITCs [36]; thus, we detected the effects of SFN on 
human GBM cells. As shown in Figure 5, SFN significantly activated ERK1/2 in human 
GBM cells after 48h treatment, which was in agreement with previous studies that demon-
strated SFN-cysteine, an analog of SFN, contributed to the phosphorylation of ERK1/2 in 
GBM cells [37]. However, the activation of ERK was considerably different between two 
human GBM cell lines. The phosphorylation of ERK was significant only at 80 µM in 
U87MG (Figure 5A); while the phosphorylation was dose-dependent in U373MG and sig-
nificant at 40 µM both in hypoxic and normoxic conditions. 

 
Figure 5. Effects of SFN on MAPK signaling pathway after 48 h of treatment [20–80 µM] in normoxic (green) or hypoxic 
(red) conditions. Top: representative images of phospho-ERK1/2 and total ERK1/2 expressions in U87MG (A) and in 
U373MG (B) cells. Bottom: quantitative analysis of the Western Blotting results. In U87MG cells (A) SFN treatment induced 
the phosphorylation of ERK at 80 µM, while in U373MG cells (B) the phosphorylation was dose-dependent both in hypoxic 
and normoxic conditions. Data are expressed as fold increases and reported as mean ± SD of three independent experi-
ments. (** p < 0.01, **** p < 0.0001 vs. normoxic Ctrl group, ## p < 0.01, #### p < 0.0001 vs. hypoxic Ctrl group. Two-way 
ANOVA, post hoc test Bonferroni). 

3. Discussion 
Although surgery and radiation represent the first line of intervention in the early 

stages of GBM and very few approved drugs are available, GBM’s resistance to chemo-
therapy and radiation is a significant factor contributing to the aggressive clinical courses 
and to the poor prognosis [38]. The search for new chemo-preventive and/or chemo-ther-
apeutic agents is a crucial and challenging approach to enhance the current state of unsat-
isfactory outcomes. 

As well as in many other tumor types, the presence of hypoxic areas in GBM may 
contribute to chemo- and radio-resistance [39,40]. The uncontrolled proliferation of cancer 
cells, which outgrow their blood supply, deprives cells of nutrients and oxygen. Hypoxia 
is a pathophysiological condition that generally arises due to the fast proliferation of can-
cer cells as they grow beyond the blood supply, consequently depleting cells of nutrients 
and oxygen [41]. In many solid tumors, neovessels are often abnormal, immature, and 
leaky. Neovasculogenesis maintains blood flow to the growing tumor tissue that expands 
rapidly, providing nutrients and oxygen for thriving cancer cells; however, this condition 
means more demand causing even more hypoxia. Again, hypoxia in turn stimulates an-
giogenesis to ameliorate hypoxic condition, closing the vicious circle. As a consequence, 
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3. Discussion

Although surgery and radiation represent the first line of intervention in the early
stages of GBM and very few approved drugs are available, GBM’s resistance to chemother-
apy and radiation is a significant factor contributing to the aggressive clinical courses
and to the poor prognosis [38]. The search for new chemo-preventive and/or chemo-
therapeutic agents is a crucial and challenging approach to enhance the current state of
unsatisfactory outcomes.

As well as in many other tumor types, the presence of hypoxic areas in GBM may
contribute to chemo- and radio-resistance [39,40]. The uncontrolled proliferation of cancer
cells, which outgrow their blood supply, deprives cells of nutrients and oxygen. Hypoxia is
a pathophysiological condition that generally arises due to the fast proliferation of cancer
cells as they grow beyond the blood supply, consequently depleting cells of nutrients and
oxygen [41]. In many solid tumors, neovessels are often abnormal, immature, and leaky.
Neovasculogenesis maintains blood flow to the growing tumor tissue that expands rapidly,
providing nutrients and oxygen for thriving cancer cells; however, this condition means
more demand causing even more hypoxia. Again, hypoxia in turn stimulates angiogenesis
to ameliorate hypoxic condition, closing the vicious circle. As a consequence, the tumor
tissue ends up being highly hypoxic with excessive but dysfunctional vasculature [42].
The abnormal and malfunctioning vessels play a critical role in generating necrotic and
hypoxic regions, where residing cancer stem cells are protected from therapeutic agents,
facilitating tumor aggressiveness as well as GBM stem cell proliferation [43–45]. Thus,
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new strategies to overcome resistance to treatment are needed in the care of GBM patients.
Despite extensive effort in basic, translational, and clinical research, the treatment outcomes
for patients with GBM are almost unchanged over the past 15 years. GBM is one of the
most immunologically “cold” tumors, in which cytotoxic T-cell infiltration is minimal, and
myeloid infiltration predominates. This is due to the profound immunosuppressive nature
of GBM, a tumor microenvironment that is metabolically challenging for immune cells,
and which contributes to the poor results obtained from immunotherapy [46].

Several epidemiologic studies have demonstrated that ITCs have an extensive range
of different clinical applications and their carcinogenesis-inhibiting activities have been
widely confirmed both in vitro and in vivo [47–50]. ITCs have also highlighted cytotoxic
and antiproliferative effects in the micromolar range across several tumor cell lines, in-
cluding neuroblastoma, breast cancer, prostate cancer, leukemia, bladder cancer, colorectal
cancer and lung cancer in a dose- and time-dependent manner [51]. These findings point
to the potential use of ITCs as bio-active compounds, justifying their possible clinical
application, including in combination with other therapies. Notably, a growing interest
has pointed to the possible effects of SFN in GBM not only to induce apoptosis, but also to
inhibit growth and invasiveness of GBM cells [24,52,53]. Moreover, Bijangi et al. made an
interesting finding that SFN is able to reduce the survival of GBM cells, GBM stem-cell-like
spheroids, and tumor xenografts via multiple cell signaling pathways, while having no
impact on the survival of healthy human brain cells in both in vitro and in vivo experi-
ments [52]. Furthermore, Kumar et al. demonstrated that SFN could modulate the immune
response of GBM cells. In particular, SFN inhibited the transformation of normal monocytes
to myeloid-derived suppressor cells (MDSCs) by glioma-conditioned media in vitro at
pharmacologically relevant concentrations that are non-toxic to normal leukocytes. MDSCs
are a key component of the GBM immunosuppressive environment that allows it to evade
immunosurveillance [54].

To the best of our knowledge, there are very few studies on the effects of SFN in the
hypoxic tumor microenvironment and none specifically on GBM. Here, we have taken
advantage of all the information about SFN and GBM to elucidate that SFN may be
considered a valid therapeutic alternative in the hypoxic condition that characterizes GBM,
as a result, the cell-cycle is arrested, and cell growth is inhibited in U87MG and U373MG
cells. Although there are concerns about the provenance of the U87MG cell line, it is still
assumed to be a glioma cell line [55].

In this study, SFN has the potential to significantly reduce cell viability and induce
apoptosis at 20 µM in U373MG and U87MG cells. We also proved that SFN activated
caspase-3 associated with the activation of ERK1/2 signaling pathway. The release of
cytochrome c from the mitochondria may be the cause of caspase-3 activation, implying
that SFN induced cell apoptosis in human GBM cells via the intrinsic apoptosis pathway.
These data agree with the study by Karmakar et al. in which they found increase in
cytosolic and decrease in mitochondrial cytochrome c levels in GBM cells following SFN
treatments, strongly implying the participation of mitochondrial cytochrome c release in
apoptosis mediation [27]. Even more interesting, in our study, these effects are maintained,
even improved, under hypoxic condition, which may indicate how SFN can be effective
even in the characteristic microenvironment of GBM.

In cancer cells, cyclic abnormalities and anti-apoptosis effects are common, and the
capacity to induce cell cycle arrest and enhance apoptosis is a consideration in choosing
potential chemotherapeutic agents [56,57]. The results of our study showed that SFN
induced S-phase arrest and decreased invasion in U87MG and U373MG cells, which was
consistent with previous reports by Wang et al. that SFN provokes S-phase arrest via
p53-dependent antiproliferation and apoptosis induction in gastric cancer cells [19]. One of
the most common abnormalities in gliomas is mutations in the p53 (also known as TP53)
gene. The two cell lines used in the study have substantially different effects on the status
of p53, the U373MG expresses mutant p53 protein, while the U87MG expresses wild-type
p53 protein [58]. The wild-type protein corresponds to a functioning protein, which should
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be able to induce apoptosis, while the mutated protein is associated with an inactive form
of p53, which fails to trigger apoptotic cell death. The U87MG probably eludes apoptosis
through the overexpression of p53 inhibitors, such as Murine Double Minute-2 (MDM2)
or p21, while in the mutated form (i.e., U373MG) the evasion of apoptosis is linked to
the inactivation of p53 [58]. Interestingly, our results indicated that the effect of SFN was
slightly different in the two cell lines. In particular, the anti-apoptotic effect, demonstrated
by induction of caspase-3/-7 and DNA fragmentation and by the release of cytochrome c,
was more conspicuous and dose-dependent in U87MG than in U373MG, probably because
SFN could induce apoptosis in human GBM cells via the p53-dependent mitochondrial
pathway, though the precise molecular mechanism remains unknown.

However, it should be noted that SFN is a pleiotropic compound and showed an
antiapoptotic effect, even on U373MG, modulating some important pathways indepen-
dently of the cellular p53 status. Many researchers demonstrated that p53 mutant isoforms
increase overall ROS levels in cancer cells via an organized control of multiple redox-
related enzymes and signaling pathways, thereby promoting cancer cell proliferation [59].
U373MG cells express the mutant p53 protein, so we can hypothesize that they could
be particularly responsive to a pro-oxidant environment. Therefore, SFN stimulated cell
death by causing redox imbalance, as demonstrated by the decrease in GSH levels and the
increase in ERK1/2 phosphorylation.

The main kinase in the MAPK pathway, ERK1/2, is triggered via phosphorylation and
repressed by its specific phosphatases. The MAPK signaling cascade transfers extracellular
stimuli into cells and regulates many key elements of cell physiology. Transient phospho-
rylation of ERK1/2 (5–15-min stimulation) promotes cell growth [60], while sustained
phosphorylation of ERK1/2 (>15 min stimulation) is responsible for cell apoptosis [61].
In recent studies, SFN significantly increased the phosphorylation of ERK1/2 in different
cancer cell lines [62], which is closely related to cell division, invasion, and apoptosis [63,64].
Accordingly, in human GBM U87MG and U373MG cells, SFN inhibited invasion by acti-
vating ERK1/2 signaling. Therefore, we hypothesized that SFN could induce apoptosis in
both hypoxic and normoxic conditions by activating ERK1/2.

In conclusion, we thought that SFN might activate ERK1/2, decreasing GSH levels
and upregulating cleaved caspase 3, which resulted in cell apoptosis and decreased cell
motility in U373MG and U87MG cells both in hypoxic and normoxic conditions.

4. Materials and Methods
4.1. Cell Culture and Treatments

Human GBM cell lines U87MG and U373MG were purchased from the Lombardy and
Emilia Romagna experimental Zootechnic Institute (Italy). Cells were grown at 37 ◦C in a
humidified incubator with 5% carbon dioxide (CO2) in Dulbecco’s modified Eagle Medium
with phenol red (DMEM, Euroclone Spa, Pero, Milan, Italy) supplemented with 10% fetal
bovine serum (FBS, Euroclone), 2 mM L-glutamine (Sigma-Aldrich, St. Louis, MO, USA),
50 U/mL penicillin and 50 µg/mL streptomycin (Sigma-Aldrich). For the hypoxic expo-
sure, cells were placed in a sealed, self-contained Hypoxia Incubator Chamber (StemCell
Technologies Inc., Vancouver, BC, Canada) connected to a Single Flow Meter (StemCell
Technologies Inc.) for the precise control of gas flow to generate a hypoxic environment.
After 10 minutes of insufflation a severe hypoxia environment was created, and the cells
were kept in hypoxia as long as the SFN treatment (48 h). For the treatment with SFN (LKT
Laboratories, St. Paul, MN, USA), a stock solution was prepared in dimethyl sulfoxide
(DMSO) at 10 mM, then further diluted in complete medium to obtain a concentration
range of 20–80 µM. The concentrations used were chosen on the basis of previous in vitro
studies on GBM [26,52]. In each experiment cells were treated with different concentrations
of SFN [20–40–80 µM] in DMEM 5% FBS under hypoxic (0.1% O2, 5% CO2, and 94.9% N2)
or normoxic (5% CO2) conditions.
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4.2. Determination of Cell Viability

The cell viability was evaluated by the alamarBlue HS™ Cell Viability Reagent (In-
vitrogen Corporation, Waltham, MA, USA) as an indicator of the cell health through the
reducing power of living cells. Once inside the live cell, resazurin is reduced to resorufin, a
red and highly fluorescent dye [65]. Briefly, U87MG and U373MG cells were seeded in a
96 well plate at 1 × 104 cells/well, incubated for 24 h and treated with SFN [20–80 µM] for
48 h at 37 ◦C in normoxic or hypoxic conditions. At the end of the treatment, 10 µL of cells
viability reagent was directly added to cells in culture medium and incubate for 1 h at 37 ◦C
and 5% CO2. The absorbance was detected at 570 and 600 nm using a microplate reader
(GENios, TECAN®, Mannedorf, Switzerland). Values were expressed as fold increases of
the percentage of cell viability and reported as mean ± standard deviation (SD) of three
independent experiments.

4.3. Determination of Apoptotic Cell Death

The apoptotic status was assessed by Muse® Caspases 3/7 kit (Merck Millipore,
Burlington, MA, USA). The kit allows for the determination of the count and the percentage
of cells in different stages of apoptosis based on the activity of executioner caspases 3/7
in combination with a dead cell dye. Briefly, U87MG and U373MG cells were seeded in a
6 well plate at 2 × 105 cells/well, incubated for 24 h and treated with SFN [20–80 µM] for
48 h at 37 ◦C in normoxic or hypoxic conditions. At the end of the treatment, the culture
medium was discarded, and 50 µL of cell suspensions were incubated with 5 µL of Muse®

Caspase-3/7 working solution at 37 ◦C for 30 min. At the end of the incubation, 150 µL
of 7-AAD working solution was added to the samples and run-on Muse® Cell Analyzer
(Merck Millipore). Values were expressed as percentage of live, early and late apoptotic
cells and reported as mean ± SD of three independent experiments.

The cytoplasmatic histone-associated DNA fragmentation was determined using the
kit Cell Death Detection ELISAplus (RocheDiagnostics GmbH, Mannheim, Germany), as
previously described [66], according to the manufacturer’s instructions. Briefly, U87MG
and U373MG cells were seeded in a 96 well plate at 1 × 104 cells/well, incubated for
24 h and treated SFN [20–80 µM] for 48 h at 37 ◦C in normoxic or hypoxic conditions. At
the end of the treatment, 200 µL of lysis buffer were added to each well for 30 min, and
20 µL of supernatant were then incubated in a streptavidin-coated 96-well plate with 80 µL
of a mixture of two monoclonal antibodies–anti-histone (biotin-labeled) and anti-DNA
(peroxidase-conjugated). Wells were washed with the incubation buffer, and 100 µL of
peroxidase substrate solution (ABTS®) were added for 15 min. The Optical Density (OD)
was measured at 405 nm using a microplate reader (GENios, TECAN®). Values were
expressed as fold increases of DNA fragmentation versus corresponding controls and
reported as mean ± SD of three independent experiments.

4.4. Analysis of Cell Cycle

The cell cycle distribution was assessed by Muse® Cell Cycle kit (Merck Millipore),
which allows the quantitative measurements of the percentage of cells in the G0/G1, S,
and G2/M phases of cell cycle. Briefly, U87MG and U373MG cells were seeded in a 6 well
plate at 2 × 105 cells/well, incubated for 24 h and treated with SFN [20–80 µM] for 48 h at
37 ◦C in normoxic or hypoxic conditions. At the end of the treatment, the culture medium
was discarded, and 200 µL of cell suspensions were centrifugated at 1500 rpm for 5 min
before being washed with 1X phosphate buffered saline (PBS). Cells were then fixed adding
200 µL of ice cold 70% ethanol and kept at −20◦C before being centrifugated at 1500 rpm
for 5 min and washed again with 1X PBS. Two hundred µL of Muse® Cell Cycle Reagent
were added in each sample and incubated for 30 min at room temperature in the dark
before being run on Muse® Cell Analyzer (Merck Millipore). Values were expressed as the
percentage of cells in the G0/G1, S, and G2/M phases and reported as mean ± SD of three
independent experiments.
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4.5. Determination of Cell Motility

Cell motility was evaluated using the wound healing assay. U87MG and U373MG cell
lines were seeded in a culture-insert (ibidi® culture-insert 2 well, ibidi GmbH, Martinsried,
Germany) at a density of 2 × 104 cells/well and incubated for 24 h. After allowing the cells
to attach overnight, the culture-insert was removed, leaving a free gap on the dish of 500 µm.
The cells were then treated with SFN 40 µM at 37 ◦C in normoxic or hypoxic conditions and
photographed at 3, 6, 24, 48, 72 h with a Nikon TS 100F microscope (Nikon Instruments
Spa, Campi Bisenzio, Florence, Italy) to capture the area of the gap at 10×magnification.
The area of the gap was then calculated using ImageJ analysis. Values were expressed
as the percentage of the wound area not covered and reported as mean ± SD of three
independent experiments.

4.6. Determination of GSH Levels

GSH levels were determined by the GSH reductase-coupled 5,5′-dithiobis (2-nitrobenzoic
acid) (DTNB) assay. U87MG and U373MG cells were seeded in a 6 well plate at
2 × 105 cells/well, incubated for 24 h and treated with SFN [20–80 µM] for 48 h at 37 ◦C
in normoxic or hypoxic conditions. Briefly, at the end of the treatment, cells were washed
with cold PBS, collected in 1.5 mL of PBS and centrifuged for 10 min at 10,000 rpm at 4 ◦C.
Pellets were then lysed with 500 µL of 0.1% Triton X-100, and centrifuged at 14,000 rpm
for 15 min at 4 ◦C. Twenty-five µL of supernatant were collected into a 96-well plate and
25 µL of cold sulfosalicylic acid (5%) were added to each well. The plate was shaken for
2 min and 125 µL of the reaction buffer (containing the DTNB) were added. The plate was
shaken for 15 s and the OD was measured at 405 nm using a microplate reader (GENios,
TECAN®) for 5 min every 1 min. Values were calculated using a standard calibration curve
and expressed as the mean of fold increases ± SD of three independent experiments.

4.7. Determination of Phospho-ERK1/2 and Cytochrome c

The phospho-ERK1/2 and cytochrome c were evaluated using the Western Blotting
method [16,67]. U87MG and U373MG cells were seeded in 60 mm dishes at 2 × 106 cells/dish,
incubated for 24 h and treated with SFN [20–80 µM] for 48 h at 37 ◦C in hypoxic or
normoxic conditions. At the end of incubation, cells were trypsinized and the cellular
pellet was resuspended in complete lysis buffer containing leupeptin (2 µg/mL, Sigma-
Aldrich), phenylmethylsulfonyl fluoride (PMSF, 100 µg/mL, Sigma-Aldrich) and a cocktail
of protease/phosphatase inhibitors (100×). The protein concentration was determined
using the Bradford method (Bio-Rad Laboratories Srl, Hercules, CA, USA). The protein
lysates (30 µg per sample) were separated by Mini-PROTEAN TGX Stain-Free™ precast
gels (4–15% SDS polyacrylamide gels, Bio-Rad Laboratories SrL) and electroblotted onto
0.45 µm nitrocellulose membranes. Membranes were incubated overnight at 4 ◦C with
primary antibody recognizing phospho-p44/42 (p-ERK1/2) and cytochrome c (1:1000, Cell
Signaling Technologies Inc, Danvers, MA, USA). Membranes were then washed with TRIS-
buffered saline-T (TBS + 0.05% Tween20), and then incubated with horseradish peroxidase
(POD) linked anti-rabbit secondary antibody (1:2000, GE Healthcare, Chicago, IL, USA).
Immunoreactive bands were visualized by enhanced chemiluminescence (ECL, Bio-Rad
Laboratories Srl). The same membranes were stripped and reprobed with total p44/42
(ERK1/2, 1:1000, Cell Signaling Technology Inc.) or anti β-actin (1:1000, Sigma-Aldrich).
Data were normalized on the total protein bands and analyzed by densitometry, using the
Quantity One software (Bio-Rad Laboratories Srl). Values are expressed as fold increases
and reported as the mean ± SD of three independent experiments.

4.8. Statistical Analysis

Data are reported as the mean fold increases ± SD of at least three independent exper-
iments. Statistical analysis was performed using two-way ANOVA with Bonferroni post
hoc test, and differences were considered significant at p < 0.05. Analysis was performed
using PRISM 9 software (GraphPad Software, La Jolla, CA, USA).
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5. Conclusions

Overall, our data indicated that SFN was effective in inducing S-phase cell-cycle
arrest and inhibiting cell growth in GBM cells also under hypoxic condition and these
effects may be attributed to its ability to increase oxidative status and phosphorylation of
ERK1/2. SFN highlights a pro-apoptotic effect at 20 and 40 µM levels, which are within
the physiological concentration achievable by eating a high amount of broccoli products
or through supplementation [68]. The peculiarity of this compound is that it maintains
its effect even in the hypoxic condition, which is a phenomenon common in a majority
of malignant tumors, and it may represent a winning strategy towards resistance to the
treatments available. Overall, our findings suggest that SFN causes apoptosis in GBM;
however, further studies are needed to better explore the underlying mechanisms of its
action, facilitating finding more therapeutic strategies for treating GBM. Several studies
show how natural compounds could exert anti-GBM effects by upregulating apoptosis and
autophagy, inducing cell cycle arrest, interfering with tumor metabolism, and inhibiting
proliferation, neuroinflammation, chemoresistance, angiogenesis, and metastasis [56]. Al-
though these beneficial effects are promising, the efficacy of natural substances in GBM is
constrained by their bio-availability and BBB permeability, which, on the contrary, appear
not to be a problem with SFN treatment. Our study may not only corroborate the chemo-
preventive activity of SFN, but also show new directions for the rational application of SFN
in anticancer strategies against hypoxic tumors. A better understanding of the mechanisms
by which SFN induces cell cycle arrest and apoptosis is crucial for its future development
as a clinically valuable cancer preventive/therapeutic agent, and this information could
contribute to the identification of mechanism-based biomarkers crucially involved in future
clinical trials.
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