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Abstract: Numerous studies over the last several years have shown that D-amino acids, especially D-
serine, have been related to brain and neurological disorders. Acknowledged neurological functions
of D-amino acids include neurotransmission and learning and memory functions through modulating
N-methyl-D-aspartate type glutamate receptors (NMDARs). Aberrant D-amino acids level and
polymorphisms of genes related to D-amino acids metabolism are associated with neurodegenerative
brain conditions. This review summarizes the roles of D-amino acids and pLG72, also known as
D-amino acid oxidase activator, on two neurodegenerative disorders, schizophrenia and Alzheimer’s
disease (AD). The scope includes the changes in D-amino acids levels, gene polymorphisms of
G72 genomics, and the role of pLG72 on NMDARs and mitochondria in schizophrenia and AD.
The clinical diagnostic value of D-amino acids and pLG72 and the therapeutic importance are
also reviewed.

Keywords: Alzheimer’s disease; schizophrenia; D-amino acids; pLG72

1. Introduction

D-amino acids, in which the stereogenic carbon alpha of the amino group has a d-
configuration, are agonists or co-agonists of N-methyl-D-aspartate type glutamate receptors
(NMDARs). NMDARs are crucial in activity-dependent synaptic strength and structural
changes related to long-term synaptic plasticity [1]. Thus, the levels of D-amino acids
and their synthesis and degradation are linked to cognitive impairment, which is the core
feature of schizophrenia and Alzheimer’s disease (AD). Indeed, studies show that the
enzymes involved in D-amino acids metabolism correlate with AD and schizophrenia [2,3].

Schizophrenia and AD, the two most common neurological disorders, cause similar
substantial cognitive and behavioral impairment. Although the pathophysiology of AD
and schizophrenia are distinct, dysfunction of NMDARs transmission plays a critical role
in their pathophysiology. An increasing number of studies focus on factors that regulate
NMDAR activity in cellular and animal models of these two diseases. For instance, pLG72,
also known as D-amino acid oxidase activator (DAOA) and able to modulate D-amino
acid metabolism, is thought to be highly related to AD and schizophrenia pathogenesis.
Polymorphisms in the G72 gene have been connected to behavioral and psychological
symptoms in patients with AD [4] and schizophrenia [5]. In addition to regulating D-amino

Int. J. Mol. Sci. 2021, 22, 10917. https://doi.org/10.3390/ijms222010917 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-2162-8174
https://doi.org/10.3390/ijms222010917
https://doi.org/10.3390/ijms222010917
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222010917
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222010917?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 10917 2 of 21

acid levels, pLG72, localized in the mitochondria, is involved in the cellular oxidative
stress defense system [6]. These pieces of evidence indicate that pLG72 plays a vital role in
AD and schizophrenia and that targeting pLG72 could be a potential strategy for AD and
schizophrenia treatment.

To elucidate the role of D-amino acids and pLG72 in AD, we first briefly summarize
the metabolic pathways of D-amino acids and the changes of D-amino acid levels in AD
and schizophrenia. Second, we discuss the known genetic variants in the G72 gene and the
changes in pLG72 correlation in schizophrenia and AD. Third, we describe the possibility
of therapeutically targeting the D-amino acids metabolism in schizophrenia and AD.

2. D-Amino Acids, D-Amino Acids Metabolism, and NMDAR
2.1. Source of D-Amino Acids

All amino acids except for glycine are stereoisomers. It is commonly assumed that
L-amino acids are predominant in living organisms and that D-forms are primarily found
in microorganisms and bacteria. Recent studies have shown that D-amino acids are also
present in mammals. The sources of D-amino acids include microbial production, ingestion,
and racemization. Endogenous D-amino acids are produced through racemization from
their corresponding antipodes by racemases [7]. Hence, amino acid racemases play a
crucial role in D-amino acids metabolism. Serine racemase (SR) and aspartate racemase
are found in mammals. However, only serine racemases have been detected in human
tissues [8–10]. Wolosker et al. cloned and purified SR, and they also found that SR is
highly selective for L-serine [11]. In addition to D-serine synthesis, SR also participates in
D-aspartate biosynthesis [12].

SR can convert D-serine from L-serine in the brain. Early studies have indicated that
there are concentrations of D-serine and SR in astrocytes [11,13] and that this glia-derived D-
serine modulates NMDA receptor activity and synaptic memory [14]. More recent studies
have shown high amounts of SR and D-serine in primary neuronal cultures and neurons
in vivo [15,16]. L-serine, produced in astrocytes, can be released by alanine, serine, cysteine,
and threonine exchangers (ASCT1, SLC1a4) in exchange for D-serine and other amino acid
substrates [17]. L-serine is further transported to neuronal cells by alanine-serine-cysteine-1
transporter (Asc-1, SLC7A10), which contributes to the uptake of L-serine in neurons [18].
The L-serine that is shuttled to neurons is converted to D-serine by SR. In the opposite
direction, D-serine is released from neurons by an antiporter Asc-1 [19]. D-serine, taken
up by astrocytes through the ASCT1 transporter, accumulates in the glial vesicles [17,20].
A serine shuttle model has been proposed to summarize the activity of L-serine, D-serine,
Asc-1, and ASCT1 transporter [21] (Figure 1). In addition, primary astrocytes from ASCT1-
KO mice, but not from ASCT2-KO mice, exhibited a reduced ability to uptake D-serine,
L-serine, L-alanine, L-threonine, and glycine [17].

D-amino acids can be found extensively in foods and beverages, such as vegetables,
fruits, wine, milk, beer, and fermented foods [22]. These acids are also generated during
food processing; for example, bacteria and yeast produce D-amino acids during fermenta-
tion [23]. A study on vinegar found that the total D-amino acid level in lactic-fermented
tomato vinegar was high, and lactic acid bacteria have a greater ability to produce D-amino
acids than do yeast or acetic acid bacteria [24]. The alteration of D-amino acid concentration
might depend on specific bacteria during red and white wine fermentation [25].
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Figure 1. Illustration of the serine shuttle model. D-serine is converted from L-serine by serine race-
mase (SR) in astrocytes and presynaptic neurons. In astrocytes, D-serine also accumulates in vesicles. 
D-serine can be shuttled from neurons to astrocytes by alanine-serine-cysteine-1 transporter (Asc-1) 
and alanine, serine, cysteine, and threonine exchangers (ASCT1), whereas L-serine is shuttled from 
astrocytes to neurons by the same transporters in the opposite direction. The excessive D-serine in 
the synaptic cleft is removed by Asc-1 (created with BioRender.com accessed on 25 September 2021). 

D-amino acids can be found extensively in foods and beverages, such as vegetables, 
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food processing; for example, bacteria and yeast produce D-amino acids during fermen-
tation [23]. A study on vinegar found that the total D-amino acid level in lactic-fermented 
tomato vinegar was high, and lactic acid bacteria have a greater ability to produce D-
amino acids than do yeast or acetic acid bacteria [24]. The alteration of D-amino acid con-
centration might depend on specific bacteria during red and white wine fermentation [25]. 

In addition to D-aspartate and D-serine, which mammals can synthesize endoge-
nously, several D-amino acids such as D-alanine, D-glutamate, D-aspartate, D-serine, and 
D-proline, can be absorbed from gut bacteria [26,27]. Interestingly, D-amino acids, D-amino 
acids oxidase (DAAO), and microbiota on the epithelial surface of the small intestine co-
operate and maintain the homeostasis of murine mucosa immunity [26]. The brain–gut–
microbiota axis indicates a possible linkage between the bacteria in the intestine and the 
development of neurological disorders, such as Parkinson’s disease, AD, multiple sclero-
sis, schizophrenia, and autism [28–30]. By analyzing fecal samples from patients with AD 
and matched cognitively healthy controls, Zhung et al. found that gut microbiota compo-
sition was different between the two groups [31]. Similar to AD, studies showed a smaller 
subset of bacteria is different in schizophrenia patients compared with the control group 
[32]. Thus, one possibility is that gut bacteria from different microbiota environments gen-
erate different D-amino acids involved in the pathogenesis of AD and schizophrenia. 

2.2. Elimination of D-Amino Acids and D-Amino Acid Oxidase 
The flavin enzyme DAAO is found mainly in the kidney, liver, and brain of mammals 

[33,34]. By a reduction of its flavin adenine dinucleotide (FAD) coenzyme, DAAO oxidizes 
D-amino acids and produces imino acid. Afterward, the hydrolysis of imino acid causes 
the production of α-keto acid [35]. Mammalian DAAO enzyme activity has been identified 
in the rat brain, as well as in bovine and human nerve tissue [36,37]. DAAO activity is rare 
in the forebrain but high in the lower brain [38], and the localization of DAAO is inversely 
correlated with the presence of D-serine [39]. In addition, DAAO enzyme activity and 
mRNA are increased in the cerebellum after birth [40,41]. Cellular expression of DAAO is 

Figure 1. Illustration of the serine shuttle model. D-serine is converted from L-serine by serine
racemase (SR) in astrocytes and presynaptic neurons. In astrocytes, D-serine also accumulates in
vesicles. D-serine can be shuttled from neurons to astrocytes by alanine-serine-cysteine-1 transporter
(Asc-1) and alanine, serine, cysteine, and threonine exchangers (ASCT1), whereas L-serine is shuttled
from astrocytes to neurons by the same transporters in the opposite direction. The excessive D-serine
in the synaptic cleft is removed by Asc-1 (created with BioRender.com accessed on 25 September 2021).

In addition to D-aspartate and D-serine, which mammals can synthesize endogenously,
several D-amino acids such as D-alanine, D-glutamate, D-aspartate, D-serine, and D-proline,
can be absorbed from gut bacteria [26,27]. Interestingly, D-amino acids, D-amino acids
oxidase (DAAO), and microbiota on the epithelial surface of the small intestine cooperate
and maintain the homeostasis of murine mucosa immunity [26]. The brain–gut–microbiota
axis indicates a possible linkage between the bacteria in the intestine and the development
of neurological disorders, such as Parkinson’s disease, AD, multiple sclerosis, schizophre-
nia, and autism [28–30]. By analyzing fecal samples from patients with AD and matched
cognitively healthy controls, Zhung et al. found that gut microbiota composition was
different between the two groups [31]. Similar to AD, studies showed a smaller subset
of bacteria is different in schizophrenia patients compared with the control group [32].
Thus, one possibility is that gut bacteria from different microbiota environments generate
different D-amino acids involved in the pathogenesis of AD and schizophrenia.

2.2. Elimination of D-Amino Acids and D-Amino Acid Oxidase

The flavin enzyme DAAO is found mainly in the kidney, liver, and brain of mam-
mals [33,34]. By a reduction of its flavin adenine dinucleotide (FAD) coenzyme, DAAO
oxidizes D-amino acids and produces imino acid. Afterward, the hydrolysis of imino acid
causes the production of α-keto acid [35]. Mammalian DAAO enzyme activity has been
identified in the rat brain, as well as in bovine and human nerve tissue [36,37]. DAAO
activity is rare in the forebrain but high in the lower brain [38], and the localization of
DAAO is inversely correlated with the presence of D-serine [39]. In addition, DAAO
enzyme activity and mRNA are increased in the cerebellum after birth [40,41]. Cellular
expression of DAAO is intense in glial cells, and histochemical studies observed intense
DAAO activity in astrocytes, including those in Bergmann glial cells [36,38,42]. Immuno-
histochemistry staining and in situ hybridization have identified DAAO in glial cells in the
brains of rats and humans [40,43,44].

After the administration of D-serine orally, plasma D-serine levels were significantly
higher in DAAO knockout mice than in wild-type mice [45]. Using mutant ddY/DAAO–
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mice lacking DAAO activity, Hashimoto et al. found that D-serine levels in the serum and
cerebellum of mutant mice were much higher than in normal mice [46]. These findings
indicate that DAAO is responsible for metabolizing D-serine. In addition, the catabolic
enzyme D-aspartate oxidase (DASPO or DDO) regulates D-aspartate [47]. Mice lacking
DDO had increased amounts of both D-aspartate and NMDA in all tissues [48]. Errico
et al. investigated whether chronic treatment with D-aspartate and DDO gene deletion
may trigger plastic modifications of neuronal cytoarchitecture in the prefrontal cortex and
CA1 subfield on the hippocampus in mice [49]. Taken together, DAAO and DDO are both
responsible for catabolizing D-serine and D-aspartate, which serve as co-agonists of NMDA
receptors (NMDARs); this implies that DAAO and DDO are involved in neuronal function.

2.3. D-Amino Acids and NMDAR Function

Among all D-amino acids, D-aspartic acid, D-glutamate, D-alanine, and D-serine can
modulate NMDARs directly by binding to glutamate or glycine binding sites [50]. After
removing the Mg2+ block and binding two agonists, glutamate and glycine, the NMDARs
are activated and induce Na+, K+, and Ca2+ currents [51–53]. Several studies indicate that
Ca2+ overload plays an essential role in NMDARs-mediated neurotoxicity [54–56]. The
overactivation of extrasynaptic GluN2A-containing NMDARs might trigger glutamate
excitotoxicity, which is correlated with cognitive decline and neurodegeneration in patients
with AD. As NMDARs antagonist memantine reduces glutamate excitotoxicity, it provides
both symptomatological and neuroprotective benefits in moderate to severe AD [57–60].
However, synaptic NMDARs are critical for neuronal survival [61,62]. Thus, the preser-
vation of adequate NMDAR activity helps maintain neuronal survival when treating AD
with NMDAR antagonists. Because NMDARs-mediated synaptic dysfunction affected by
D-amino acids is a pathological change associated with AD, researchers have increasingly
investigated the association between D-amino acids and AD. More and more studies focus
on the alteration of D-amino acids and their metabolic pathways in AD.

2.4. Changes of D-Amino Acids, DAAO, and SR Levels in AD Patients

The changes in D-amino acid levels in patients with AD are well-studied; however,
the results of these studies are controversial. It might have resulted from small sample size
and different analytical methods. The methods to detect amino acid levels in some earlier
articles cannot distinguish between free D-amino acids and D-amino acids derived from
digested proteins [2]. Since D-serine is the main co-agonist of the NMDA receptor in the
frontal brain [63–65], many studies have investigated the possible alteration of D-serine
levels in AD. Madeira et al. observed that D-serine levels in the cerebrospinal fluid (CSF)
of patients with a probable AD diagnosis were 5 times higher than CSF D-serine levels of
controls [66]. In the same study, D-serine levels in postmortem hippocampal and cortical
samples from AD patients were increased [66]. In a study on 376 individuals, Lin et al.
found that D-serine levels and the D-serine to total serine ratio were significantly higher
in patients with AD [67]. Another study from the same research team also revealed a
significantly higher level of serum D-serine in patients with AD [68]. Compared with age-
matched healthy controls, the serum D-serine levels and the D-serine to total serine ratios
were significantly higher in individuals with AD progression [69]. However, several studies
have revealed no statistically significant differences in the free D-serine levels in the frontal
or parietal cortex between patients with AD and controls [70–73]. Nuzzo et al. analyzed
the D-serine concentrations in the blood serum and CSF of patients representing the whole
clinical spectrum of AD. They found that there was no alteration of D-serine levels in
the blood serum or CSF. Moreover, there was no identified correlation between serum
or CSF D-serine concentration and Mini-Mental State Examination scores [73]. Biemans
et al. analyzed D-serine levels in the CSF of individuals with or without AD and found no
notable difference between the two groups [74]. A systematic review and meta-analysis that
included seven trials demonstrated that serum and CSF D-serine levels were significantly
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higher in patients with AD than in controls [75]. Thus, D-serine levels are a potential
biomarker for detecting AD.

The concentration of D-aspartate, another NMDA receptor co-agonist, was also quan-
tified in the brains of individuals with and without AD. Aged-related accumulation of
D-aspartate was found in the white matter but not the gray matter of normal brains [76].
D-aspartate levels were more than twice as high in the white matter of normal brains than
in the white matter of AD brains, whereas the D-alanine concentration was more than twice
as high in AD gray matter than in normal gray matter [77]. Using a new procedure to
hydrolyze proteins without provoking racemization of amino acids, Fisher and colleagues
found that D-aspartate concentration in both the gray matter and white matter of AD brains
was significantly higher than that in healthy brains [78]. Higher levels of D-aspartic acid in
the CSF of patients with AD have also been found compared with the ventricular CSF of
healthy controls [79,80]. The level of D-alanine in the white and gray matter of AD brains
was higher than in healthy brains, whereas total alanine was significantly lower in the gray
matter of AD brains compared with healthy brains [81].

Research also suggested that there is a correlation between the changes in the levels
of D-glutamate and AD. Cognitive decline in patients with AD is strongly correlated
with decreased D-glutamate levels in blood [68,82,83]. Furthermore, lower hippocampal
glutamate concentrations were found in patients with mild cognitive impairment (MCI)
and AD compared with cognitively healthy older adult controls [84]. Vijayakumari and
colleagues enrolled 15 patients with MCI and healthy controls and used functional magnetic
resonance imaging (fMRI) to evaluate glutamate responses during working memory tasks.
The results showed a significant increase in glutamate response during a working memory
task in healthy participants but no observed significant changes in glutamate response in
patients with MCI [85]. These studies indicate that dysregulated D-glutamate levels and
glutamatergic neurotransmission may be associated with cognitive function in patients
with AD or MCI.

Blood DAAO level could serve as a potential surrogate biomarker for AD. Our previ-
ous study examined serum DAAO levels and cognitive function in patients with MCI, mild
AD, moderate to severe AD, and healthy older adults. The peripheral DAAO levels in-
creased with the severity of cognitive deficits, and the Clinical Dementia Rating Scale (CDR)
score was significantly associated with the DAAO level [68]. A similar increase in DAAO
in the blood of patients with post-stroke dementia was noted, and the plasma DAAO levels
were independently higher in subjects with dementia than subjects without dementia [86].
Treating with DAAO inhibitors, such as sodium benzoate, can ameliorate cognitive decline
in patients with AD [87,88], indicating that over-activated DAAO plays a vital role in
AD. In addition, several studies have demonstrated a direct association between SR and
neurodegenerative diseases. Wu et al. observed that Aβ-peptide increased SR expression
and D-serine concentration in cultured microglia. Compared with age-matched controls,
the levels of SR mRNA were higher in the hippocampus of patients with AD [89]. In SR
knockout mice, D-serine levels were reduced by approximately 90% in the forebrain, and
NMDA- and Aβ- peptide-induced neurotoxicity was also significantly attenuated. These
results suggest that SR is the primary enzyme for D-serine production, and D-serine may
be involved in NMDA receptor-mediated neurotoxicity [90]. SR knockout mice exhibited
impaired spatial memory and anxiety due to alteration in glutamatergic neurotransmis-
sion [91]. However, a recent study revealed that SR knockout mice, which had a weaker
long-term potentiation (LTP) and a smaller increase in NMDA receptor potentials, had
no deficits in spatial learning, reference memory, or cognitive flexibility. The significant
increase in glycine levels [92] may explain the preservation of memory ability.

2.5. D-Amino Acids and NMDAR Function in Schizophrenia

In addition to the dopamine hypothesis, which is the main point on the pathophys-
iology of schizophrenia, more studies have shown that the dysfunction of NMDARs
contributes to schizophrenia [93–95]. A large body of evidence has shown that there are al-
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tered D-serine levels in patients with schizophrenia. Bendikov et al. monitored the D-serine
levels in CSF and SR expression in postmortem brains of schizophrenic patients. The study
showed that the D-serine levels and D/L-serine ratio in CSF decreased by 25%, and SR
protein levels in the frontal cortex and hippocampal in postmortem brain of schizophrenic
patients were also reduced [96]. Hashimoto et al. reported a reduced D-serine to total
serine ratio in the CSF of drug-naïve schizophrenic patients [97]. However, another study
had revealed no statistically significant differences in the D-serine levels in CSF between
patients with schizophrenia and control [98]. In the same study, the levels of L-serine,
L-glutamine, and L-glutamate in CSF were unchanged [96]. Other studies also showed that
serum D-serine levels in the patients with schizophrenia were significantly lower than in
the healthy controls [99,100]. A systematic review summarized six studies, and results from
the meta-analysis showed that patients with schizophrenia had lower serum D-serine levels
than healthy controls [101]. In summary, generally increased D-serine level was observed
in AD and decreased D-serine was reported in schizophrenia patients (see Table 1).

Since Aβ can induce SR expression and D-serine release in microglia [89], it is not
surprising that the D-serine level increases along with AD progression. In addition, the
racemization of protein-bound amino acids is significant in protein aging and aggregation,
which contributes to neurodegeneration [102]. The Aβ1-40, racemized at Ser26, is soluble
and susceptible to proteolysis, which converts into toxic fragments [103], and this racemized
amyloid-β is associated with AD pathogenesis [104]. Hence, the D-serine from proteolytic
Aβ might also contribute to the elevated D-serine levels in AD patients. Different from AD,
there is no evidence showing that Aβ levels are different in patients with schizophrenia
than in controls, and the excessiveness of Aβ is not associated with cognitive impairment
in schizophrenia [105]. Thus, the differential pattern of D-serine levels between AD and
schizophrenia might have resulted from the accumulation and proteolysis of Aβ.

Interestingly, a study monitoring changes in glycine, L-serine, and D-serine levels in
the plasma of schizophrenic patients during treatment showed that there was a significant
increase in D-serine levels along with an improvement in clinical symptoms [106]. Thus,
D-serine levels are a potential “clinical status” biomarker in patients with acute schizophre-
nia. Moreover, clinical trials have shown that D-serine treatment significantly improves
positive, negative, and cognitive symptoms in patients with schizophrenia and bipolar
disorder [107]. In addition, several studies report increased mRNA, protein, or enzyme ac-
tivity of DAAO in subjects with schizophrenia [40,108–110]. Verral et al. analyzed different
brain regions in autopsies of schizophrenic patients, and they found DAAO increased in
the cerebellum, whereas SR mRNA increased in the dorsolateral prefrontal cortex [40]. The
distinct expression pattern in different brain regions of schizophrenic patients implies that
the regulation of D-serine by DAAO/SR needs further investigation.

The concentration of D-aspartate, another NMDA receptor co-agonist, was found
reduced in the prefrontal cortex and striatum in schizophrenic patients [111]. The concen-
tration of D-aspartate is markedly high in the embryonic brain and then rapidly decreases
after birth due to DDO [112–114]. In DDO knockout mice, increased D-aspartate attenu-
ates phencyclidine-induced schizophrenia-like behaviors [115]. The same group reported
that D-aspartate not only can increase in vivo NMDAR activity but also can attenuate
schizophrenia-like symptoms induced by amphetamine and MK-801 [116]. Consistent
with the animal model results, there is a link between low D-aspartate levels and enhanced
DDO activity in the dorsolateral prefrontal cortex of schizophrenic patients [117]. However,
exposure to excessive D-aspartate in DDO knockout mice facilitated age-dependent brain
neurodegeneration processes, which indicated the excitotoxicity of NMDA receptors [118].
Keller et al. analyzed the mRNA levels and DNA methylation status of SR, DAAO, G72,
and DDO in postmortem brain samples from patients with schizophrenia and controls [119].
They found that the DDO methylation and expression were lower in the cerebellum com-
pared with the hippocampus and dorsolateral prefrontal cortex. Although there was no
difference between healthy controls and schizophrenia patients, the finding from DNA
methylation is consistent with the DDO gene activity in the cerebellum. Moreover, a
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single nucleotide polymorphism (SNP) rs3757351 on the DDO gene is also associated with
reduced DDO expression in in vivo prefrontal phenotypes relevant to schizophrenia and
greater prefrontal gray matter volume [49]. These results implicated the dysregulation of
D-aspartate as perhaps playing an important role in schizophrenia [120].

Glutamate is the primary excitatory neurotransmitter, and glutamatergic theory is one
of the most influential hypotheses in schizophrenia. Some studies found serum glutamate
level was significantly higher in schizophrenia patients [121–123]. However, the plasma
glutamate level is not correlated with its level in the brain because glutamate is synthesized
too in the central nervous system [124,125]. Although D-glutamate is primarily degraded
by DDO in eukaryotic organisms [126], D-aspartate, but not D-glutamate, was significantly
increased in DDO knockout mice brain, which suggested that DDO mainly catalyzes D-
aspartate, not D-glutamate [127]. Ariyoshi and co-authors identified a novel mammalian
mitochondrial protein 9030617O03Rik, a D-glutamate cyclase that converts D-glutamate
to 5-oxo-D-proline [128]. Unlike AD, there is no evidence showing a correlation between
D-glutamate cyclase and schizophrenia.

As mentioned, NMDARs hypofunction contributes to schizophrenia, and d-serine
is the primary NMDAR co-agonist, and it is synthesized by SR. It is not surprising that
there is an association between SR activity and schizophrenia pathophysiology. Labrie
et al. induced SR gene mutation and generated mice with low SR activity and S-serine
level. These mice displayed behaviors relevant to schizophrenia, including impairments
in prepulse inhibition, sociability, and spatial discrimination [129]. Basu and co-authors
generated SR knockout mice, but SR–/– mice exhibited intact prepulse inhibition (PPI)
response, which was impaired in schizophrenic patients at the acute stage [91]. Although
D-serine levels were reduced by approximately 90% in SR knockout mice, the intact PPI
response might have resulted from other NMDARs co-agonist glycine. Regardless of the
behavioral phenotype, SR knockout mice showed some pathologic features of schizophre-
nia, such as loss of cortical gray matter, reduction of cortical glutamatergic synapses,
downregulation of parvalbumin-positive cortical GABAergic neurons, and cognitive devel-
opment impairments [130–132]. Recent studies show that dysregulation of SR/Disrupted-
In-Schizophrenia-1 (DISC1) also contributes to schizophrenia. DISC1 binds to SR, and
disruption of SR/DISC1 complex caused schizophrenia-like behavior through D-serine
depletion [133,134]. Moreover, few SR genetic variants associated with schizophrenia have
been identified in humans [129,135]. Later, a genome-wide association study of 36,989
patients with schizophrenia and 113,075 controls also showed the SNP rs4523957 of the SR
gene is one of the gene variants associated with schizophrenia [136], and rs4523957 may be
associated with some phenotypes of schizophrenia in the Han Chinese population [137].

Table 1. Changes in D-serine levels in AD and schizophrenia samples.

Sample/Area AD Schizophrenia

Human autopsy/
Frontal cortex ↔ [71] -

Postmortem human sample/
Superior frontal cortex ↔ [73] -

Postmortem human sample/
Parietal cortex ↑ [66] ↔ [96]

Postmortem human sample/
Hippocampus ↑ [66] -

Amyloid-β injected mice/
Hippocampus ↑ [66] -

Human CSF ↔ [73], ↑ [66] ↓ [96],↔ [97,98]

Human Blood (serum/plasma) ↔ [73] ↑ [2,67] ↓ [99,100]
↑: significantly increased, ↓ significantly decreased,↔ no significant difference.
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3. D-Amino Acids Oxidase Activator, G72
3.1. Biological Function of G72 and the Possible Role of G72 in AD

G72 is a primate-specific gene located in the 13q33.2 chromosomal region and encodes
a protein with 153 amino acid residues. In 2002, Chumakov et al. first described strong
associations between schizophrenia and SNPs of G72 [138]. This study also reveals that the
pLG72 protein binds to DAAO through the yeast two-hybrid technique, and the in vitro
result shows that pLG72 protein can activate DAAO. Reverse transcription-polymerase
chain reaction (RT-PCR) and real-time PCR results show that G72 expression is only
detected in human testis and brain [139]. In G72 transgenic mice, expression of pLG72 in
the cerebellum, hippocampus, cortex in the brain, heart, testis, and spleen in peripheral
tissue was found [140,141]. Transgenic mice with an overexpressed human G72/G30
genomic region show behavioral phenotypes related to schizophrenia and depression [141],
which indicates that the G72 gene does play a role in modulating behaviors.

There are three possible mechanisms of how pLG72 modulates behaviors. The first one
is through pLG72–DAAO–NMDAR; second, it can modulate mitochondrial function; and
last, it can induce oxidative stress. Although Chumakov et al. proposed that G72 can bind
DAAO and serve as a DAAO activator, the effects of pLG72 in regulating DAAO activity
are still inconclusive. According to a detailed functional analysis, the inhibitory effects of
pLG72 on DAAO have been reviewed comprehensively [6]. The protein–protein interaction
of DAAO and pLG72 was confirmed at the in vitro and cellular level by several different
groups [44,138,142–144]. Yeast two-hybrid experiments demonstrated that pLG72 interacts
with DAAO in vitro and that there was an increase in the activity of DAAO in the presence
of pLG72 [138,145]. Immunohistochemical staining and immunoprecipitation showed that
there was an expression and interaction of DAAO and pLG72 in the human cortex [44].
Nevertheless, co-expression of pLG72 with DAAO in glioblastoma cells abolishes the
effects of DAAO, which indicates that pLG72 may also act as a repressor of DAAO [44].
The same group reported that pLG72 briefly interacted with DAAO in the cytosol and
negatively affected the half-life of DAAO [146]. Another group also failed to repeat the
DAAO activator function of pLG72 in Gos7 and U251 glioblastoma cells [147]. Sacchi
and co-authors tested the DAAO modulation functions of wild-type pLG72, R30K variant,
and K62E variant. They found that pLG72 variants, including wild-type pLG72, actually
inhibit human DAAO, which leads to increasing D/D+L-serine levels [142]. Through
pLG72-directed DAAO activity assay, Terry-Lorenzo et al. found that pLG72 can dose-
dependently inhibit DAAO [148]. Testing in various human cell lines suggested that
the effects of pLG72 on DAAO activity are cell type-dependent [144]. As mentioned,
DAAO modulates D-serine levels, which regulate NMDAR biological function. Thus,
the interaction between pLG72 and DAAO links abnormal D-serine levels and NMDAR
dysfunction-related neurological disorders, including AD [2].

In addition to modulating DAAO activity, there was also a report regarding G72
affecting mitochondrial function. The N-terminal of pLG72 contains a mitochondrial
translocation sequence, and immunostaining results show that pLG72 is mainly localized
in mitochondria [147]. Increased pLG72 proteins induced mitochondrial fragmentation
without inducing apoptosis in the Gos7 cell line and primary neurons. Moreover, transfec-
tion with pLG72 in primary hippocampal neurons changed mitochondrial morphology
and dendritic branching [147]. Interestingly, overexpression of pLG72 affected several
mitochondrial-related gene expressions and increased reactive oxygen species (ROS) in U87
glioblastoma cells [149]. pLG72 transgenic mice show schizophrenia-relevant behaviors,
mitochondrial dysfunction, and higher ROS production [150]. Since ROS, generated by
mitochondria, participates in many neurodegenerative diseases, there has been a link
between pLG72-associated ROS production and AD. Treating with antioxidant N-acetyl
cysteine can improve the cognitive deficits of pLG72 transgenic mice [150]. Through the
yeast-two hybrid system, the same group reported that mitochondrial methionine sul-
foxide S reductase B2 (MSRB2) is the binding partner of pLG72 [151]. Increasing pLG72
protein expression induces mitochondrial oxidative stress by altering MSRB2 function.
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In addition to MSRB2, pLG72 was reported to bind Flavin mononucleotide (FMN) and
modulate FMN-containing oxidoreductase activity in the respiratory complex I [44,142].
Interestingly, MSRB2-mediated antioxidative activity can reduce amyloidogenesis and Tau
phosphorylation in the AD mice model [152]. These results imply that the role of pLG72
on mitochondria dysfunction may enhance AD pathogenesis (Figure 2).
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3.2. Role of G72 in Schizophrenia

The association of neurological disorders and G72 gene variations was first discov-
ered in schizophrenia and psychiatric conditions [153–156]. In the paper reporting the
discovery of the G72 gene, Chumakov et al. suggested a possible link between pLG72 and
schizophrenia due to its DAAO modulation function [138]. Although Sacchi et al. showed
contradicting results to Chumakov’s finding and demonstrated that pLG72 acts as a nega-
tive effector of human DAAO, they proposed that increased DAAO and decreased pLG72
expression might lower D-serine concentration and be involved in schizophrenia suscepti-
bility [44]. Ishiwata’s group showed a significant positive correlation between plasma G72
levels and positive symptoms of schizophrenia [157]. However, a tendency toward overex-
pression of G72 mRNA and protein in the brains of schizophrenic patients compared with
healthy controls was observed [158]. Similar to the brain findings, a significant elevation of
G72 protein in the plasma of schizophrenic patients was detected compared with healthy
controls [159]. While the pLG72 R30K, the best-known SNP rs2391191 in G72, has a shorter
half-life than wild-type pLG72, the overexpressed pLG72 in schizophrenia patients might
be due to the compensatory result.

Plenty of studies have analyzed genetic variants and tried to link these markers with
schizophrenia. SNP-based studies showed that several G72 gene variants were associ-
ated with schizophrenia in different populations [138,158,160–165]. However, some SNPs
(rs3916965, rs1341402, rs2391191, rs778293, and rs3918342) show controversial associations
in different studies, possibly resulting from different populations [139]. Lin et al. analyzed
the G72 SNPs and G72 protein levels from schizophrenia patients and healthy controls with
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leveraging computational artificial intelligence and machine learning. They found G72
rs1421292 plus G72 protein seemed to be the best model for schizophrenia susceptibility [5].
SNP rs2391191 and rs9558562 induce R30K and K62E substitution, R30K pLG72 has a
shorter half-life, and K62E has higher DAAO inhibition than wild type [6]. Moreover,
schizophrenic patients who carried the rs2391191 variant appeared to have a significantly
thinner cortex, which indicated the pathophysiological role of pLG72 in schizophrenia [166].
Hall et al. analyzed the brain activation with functional magnetic resonance imaging in
subjects carrying two G72 SNPS, rs3918342 and rs1421292. Their results showed differences
in the activation of the left hippocampus and parahippocampus between G72 genotype
groups, which indicated that genetic variation of G72 may affect hippocampal complex
and prefrontal cortex function [167].

3.3. Association of G72 with AD

Similar to schizophrenia, genetic variation of the G72 gene was found to be connected
with AD. After screening 185 AD patients for SNP, one SNP—rs2153674—was associated
with more frequent and severe delusions assessed with the Neuropsychiatric Inventory [4].
Arcos-Burgos and his team analyzed the world’s largest multigenerational pedigree with
early onset of AD, carrying the PSEN1 p.Glu280Ala mutation. With pooling/bootstrap-
based genome-wide association studies (pbGWAS), they first reported a novel locus includ-
ing G72 (rs778296) that is significantly associated with the early onset of AD [168]. Later
they found that an exonic missense mutation of G72 (rs2391191) was also significantly
associated with the age of onset by whole-exome genotyping of sixty individuals [169]. In
addition, an association between G72 gene variations and some AD- or dementia-related
psychological disorders, including panic disorder [170], bipolar disorder, [156], persecutory
delusions [171], and frontal lobe volume changes, was observed [172]. Results of GWAS
have shown that AD and schizophrenia share similar physical phenotypes through stan-
dard GWAS signals [173] and that G72 provides a good example of the links between these
two diseases.

For protein expression level, a postmortem study showed that pLG72 protein expres-
sion levels at different ages was statistically significantly different in the brainstem [174].
Lin et al. first showed that the pLG72 level in plasma is about 2-fold higher in schizophrenic
patients than in control subjects [159]. The same group further measured the pLG72 protein
levels in the plasma of 376 participants who evaluated the severity of cognitive deficit
through the Clinical Dementia Rating Scale. In patients with MCI, mild and moderate
AD, the levels of pLG72 were increased compared with healthy subjects. However, pLG72
levels in severe AD were not significantly different [67]. These findings suggest that pLG72
may not be suitable as a biomarker for late AD. Moreover, the D-serine level and D- to
total serine ratio in MCI and AD patients were significantly higher than in the healthy
control. These findings suggest that pLG72-mediated DAAO modulation might contribute
to NMDAR dysfunction and AD progression.

Several studies that analyzed G72 gene variants showed a genetic association between
AD and schizophrenia risk. Table 2 summarizes the genetic studies that had analyzed both
disease groups. As shown in Table 2, one SNP, rs2391191, is related to an increase in the
risk of AD and schizophrenia. According to the available results, there is an increased
pLG72 expression in AD and schizophrenic patients (Table 3).

Table 2. Genetic association studies of G72 genetic polymorphisms in AD and schizophrenia risk.

Polymorphisms Position Schizophrenia AD Global MAF [175] MAF in Schizophrenia MAF in AD

M15 rs2391191
(G>A/G>C) chr13:104917447 + [138,161,162,164] + [169] 0.370658 (A) 0.35(A) [138] N/A

rs2153674
(C>A/C>G/C>T) chr13:105478789 − [176] + [4] 0.47364 (C) N/A 0.44 (C) [4]

M19 rs778294
(C>A/C>T) chr13:104940236 + [160]

− [138,156,177] − [4] 0.281331 (T) 0.253 (T) [160] 0.3 (A) [4]

+ represents significant association, and − represents no correlation.
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Table 3. Changes in pLG72 levels in AD and schizophrenia.

Sample/Area MCI AD Schizophrenia

Postmortem human sample/
dorsolateral prefrontal cortex - - ↑ [158]

Human CSF - - ↔ [157]

Human Blood (serum/plasma) ↑ [67] ↑ [67] (mild and moderate AD),
↓ [67] (severe AD) ↑ [159],↔ [157]

↑: significantly increased, ↓ significantly decreased,↔ no significant difference.

4. Therapeutic Targeting to D-Amino Acids Metabolic Pathways in AD
and Schizophrenia

Given the contribution of NMDARs to learning and memory, it is unsurprising that
medical researchers have attempted to improve cognitive function by enhancing NMDA
receptor activity both in AD and schizophrenia. Although D-serine levels in brain tissues
and the blood are not similar, therapeutic strategies targeting the D-amino acids metabolic
pathway can improve cognition symptoms in both diseases. Both glycine and D-serine
can bind to the glycine modulatory site of the NMDA receptor; however, D-serine has
more significant potential. The median effective dose 50 (ED50) for D-serine activation
of NMDARs is 3 to 4 times lower than glycine [178]. The extracellular concentration of
free D-serine in the frontal cortex is sufficient to saturate the glycine binding site on the
NMDA receptor in rodent brains [178]. After intravenous administration, D-serine had
a higher uptake than had L-serine in rat brains [179]. A single systemic administration
of D-serine resulted in the prolonged elevation of D-serine levels in the rat cortex and
hippocampus [180], which are the affected brain regions in AD. In rats, an fMRI study
found that intraperitoneal D-serine administration increased NMDA receptor activation
in the hippocampus [181]. Moreover, D-serine treatment can enhance social memory in
rats [182]. Both pre- and post-training treatment with D-serine improved recognition
memory in mice [183]. These studies imply that increasing D-serine levels in patients with
AD and schizophrenia might have positive effects.

As mentioned, the hypofunction of NMDARs plays a crucial role in schizophrenia,
and D-serine is a potent co-agonist of NMDARs. Hence, it is not surprising that D-serine
was tested to treat schizophrenia. Several studies have shown D-serine supplements did
improve psychological symptoms of schizophrenia [107,184,185]. In addition to enhancing
NMDARs activity by administrating D-serine directly, increasing endogenous D-serine
concentration by inhibiting DAAO also resulted in therapeutic improvement. Sodium
benzoate, a specific DAAO inhibitor, can increase D-serine level, reduce symptoms, and
improve neurocognition in patients with chronic schizophrenia [186]. The same group
showed that combined GlyT1 inhibitor sarcosine and sodium benzoate, not sarcosine,
can improve cognition and global functioning of schizophrenic patients [187]. Moreover,
similar beneficial effects of sodium benzoate on clozapine-resistant schizophrenic patients
were also noted. Clozapine combined with sodium benzoate can improve the therapeutic
effects of clozapine on symptomatology [188].

Due to the hypothesis in AD pathogenesis that excessive D-serine may induce NM-
DARs over-activation and neurotoxicity, there is no clinical trial testing the efficacy of
D-serine on AD. However, D-serine treatment can enhance neurogenesis and the survival
of newborn neurons [189], which implies that increasing D-serine levels might benefit AD.
Indeed, reducing D-serine degradation by blocking DAAO activity, thereby enhancing
NMDA receptor activity, can prevent neuronal cell death [190]. Sodium benzoate is a
selective inhibitor of DAAO, which can effectively reduce DAAO-mediated reactions in
a dose-dependent manner [191–193]. In a 5XFAD transgenic mouse model of AD, oral
feeding of sodium benzoate suppressed the activation of p21rac, oxidative stress, neuronal
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apoptosis, glial activation, and Aβ deposits in the hippocampus [194]. In addition, several
clinical trials have evaluated the efficacy of sodium benzoate in patients with MCI and
AD. A randomized, double-blind, placebo-controlled trial of patients with amnestic MCI
and mild AD showed that 24 weeks of daily treatment with sodium benzoate improved
cognitive and overall function [87]. Another double-blind, 6-week trial demonstrated
that high-dose sodium benzoate treatment did not improve behavioral and psychologi-
cal symptoms of dementia (BPSD) [195]. However, after improving the treatment with
a precision medicine approach, sodium benzoate reduced DAAO levels and attenuated
D-serine declines in patients with BPSD. Moreover, there is a correlation between cognitive
improvement after sodium benzoate treatment and decreased DAAO levels [88]. These
studies indicate that sodium benzoate may have the potential to improve cognitive function
in early-phase AD. Notably, a second analysis of the same cohort showed that sodium
benzoate treatment was more effective in women than in men for improving cognitive
function [196], implying that sex hormones may play a role.

As mentioned in the previous section, serum D-serine levels in the early phases of AD
can be a biomarker for clinical status. Since increased D-amino acids levels might have
resulted from Aβ stimulation and digested products of Aβ peptides, the changes of D-
amino acids levels after treatment are important. Aducanumab, the newly FDA-approved
drug for AD, is designed to target oligomers and fibrils of Aβ [197]. The intravenous
administration of aducanumab can reduce brain Aβ, which might be through increasing
microglia-mediated phagocytosis of antibody–Aβ complexes [198]. Although clearance
of racemized Aβ may reduce D-amino acids levels, the activation of microglia could also
induce SR expression and release D-serine. Thus, it would be worth monitoring the changes
in D-amino acid levels in patients treated with aducanumab.

5. Conclusions

Schizophrenia and AD, two neurological disorders, share psychiatric symptoms that
result from NMDARs dysregulation. Among the regulators of NMDARs, more and more
evidence shows that D-amino acids contribute to the pathogenesis of AD and schizophrenia.
Thus, the genes/proteins that participate in D-amino acids metabolism serve as targets
for treating schizophrenia and AD. pLG72 not only modulates DAAO but also affects
mitochondria-related oxidative stress. The G72 gene polymorphisms and pLG72 protein
express similar patterns in schizophrenia and AD. Moreover, changes in D-amino acids,
DAAO, and G72 have been found in patients with schizophrenia and AD-related cognitive
dysfunction, demonstrating their potential as therapeutic targets for both diseases. Indeed,
the modulation of DAAO activity by DAAO inhibitors has shown effectiveness in several
clinical trials on both diseases. However, more investigation into the efficacy and safety of
treatments based on D-amino acid modulation in AD and schizophrenia is necessary.
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Glossary

Asc-1 alanine-serine-cysteine-1 transporter
DISC1 Disrupted-In-Schizophrenia-1
FMN flavin mononucleotide
fMRI functional magnetic resonance imaging
NMDAR N-methyl-D-aspartate type glutamate receptors
AD Alzheimer’s disease
ASCT1 alanine, serine, cysteine, and threonine exchangers
BPSD behavioral and psychological symptoms of dementia
CSF cerebrospinal fluid
DAAO D-amino acids oxidase
DDO D-aspartate oxidase
ED50 effective dose 50
FAD flavin adenine dinucleotide
MCI mild cognitive impairment
MSRB2 mitochondrial methionine sulfoxide S reductase B2
pbGWAS pooling/bootstrap-based genome-wide association studies
PPI prepulse inhibition
ROS reactive oxygen species
RT-PCR reverse transcription-polymerase chain reaction
SNP single nucleotide polymorphism
SR serine racemase
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