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Abstract: Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor
superfamily that regulate the expression of genes related to lipid and glucose metabolism and
inflammation. There are three members: PPARα, PPARβ or PPARγ. PPARγ have several ligands.
The natural agonists are omega 9, curcumin, eicosanoids and others. Among the synthetic ligands,
we highlight the thiazolidinediones, clinically used as an antidiabetic. Many of these studies involve
natural or synthetic products in different pathologies. The mechanisms that regulate PPARγ involve
post-translational modifications, such as phosphorylation, sumoylation and ubiquitination, among
others. It is known that anti-inflammatory mechanisms involve the inhibition of other transcription
factors, such as nuclear factor kB(NFκB), signal transducer and activator of transcription (STAT)
or activator protein 1 (AP-1), or intracellular signaling proteins such as mitogen-activated protein
(MAP) kinases. PPARγ transrepresses other transcription factors and consequently inhibits gene
expression of inflammatory mediators, known as biomarkers for morbidity and mortality, leading to
control of the exacerbated inflammation that occurs, for instance, in lung injury/acute respiratory
distress. Many studies have shown the therapeutic potentials of PPARγ on pulmonary diseases.
Herein, we describe activities of the PPARγ as a modulator of inflammation, focusing on lung injury
and including definition and mechanisms of regulation, biological effects and molecular targets,
and its role in lung diseases caused by inflammatory stimuli, bacteria and virus, and molecular-
based therapy.

Keywords: lung injury; acute respiratory distress; inflammation; PPARγ; molecular targets

1. Introduction

Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcrip-
tion factors of the nuclear receptor superfamily that regulate the expression of specific
target genes involved in energy and lipid metabolism, adipogenesis and inflammation.
In mammals, the PPAR subfamily consists of three members: PPAR-α, PPAR-β/δ and
PPAR-γ [1,2]. PPARα (also called NR1C1) was initially identified as an orphan receptor
activated by various peroxisome proliferators [3]. PPARβ/δ (NR1C2) and PPARγ (NR1C3)
were subsequently cloned as related receptors that are activated by distinct peroxisome
proliferators [4].

PPARγ has two major isoforms generated by alternative promoter usage, where
PPARγ1 and PPARγ2 regulate differentially, for instance, the glucose and fatty acid
metabolism and the mouse prostate benign epithelial cell differentiation [5].
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PPARγ also regulate several metabolic diseases, such as obesity [6], diabetes [7],
inflammatory diseases [8–11] and neuroinflammatory disease [12]. In this review, we focus
on PPARγ, highlighting its attributions in pathophysiological processes, mainly those
involving lung injury.

2. Isoforms and Function of PPARγ

All PPARγ isoforms play an important role in adipocyte differentiation and glucose
metabolism; however, their expression is different. The PPARγ1 isoform is expressed in
nearly all cells, while PPARγ2 is limited to adipose tissue. Both forms of PPARγ1 and
PPARγ2 are essential for the development of adipose tissue and the control of insulin sensi-
tivity. Nevertheless, PPARγ2 is the isoform regulated in response to nutrient intake and
obesity [13]. The PPARγ1 isoform is widely expressed in the colon, retina and hematopoi-
etic cells and has also been detected at low levels in other organs, such as the spleen and
heart [14].

Two isoforms of PPARγ, γ1 and γ2, differently regulated the mouse prostatic ep-
ithelial differentiation. PPARγ1 caused decreased basal cell differentiation and increased
tumorigenicity, and PPARγ2 increased basal cell differentiation. [5]. In other studies, it was
also demonstrated that PPARγ1 has a role in oncogene and that PPARγ2 acts as a tumor
suppressor in prostate cells [15].

3. PPARγ Ligands and Overall Effects

PPARγ is activated by several fatty acid metabolites, such as 15-deoxy-D12,14-
prostaglandin J2 [16], 9-hydroxyoctadecadienoic acid [17], nitrated fatty acids [18] and
lysophosphatidic acid [19]. Other endogenous ligands such eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA) can bind to PPARγ by their metabolites and modulate
the PPARγ expression [20,21].

Compounds from the natural origin are also PPARγ ligands. Researchers identified
a small molecular, astragaloside IV, from herbal extracts as a selective PPARγ natural
agonist in nervous cells [22]. Another study showed that 6-shogaol attenuates the Gram-
negative endotoxin lipopolysaccharide (LPS)-induced inflammation in cells by activating
PPARγ [23].

Another group showed that an organosulfur garlic compound, alliin, improved gut
inflammation through mitogen-activated kinase/nuclear factor kappa B/activator pro-
tein 1/signal transducers and activators of transcription 1 (MAPK-NFκB/AP-1/STAT-1)
inactivation and PPARγ activation [24].

Vallée et al. demonstrated the effects of cannabidiol in interactions with the homol-
ogous wingless and int-1 (wnt)/β-catenin pathway and PPARγ on oxidative stress and
neuroinflammation in Alzheimer’s disease [25]. Studies have also shown that other natural
PPARγ agonists can modulate intestinal [26,27] and lung inflammation [28].

Recently, our group demonstrated anti-inflammatory activity in both liver and adipose
tissues from septic mice by Mediterranean diet components such as omega 9. Omega 9 is a
PPARγ ligand. During sepsis, omega 9 restores PPARγ expression and controls exacerbated
inflammation [29,30]. More ligands are presented throughout the text.

As well as certain PPARγ ligands, some natural products behave as PPARγ agonists
and antagonists. The natural carotenoid astaxanthin found in seafood acts as a PPAR
antagonist, inhibiting PPAR-transactivation activity in lipid-loaded hepatocytes [31].

PPARγ is activated by synthetic agonists, such as the thiazolidinedione (TZD) class
of antidiabetic drugs, including pioglitazone and rosiglitazone. TZDs increase insulin
sensitivity and improve glycemic control in patients with type 2 diabetes. Nevertheless,
they induce adverse effects, such as bone loss, weight gain and fluid retention, which
can exacerbate congestive heart failure [32]. In 1999, rosiglitazone was approved for
therapeutic use in the United States [33]. Another compound of the thiazolidinediones
class, pioglitazone, presented fewer side effects in patients compared to rosiglitazone [34].
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Some years later, the increased risk of myocardial infarction and death in patients
using those drugs was reported [35].

However, studies showed that pioglitazone attenuated cardiac mobilizations in alloxan-
induced diabetic rabbits [36]. According to other studies, researchers have shown that
pioglitazone reverses pulmonary hypertension and prevents heart failure via fatty acid
oxidation [37].

The elucidation of the PPARγ molecular mechanisms will lead to the selective use in
disease therapy [21].

4. Mechanisms of Regulation of PPARγ

PPARγ is regulated by several post-translational modifications (PTM), including
phosphorylation, small ubiquitin-like modifier (SUMO)ylation, ubiquitination, acetylation
and glycosylation. Those PTM are nicely described by Brunmeir and Xu [38]. Most of
the studies focus on mechanisms of regulation of PPARγ in cells involved in glucose
metabolism. A few reports are discussing the importance of those mechanisms of PPARγ
regulation in inflammatory cells. Among these PTM, we can highlight the following.

4.1. Phosphorylation

Phosphorylation regulates PPARγ activity, and PPARγ, in turn, phosphorylates, for
instance, MAP kinase, and negatively regulates MAP kinase activation.

Studies have shown that the anti-hypertensive drug telmisartan regulated PPARγ
phosphorylation and its downstream gene expressions, promoted glucose uptake and acted
as an overall insulin sensitizing agent in adipocytes [39]. PPARγ increased expression can
be induced by some stimuli, such as peptidoglycan. That phenomenon is regulated by
MAP kinase activation [40].

Researchers demonstrated an anti-inflammatory mechanism of galangin in microglia
cells stimulated with lipopolysaccharide regulated by PPAR-γ signaling, which will lead
to inhibition of the phosphorylation of p38/extracellular signal-regulated kinase (ERK)
MAP kinases and consequent inhibition of inflammatory cytokines via the NFκB path-
way [41] (Figure 1B). Recently, a study showed an anti-inflammatory activity of a natural
product via MAP kinase and PPARγ signaling pathways. Phelinnus linteus polysaccha-
ride decreased cytokine expression, regulating PPARγ phosphorylation and MAP kinase
pathway inhibition [42]. The plant component flavonoid hyperin is anti-inflammatory. It
inhibited cytokine production in LPS-incubated macrophage through a PPARγ-dependent
mechanism involving inhibition of the ERK and p38 MAP kinases [43]. The topic “PPARγ
interaction with other transcription factor and intracellular signaling proteins” in Section 5
goes further into the role of PPARγ modulating biological effects through phosphorylation.

4.2. SUMOylation

Ying and collaborators suggested that SUMOylation of PPARγ by an agonist down-
regulates chemokine expression through inhibition of NFκB in renal inflammation induced
by LPS [44]. The SUMOylation pathway consists in three different proteases, SUMO E1,
E2 and E3, that can alter the regulation transcription to target proteins, and the mecha-
nism plays a crucial role in the regulation of cell cycle progression and processes of the
tumorigenesis [45] (Figure 1A).

From 2005 onward, there are a few articles about PPARγ SUMOylation and ubiq-
uitination in inflammatory cells. Some of them explore the role of SUMOylation in the
anti-inflammatory properties of PPARγ [46–49].

4.3. Ubiquitination

Ubiquitination of PPARγ has only been studied in adipocytes, when the neural pre-
cursor cell expressed developmentally downregulated protein 4 (NEDD4), an E3 ubiquitin
ligase, interacts with the hinge and ligand binding domains of PPARγ. NEDD4 increases
PPARγ stability through the inhibition of its proteasomal degradation [50], and another
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study showed that the E3 ubiquitin ligase tripartite motif containing 23 (TRIM23) regulates
adipocyte differentiation via stabilization of the PPARγ [51] (Figure 1C).
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Figure 1. Molecular regulatory mechanisms of PPARγ. (A) A ligand-dependent transrepression. Binding to PPARγ ligand
leads to SUMOylation of PPARγ, which stabilizes the co-repressor, leading to blockade of NFκB target gene expression.
(B) Non-genomic role of PPARγ. PPARγ phosphorylates MAP kinase, leading to inhibition of transcription factor (TF)
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PPARγ (peroxisome proliferator-activated receptor γ), small ubiquitin-like modifier (SUMO)ylation, NFκB (nuclear factor
kappa B).

4.4. Acetylation

Researchers identified five acetylated lysine residues at positions K98, K107, K218,
K268 and K293, of which two (K268ac and K293ac) could be blocked by administration
of the TZD rosiglitazone (agonist PPARγ), or by activation of the nicotinamide adenine
dinucleotide (NAD_ (-dependent deacetylase sirtuin-1 (SIRT1) deacetylase. In their study,
they showed that SIRT1 promotes a beneficial metabolic effect through interaction with
PPARγ, leading to insulin sensitization, and implied a therapeutic potential of TZD and
SIRT1 agonist combination therapy for obesity [52].

4.5. Glycosylation

The β-O-linked N-acetylglucosamine (O-GlcNAc) modification, a post-translational
modification on various nuclear and cytoplasmic proteins, is involved in the regulation
of protein function. Studies showed that PPARγ is modified by O-GlcNAc in 3T3-L1
adipocytes. In these cells, an increase in O-GlcNAc modification by our inhibitor reduced
PPARγ transcriptional activity and terminal adipocyte differentiation. The results sug-
gested that the O-GlcNAc state of PPARγ influences its transcriptional activity, and it is
involved in adipocyte differentiation [53].

5. PPARγ-Dependent Anti-Inflammatory Mechanisms

Inflammation is the mechanism of human diseases, displaying the five classic in-
flammatory signs: redness, swelling, heat, pain and subsequent loss of organ function.
The inflammation can be distinguishing the following types of inflammation: microbial,
autoimmune, allergic, metabolic and physical inflammation, depending on the nature of
the irritating cause.
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In one inflammatory process, many cells and mediators participate after some inflam-
matory injury. Some non-immune cells, like skin keratinocytes, mucosal epithelial cells and
vascular endothelial cells, act as a first barrier and serve as a sentinel for the exogenous and
endogenous causes of inflammation [54]. These cells, together with polymorphonuclear leu-
cocytes (neutrophils, eosinophils, basophils) and the strategically positioned macrophages,
dendritic cells, Natural Killer (NK) cells, among others, alert the immune system to the pres-
ence of inflammation-causing irritants and modulate the inflammatory response [55,56].
These innate immunity effectors establish a tight communication with B and T cells, con-
stituting adaptive immunity. The effectors provide the signaling relays in inflammation
caused by allergies, autoimmune diseases and microbes.

Inflammation as the body’s response to an injury at first would be beneficial, because
there would be a mobilization of the innate and adaptive immune system, and this would
help to contain the cause of the inflammation, and consequently, the healing of damaged
tissues. The “good” side of inflammation [57] will depend on the activity of endogenous
suppressors of the inflammatory signaling pathways. Nevertheless, when these physio-
logical suppressors do not work correctly, acute or chronic uncontrolled inflammation can
lead to apoptosis, necrosis, fibrosis and ultimately, organ dysfunction at the end of the
process [58].

During the process, the adaptative and innate cells respond to proinflammatory injury,
producing intracellular and extracellular mediators such as cytokines, chemokines and
hematopoietic/vascular growth receptors, while displaying their intrinsic factors. The
inflammatory response is perpetuated by self-regulatory feeding loops. Also, intercellular
and intracellular inflammatory responses are mediated by cell adhesion molecules, com-
plementary proteins and signal transducers [59,60]. Resolution is also mediated by a wide
variety of signals, including cytokines and chemokines, among others [61].

PPARγ Interaction with Other Transcription Factors and Intracellular Signaling Proteins

The nucleus of the cell is the receptor, processor and propagator of signals that transmit,
maintain and extinguish inflammation. At the core, there is a regulatory network that
interacts with transcription factors. They regulate genes by binding to their promoters and
enhancers, determining the gene profiles of each cell [62,63].

Transcription factors are regulators mobilized to initiate a profound reprogramming of
the genome in response to proinflammatory insults. Preventing transcription factors NFκB,
AP-1 and STAT1 from going to the nucleus has established their role in inflammation. The
pathways have an essential role in the inflammatory process [64].

Many studies show the participation of another nuclear transcription factor, the
PPARγ, in inflammatory processes. This factor can negatively modulate other transcription
factors in transrepression mechanisms [38].

Studies have already demonstrated that PPARγ has anti-inflammatory effects through
innate immune signaling by NFκB, particularly in macrophages. These cells are furthermore
capable of producing several PPARγ ligands, which can potentiate the anti-inflammatory
pro-resolving actions of this receptor on other cells.

Researchers evaluated the involvement of STAT6 and PPAR-γ signaling during acute
schistosomiasis. In this model, the CX3CR-1 chemokine-deficient macrophage enhanced
STAT6, leading to the PPARγ signaling to promote macrophages towards M2 polarization,
which is an anti-inflammatory and pro-resolutive profile [65].

Another study showed that in an atherosclerosis process, the macrophage molecular
signaling and inflammatory responses during ingestion of lipoproteins are modulated
by complement protein 1 q (C1q), where this protein suppressed JAK-STAT pathway
activation and increased transcriptional activation of PPARγ, coherent as an M2-like
polarized response [66].

Geng et al. reported a model of Alzheimer’s disease, showing that the inhibition of
miR-128 reduced amyloid-β-mediated cytotoxicity by upregulation of PPARγ and NFκB
inactivation in mice neuronal cells and Neuro2a lineage cells [67].
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Researchers also showed that suppressing NFκB (p65) protein synthesis and increasing
PPARγ gene and protein expression helped magnesium administration to decrease blood
glucose levels in diabetic animals [68].

Recently, one group showed that telmisartan, besides its role as an anti-hypertensive
drug, has effects against oxidative stress, apoptosis, inflammatory responses and epithelial–
mesenchymal transition (ETM). Telmisartan improved oxalate and calcium oxalate crystal-
induced EMT by exerting an antioxidant effect through the PPARγ-AKT/STAT3/p38
MAP kinase-Snail signaling pathway. Therefore, telmisartan can block EMT progression
and is a potential therapeutic agent for preventing and treating a renal pathology or its
recurrence [69].

PPARγ agonist could alleviate intraperitoneal adhesion by regulating macrophage
polarization and the suppressor of cytokine signaling proteins (SOCS)/JAK2/STAT/PPARγ
signaling pathway [70].

Those reports relating the anti-inflammatory role of PPARγ to the inhibition of other
transcription factor activity describe PPARγ’s ability to cause transrepression. The effect of
PPARγ on MAP kinases is related to non-genomic activity of PPARγ (Figure 1).

The other anti-inflammatory mechanisms of PPARγ include the prevention of clear-
ance of complexes after SUMOylation, repressing the transcription of inflammatory media-
tor genes. It involves SUMOylation of the PPARγ–ligand binding domain, keeping the NR
co-repressor/histone desacetilase 3 (NCor/HDAC3) complex on the promoter, repressing
the transcription of inflammatory genes [46,47]. Instead of acting as a transcriptional
activator, SUMOylated PPARγ represses transcription [48,49] (Figure 1).

6. Pharmacologic and Therapeutic Potentials of PPARγ Ligands

PPARγ agonists have different effects on a variety of diseases. For instance, the
15d-PGJ2 inhibited tumor progression in vivo [71] and induced apoptosis in tumor cells,
suggesting the use of this agonist as an anticancer agent [72]. The PPARγ ligand VSP-77,
in a mice model, reduced fasting glucose and insulin levels [73], illustrating its known
role as an antidiabetic. Also, PPARγ agonists were linked to reduced chronic obstructive
pulmonary disease (COPD) exacerbation rate in diabetic patients, showing PPARγ’s role in
lung diseases [74].

Natural compounds may exert their effect through PPAR, as discussed earlier. Cur-
cumin, a spice derived from the rhizome of Curcuma longa Linn [75,76], and magnolol,
a natural compound isolated from Magnolia officinalis [77,78], showed anti-inflammatory
properties.

The compounds targeting PPARγ have their anti-inflammatory activity by inhibiting
inflammatory cytokines and activating immune cells. Thus, PPARγ can become a poten-
tial therapeutic target for inflammatory bowel diseases, for instance, because PPARγ is
highly expressed in the gut [79]. In an animal model, PPARγ reduced hepatic ischemia-
reperfusion injury (IRI) and decrease the pro-inflammatory population of Kupffer cells
altering macrophage polarization [80]. The family with sequence similarity 3A (FAM3A), a
direct target gene of PPARγ, mediates PPARγ protective effects in liver IRI [81]. PPARγ
deletion enlarged infarct size, promoted neuron apoptosis and aggravated the ER stress [82].
Likewise, pioglitazone treatment reduced hepatic inflammation and oxidative stress and
improved liver function in renal IRI [83]. Thus, PPARγ seems to have a critical role in IRI
in the liver, kidney and brain.

A synthetic PPARγ agonist showed a potent anti-inflammatory action modulating
cytokine overproduction, proving to be a good candidate for COVID-19 infections [84].

Herein, we further discuss the role of synthetic or natural PPAR agonists in lung in-
flammatory diseases and bacterial and viral infections, evidencing the potential therapeutic
role of those compounds in diverse pathologies involving lung injury.
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6.1. PPARγ Role in Lung Inflammatory Diseases

IRI can occur with pulmonary thromboembolectomy and lung transplantation, and
is characterized by lung inflammation with edema [85]. The use of either rosiglitazone
or troglitazone inhibited the IR-induced increase of pro-inflammatory cytokines and neu-
trophil accumulation in the lung [86].

PPARγ’s role in cancer has excelled. PPARγ hampered tumor development and pro-
gression, and controlled the tumor microenvironment, ameliorating tumor growth and
metastasis [87]. Treatment with PPARγ agonist and radiotherapy enhanced the effective-
ness of tumor control and dampened metastasis [88]. The cyclooxygenase (COX) metabolite
prostacyclin acted through PPARγ, promoting anticancer signaling [89]. PPARγ activation
transrepressed the NFkB pathway, blocking cell proliferation, differentiation and apoptosis
in non-small cell lung carcinoma [90]. PPARγ agonists can be used as monotherapy in lung
cancer, or associated with cytotoxic agents [91].

PPARγ has been considered a molecular target for effective asthma therapy [92].
PPARγ negatively regulated the production of mucin and inflammatory mediators by
repressing gene expression in primary human bronchial epithelial cells during allergic
airway inflammation [93]. Korean red ginseng and Salvia plebeia R.Br. alleviated ovalbumin-
induced asthma in mice in a fashion dependent on the upregulation of the PPARγ gene
and blocking protein kinase B (PKB or Akt) and phosphatase and tensin homolog (PTEN)
phosphorylation [94]. The multifaceted anti-inflammatory effects in lung cells during
allergic airway diseases [92] point to potential as an adjuvant therapy.

In lung inflammatory disorders, reactive oxygen species (ROS) is a protagonist in
diseases such as chronic obstructive pulmonary disease (COPD) and acute respiratory
distress syndrome (ARDS) [95]. Cytokines with pro-inflammatory activities are considered
biomarkers, predictors of morbidity and mortality during ARDS [96]. LPS induces ROS
production and adhesion molecules’ expression. Higher levels of intercellular adhesion
molecule-1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expression promote
the recruitment of leukocytes to the lung, leading to the production of proinflammatory
cytokines in the tissue [97]. Curcumin, the dietary polyphenol isolated from the rhizome
of turmeric, inhibited NF-κB in COPD, decreasing inflammatory mediator production.
Curcumin inhibited NF-κB and upregulated PPARγ activation, ameliorating cigarette
smoke extract-induced inflammation in vivo and in vitro [98]. The activation of PPARγ
may be an effective therapeutic approach in COPD, as it reduced cigarette smoke-induced
inflammation and decreased the magnitude of bacterial infection-caused exacerbations [99].

Cystic fibrosis is an inherited disease with mutations on the cystic fibrosis trans-
membrane conductance regulator (CFTR) gene [100]. A deletion of phenylalanine 508
(F508) affects a high percentage of patients and results in inflammation and other alter-
ations [101,102]. Cystic fibrosis epithelial cells present lower FOXO1 expression [103] and
deficiency in PPARγ [104]. Myriocin inhibits ceramide synthesis, reducing inflammation
and improving response against infections [105,106]. Transcription factor EB (TFEB) pro-
motes the activation of PPAR and the FOXO family of transcriptional factors involved in
lipid homeostasis and inflammatory responses [107]. Treatment with myriocin stimulates
nuclear translocation of PPARγ and FOXO1A on F508-CFTR bronchial epithelial cell line
IB3-1 cells [108].

LPS-induced endotoxemic shock involves dysregulated inflammation that injures
the lungs, and it is often fatal. Endothelial cell PPARγ knockout worsened LPS-induced
pulmonary inflammation and injury. There was infiltration of inflammatory cells, edema
and ROS and pro-inflammatory cytokine production, with the upregulation of TLR4
expression and activation in lung tissue [109].

HO-1 (heme oxygenase-1), an antioxidant enzyme, is induced by PPAR ligands. PPAR
activation and HO-1 can exert therapeutic effects on lung inflammation [110,111]. PPARγ
directly regulates HO-1 transcription, impacting inflammation, ROS production and apop-
tosis [112,113]. The upregulation of HO-1 by PPARγ agonists also inhibits pulmonary
cell proliferation and remodeling [114]. HO-1 induction by rosiglitazone via the protein
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kinase C α (PKC)α/ adenosine monophosphate-activated protein kinase (AMPK)/p38
MAPK/SIRT1/PPARγ pathway suppresses LPS-mediated pulmonary inflammation.
Rosiglitazone induces HO-1 expression via either NOX/ROS/c-Src/Pyk2/Akt-dependent
Nrf2 activation or PPARγ in human pulmonary alveolar epithelial cells (HPAEpiCs)
and suppresses LPS-mediated inflammatory responses, suggesting that PPARγ agonists
may be useful for protection against pulmonary inflammation [115]. Upregulation of HO-1
protected against the inflammatory responses triggered by LPS, at least in part, through
attenuation of NF-κB [116].

Natural products that bind to PPAR may have a critical role in lung inflammatory
response. Wogonin, a flavonoid-like chemical compound found in Scutellaria baicalensis,
inhibited the production of numerous inflammatory cytokines, including TNFα, IL-1β
and IL-6, in the broncoalveolar fluid (BALF) and lung tissues after LPS challenge. The
PPARγ inhibitor GW9662 reversed these effects. Wogonin activated PPARγ, which de-
creased NFκB translocation to the nucleus and binding to DNA in vivo and in vitro [117].
Engeletin (dihydrokaempferol 3-rhamnoside) is a flavanonol glycoside [118]. It can be
found in white grapes and white wine. Engeletin activates PPAR-γ and presented pro-
tective and therapeutic effects against LPS-induced lung injury [119]. Smiglaside A, a
phenylpropanoid glycoside isolated from the traditional Chinese medicinal herb Smilax
riparia, foster macrophage polarization to an anti-inflammatory M2 phenotype via the
AMPK-PPARγ signaling pathway [120]

Endogenous products such as resolvin D1 may also bind to PPAR. Animals who
received resolvin D1 stimulated with LPS had lower leukocyte counts and TNF-α and IL-6
levels in BALF compared to the LPS group. Resolvin D1 activated PPARγ and attenuated
lung inflammation of LPS-induced acute lung by suppressing NFκB activation [121].

Mesenchymal stem cells are multi-potent non-hematopoietic stem cells residing in
most tissues, including the lung [122]. The main beneficial effects reside in the released
extracellular vesicles with anti-inflammatory properties. The extracellular vesicles derived
from lung mesenchymal stem cells upregulated the PPARγ axis, showing anti-inflammatory
and antioxidant effects [123].

Interestingly, recent reports discussed the crosstalk between PPAR pathways with
glucocorticoids and adenosine A2A receptor (A2AR). The establishment of ER-Hoxb8-
immortalized bone marrow-derived macrophages from Ppargfl/fl and LysM-Cre Ppargfl/fl

mice allowed the authors to show the effect of glucocorticoid on PPARγ knockout
macrophages. Interestingly, glucocorticoid induces increased recruitment of PPARγ KO,
but not PPARγ wildtype macrophages to the site of inflammation. It is a molecular link be-
tween glucocorticoids and PPARγ, showing that PPARγ modulates glucocorticoid-induced
migration in macrophages [124]. The activation of PPARγ [125,126] and adenosine A2A re-
ceptor (A2AR) [127,128] have anti-inflammatory properties in acute lung injury. The A2AR
stimulated PPARγ expression via protein kinase A(PKA)– cyclic adenosine monophos-
phate (cAMP)-response element binding protein (CREB) signaling. PPARγ and A2AR
could upregulate the mRNA and protein expressions of each other, generating a positive
feedback loop between both increasing their anti-inflammatory effect and reducing lung
damages in lung injury [129].

Adipocytokines, such as adiponectin and leptin, are mediators produced mainly by
adipocytes and can be regulated by PPARγ [11]. Leptin is a primarily pro-inflammatory
adipokine that induced the production of Th1 cytokines (TNF-α, IL-6 and IL-12) [130–132]
and blocked the production of Th2 cytokines (IL-4, IL-5 and IL-10) [133,134]. The leptin
receptor is expressed by human lung cells [135–137]. Leptin decreases the expression
of PPARγ in rat adipose and liver tissues [138]. Leptin also counteracts PPARγ anti-
inflammatory action, which may impact lung inflammatory status during different pul-
monary diseases. Adiponectin is predominantly an anti-inflammatory adipokine that
inhibits pro-inflammatory cytokines (TNF, IL-6) [139] and induces anti-inflammatory cy-
tokines (IL-10) [140,141]. Adiponectin, adiponectin-activated PPARs and PPAR-induced
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adiponectin attenuate inflammation [142]. Thus, the balanced release of these adipocy-
tokines driven by PPARγ activation may link adipose tissue to lung pathology [137].

6.2. PPARγ’s Role in Bacterial Lung Infection

The alveolar macrophages are key players in pulmonary antimicrobial defense and
lung homeostasis [143–146]. The PPARγ is critical in the alveolar macrophage development
and function [147–150]. The absence of PPARγ in alveolar macrophages boosted Th1-biased
inflammation and defective resolution of inflammation [151].

Bacterial infection in the lung induces an inflammatory response that leads to the
destruction of the invading pathogen. Nevertheless, the persistence of the inflammation
may result in a condition termed non-resolving pneumonia [152]. Bacterial pneumonia is
still responsible for a massive number of casualties worldwide [153]. Alveolar macrophages
and neutrophils are the major cell types that kill internalized lung bacteria [154]. Mice
infected with Klebsiella pneumoniae develop lung injury with an accumulation of cardi-
olipin, the main lipid of the inner mitochondrial membrane. High concentrations of
cardiolipin have been detected in the lung fluid of patients with pneumonia [155]. Cardi-
olipin induces SUMOylation of PPARγ at K107, which is distinct from the SUMOylation
rosiglitazone [47]. Cardiolipin-induced SUMOylation inhibits IL-10 production by lung
CD11b þLy6GintLy6CloF4/80 þ cells because of the recruitment of a repressive nuclear re-
ceptor corepressor (NCOR)/ histone deacetylase 3 (HDAC3) complex to the IL-10 promoter,
ending in persistent inflammation during pneumonia [156].

The pathogenic P. aeruginosa has diverse immune system evading mechanisms, in-
cluding the production of virulence factors and biofilm formation. PPARγ agonists play
a pivotal role in the host response to virulent P. aeruginosa [157]. Quorum sensing is a
mechanism wherein the bacteria secrete small molecules, such as N-(3-oxo-dodecanoyl)-
l-homoserine lactone (3O-C12-HSL), that promote biofilm formation and interbacterial
communication [158]. Quorum sensing genes in P. aeruginosa (strain PAO1) and 3O-C12-
HSL attenuate PPARγ expression in bronchial epithelial cells, with loss of barrier integrity
and decreased junctional proteins (occludin, claudin-4), which is restored by PPARγ ag-
onists [157]. So, the use of PPARγ agonists can serve as an adjuvant in treating resistant
P. aeruginosa infections.

The absence of PPARγ in lung macrophages reduces the growth of virulent My-
cobacterium tuberculosis, enhances proinflammatory cytokines and reduces granulomatous
infiltration—PPARγ activation—which downregulates macrophage proinflammatory re-
sponses and enables Mycobacterium tuberculosis growth [159]. A murine model of multiwall
carbon nanotube (MWCNT) elicited chronic granulomatous disease, which resembles
human sarcoidosis pathology, including alveolar macrophage PPARγ deficiency. PPARγ
deficiency promotes pulmonary mycobacterial early secreted antigenic target protein 6
(ESAT-6) retention, exacerbates macrophage responses to MWCNT + ESAT-6 and intensi-
fies pulmonary fibrosis [160]. The cells overexpressing CYP1A1 infected with Micoplasma
hyopneumoniae led to an increase in PPARγ expression, resulting in lower production of
IL-1b, IL-6, IL-8 and TNF-α in pigs [116].

Sepsis is a systemic inflammatory syndrome in response to an infection [161]. Pioglita-
zone decreased inflammatory response in polymicrobial sepsis targeting the NFκB pathway,
which reduced pro-inflammatory cytokines levels [162]. Sepsis causes changes in PPARγ
expression and activation [29], in part because of phosphorylation of PPARγ by ERK1/2.
ERK1/2 inhibition reversed PPARγ phosphorylation, ameliorating lung injury [163].

Triggering receptor expressed on myeloid cells 2 (TREM)-2 macrophages [164] neg-
atively regulate toll-like receptor (TLR)-mediated responses and enhance phagocytosis.
TREM-2 enhances bacterial elimination and improves survival in a sepsis model [165].
Trem-2-/- mice infected with S. pneumoniae exhibited an augmented bacterial clearance from
the lungs. The increased levels of C1q were crucial for enhanced bacteria phagocytosis in a
mechanism dependent on PPARγ activity [166].
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6.3. PPARγ Role in Viral Lung Infection

The PPARγ agonists TZDs have ameliorating effects on severe viral pneumonia. Also,
diet ligands of PPARγ, like curcuma, lemongrass and pomegranate, have anti-inflammatory
properties through PPARγ activation, acting as immunomodulators regulating cytokine
levels [84]. In this regard, both natural and synthetic PPAR-γ ligands treatment declined
host morbidity and mortality during influenza A virus infection [78,167–170]. PPARγ ex-
pression was downregulated in resident macrophages during influenza A virus infection. A
phytohormone abscisic acid binds to the G-protein coupled receptor lanthionine synthetase
component C-like 2, increasing cAMP levels [171]. The abscisic acid modulates immune
and inflammatory responses in mouse models of colitis and obesity [172]. Also, abscisic
acid improves influenza virus-induced pathology by activating PPARγ in lung immune
cells [173]. The PPARγ activation by the 15d-PGJ2 protects mice against influenza virus
infection with reduced lung cytokine production [169]. The myeloid PPARγ expression
in alveolar macrophages is critical for modulating pulmonary inflammation, the develop-
ment of host diseases and the recovery of tissue homeostasis following respiratory viral
infections [174].

The genetic-induced obese (db/db) mice were more susceptible to viral infection with
higher viral replication, higher inflammatory response and damaged lung repair after
influenza infection, with an increased mortality rate. PPARγ was downregulated in the
lung macrophages of db/db mice after influenza infection. Strikingly, the treatment with
15d-PGJ2 protected the db/db mice after influenza infection [175]. Thus, treatments with
PPARγ agonists may be a potential candidate to treat influenza infection in obese patients.

The coronavirus disease 2019 (COVID-19) and type 2 diabetes are two pandemic
diseases with enormous health and economic costs. Some COVID-19 patients may evolve
to severe pneumonia with a high fatality rate, especially in patients with chronic conditions,
such as diabetes and cardiovascular disease. Severe acute respiratory syndrome coron-
avirus (SARS-CoV-2) binds to the angiotensin-converting enzyme 2 (ACE2). In an obesity
animal model, pioglitazone increased the expression of ACE2 in liver, adipose tissue and
skeletal muscle [176]. Rosiglitazone also induced an increase in ACE2 expression [177].
Those drugs are broadly adopted in type-2 diabetes [178]. Therefore, the use of this PPARγ
agonist may be used with caution during the COVID-19 pandemic.

Using data from the National Health and Nutrition Examination Survey (NHANES)
between 1988–1994 and 1999–2010, it was shown that influenza/pneumonia mortality
was associated with the medication. Patients taking rosiglitazone had an increased risk
of mortality from influenza/pneumonia. Although most influenza infections do not
represent a health burden, secondary bacterial infection results in high rates of mortality
and morbidity. Viral infection, such as influenza, predisposes the lung to secondary
bacterial infection by dysregulation of the host immune response [179–182]. Community-
acquired methicillin-resistant Staphylococcus aureus (MRSA) represents a severe life threat
during influenza-associated secondary bacterial infection [183,184]. Rosiglitazone has
an anti-inflammatory effect during acute pulmonary inflammation [185]. Rosiglitazone
treatment compromised bacterial clearance during influenza-bacterial super-infection, thus
worsening the outcome of influenza-associated pneumonia [186]. The use of natural or
synthetic anti-inflammatory compounds must be used with caution during viral infection
so as to prevent potential future patients’ immune response derangement and increased
risk of infections.

A simplified scheme of PPARγ actions in the lung is shown in Figure 2.
After a lung injury, an inflammatory process is observed, with an increase in proin-

flammatory cytokines and edema formation. After binding to its agonist, PPARγ inhibits
transcriptional factor, leading to a decrease in proinflammatory mediators and to early
resolution of the inflammation.
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7. Concluding Remarks Considering Experimental Findings and Clinical Trials

Most of the reports discuss the anti-inflammatory role of PPARγ agonists on cytokine
production induced by many agents that cause lung inflammation or infection. Those effects
are related to the PPARγ-induced transrepression mechanisms by inhibiting transcription
factors or by crosstalk with other receptors or adipocytokines with a beneficial effect on
different diseases. This evidence highlights PPARγ as a potential target for adjunct therapy
in lung diseases.

Clinical studies with PPARγ agonists based on experimental findings show their
effects on disease outcome. Experimental evidence looks promising because of the broad
effects of PPARγ ligands controlling the function of many cell types, regulating metabolism
and immune response. PPARγ induces and represses transcription, interacts with co-
activators and co-receptors and has non-genomic effects. The broad gamma of mechanisms
and multiple targets reinforces PPARγ’s role in controlling many biological effects. PPARγ
binds to structurally different ligands at different sites of its binding pocket, a phenomenon
that may explain various effects, and is also used as a target for new drug design studies.

The role of pioglitazone in metabolic syndrome is well established, because it reduced
the risk of cardiovascular events in diabetic insulin-resistant patients, and decreased the
progression of atheroma and even diabetes incidence [187].

PPARγ agonists induce differentiation and apoptosis, and prevent proliferation, effects
that may help to decrease cancer incidence and progression [87,91]. Pioglitazone associated
with imatinibe diminished cancer development [188]. Clinical evidence shows synergism
between PPARγ agonist with a chemotherapeutic agent in lung cancer [91].

Some clinical trials show that the use of PPARγ agonists should be analyzed with
caution. In a randomized, placebo-controlled, double-blinded, crossover clinical trial,
pioglitazone did not improve the primary outcome score in severe asthmatics [189]. There
was no efficacy of pioglitazone treatment for 12 weeks in mild asthma management [190].

At the site of the binding pocket, the PPARγ ligand binding affects the PPARγ effect,
and we may also consider the dose and the duration of the treatment. Studies with long-
duration treatment were not conclusive and showed no benefits, but acute administration
of PPARγ agonists was associated with a reduction in the risk of pneumonia, suggesting
a beneficial effect of acute treatment with PPARγ agonists [11]. Concerning bacterial
infections, as in cancer, the best result is obtained with the use of the PPARγ agonist as
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an adjuvant treatment, associated with the current treatment, as antibiotics in the former
case [11,191]. By blocking immune response, PPARγ agonists’ chronic prescription must
be used with caution to prevent bacterial and viral infections.

More than 500 trials with pioglitazone, considered the safest PPARγ agonist in terms
of side effects, have been performed worldwide and are still under development [192].
More studies and clinical trials are needed in the field.
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CFTR
COPD Chronic obstructive pulmonary disease
COVID-19 Coronavirus disease 19
COX Cycloxygenase
Cq1 Complement component 1q
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CFTR Cystic fibrosis transmembrane conductance regulator
CREB cAMP-response element binding protein
CX3CR1 CX3C chemokine receptor 1
DHA Docosahexaenoic acid
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ERK Extracellular signal-regulated kinase
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HO-1 Hemoxygenase-1
ICAM-1 Intercellular adhesion molecule 1
JAK Janus kinase
LPS Lipopolysaccharide
MAP Mitogen-activated kinase
MRSA Methicillin-resistant Staphylococcus aureus
NAD Nicotinamide adenine dinucleotide
NHANES National Health and Nutrition Examination Survey

NEDD4
Neural precursor cell expressed developmentally
downregulated protein 4

NCOR Nuclear receptor co-repressor
NFκB Nuclear factor kappa B
NK Natural Killer
PG Prostaglandin
PKA Protein kinase A
PKB Protein kinase B
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PPARγ Peroxisome proliferator-activated receptor γ
PTEN Phosphatase and tensin homolog
PTM Post-translational mechanisms
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
SOCS Suppressor of cytokine signaling protein
STAT Signal transducers and activators of transcription
SUMO Small ubiquitin-like modifier
TFEB Transcription factor EB
TLR Toll-like receptor
TREM-2 Triggering receptor expressed on myeloid cells
TRIM23 Tripartite motif containing 23
TZD Thiazolidinedione
VCAM-1 Vascular cell adhesion molecule 1
wnt Homologous wingless and Int-1
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