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Abstract: Synthetic organic dyes are widely used in various industrial sectors but are also among
the most harmful water pollutants. In the last decade, significant efforts have been made to develop
improved materials for the removal of dyes from water, in particular, on nanostructured adsorbent
materials. Metal organic frameworks (MOFs) are an attractive class of hybrid nanostructured
materials with an extremely wide range of applications including adsorption. In the present work,
an iron-based Fe-BTC MOF, prepared according to a rapid, aqueous-based procedure, was used as an
adsorbent for the removal of alizarin red S (ARS) and malachite green (MG) dyes from water. The
synthesized material was characterized in detail, while the adsorption of the dyes was monitored by
UV-Vis spectroscopy. An optimal adsorption pH of 4, likely due to the establishment of favorable
interactions between dyes and Fe-BTC, was found. At this pH and at a temperature of 298 K,
adsorption equilibrium was reached in less than 30 min following a pseudo-second order kinetics,
with k” of 4.29 × 10−3 and 3.98 × 10−2 g·mg−1 min−1 for ARS and MG, respectively. The adsorption
isotherm followed the Langmuir model with maximal adsorption capacities of 80 mg·g−1 (ARS) and
177 mg·g−1 (MG), and KL of 9.30·103 L·mg−1 (ARS) and 51.56·103 L·mg−1 (MG).

Keywords: metal organic frameworks; wastewater remediation; adsorption; malachite green; alizarin red S

1. Introduction

Synthetic organic dyes are among the most harmful polluting agents. It is estimated
that 80,000 tons of dyes are produced and consumed each year [1]. They are cheap, offer
a wide range of colors, and are used for numerous applications in the paper, tanning,
pharmaceutical, photographic, and cosmetic industries [2]. However, synthetic dyes are
mainly earmarked for the textile industry, as they possess reactive groups which have a
strong binding ability for fiber [3]. The colors of dye molecules are due to chromogenic
groups which absorb visible light. Indeed, dye molecules generally have a complex aro-
matic structure which is often characterized by a high chemical stability. Unfortunately,
dyes are highly toxic and can have carcinogenic and mutagenic effects on living organisms,
even at low concentrations [4]. In addition, due to their ability to absorb light, the release
of dyes into surface waters also causes unwanted effects in the aquatic ecosystem. These
effects arise from a reduced level of penetration of the sun’s rays in water, which alters
photosynthetic cycles and reduces the oxygen supply in the water body [5]. Due to their
high chemical stability, the removal of dyes from water is a challenging issue [6]. Numerous
methods have been proposed to remove dyes from wastewaters, such as electrochemi-
cal degradation [7,8], membrane-based separation [9], ultrafiltration [10], extraction [11],
and biological treatment [12]. While these methods have a number of advantages, they cannot
be applied on a large scale due to high costs, secondary pollution, production of waste, etc [3].
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Adsorption is a simple method of dye removal that has significant advantages. Indeed,
it can be applied to almost any type of dye or mixtures of dyes, it does not require any
special equipment or pretreatment, and it can be repeated a number of times until the
adsorbent has reached its maximal adsorbing capacity. Adsorption processes are also
economic as they can be carried out in mild conditions, reducing the actual costs to that
of the adsorbent, which can be selected accordingly [13,14]. The main features of a good
adsorbent are high surface area, high adsorption capacity, short adsorption times, and
economic and environmentally-friendly production process.

Metal organic frameworks (MOFs) are organic-inorganic hybrid porous materials
characterized by a cage-like structure consisting of an array of metal cations held together
by organic linkers [15]. Thanks to their large surface area, tunable structural properties and
thermal stability, MOFs have been studied for a range of applications, including cataly-
sis [16], gas storage [17,18], enzyme carriers [19,20], sensing [21], and adsorption [22–24].
The adsorption capacities of MOFs toward dyes are remarkable [25]. Tian et al. prepared
a water-stable cationic Fe-based metal organic framework (CPM-97-Fe) for the adsorp-
tion of both anionic and cationic dyes, with adsorption capacities ranging from 157 to
831 mg/g [26]. There are many types of MOFs and, depending on the material, they can
range from low to high cost. The lowest cost materials are those whose synthesis is rapid
and requires mild conditions as well as environmentally-friendly solvents and reagents. Re-
cently, Sanchez-Sanchez et al. proposed a facile and rapid method to synthesize a Basolite
F300-like Fe-BTC MOF under environmentally and economically sustainable conditions
(few minutes at room temperature using water as solvent) [27]. This material, was used as
a support for enzyme immobilization [28]. To the best of our knowledge, there are only
a few studies about dyes’ adsorption using Fe-BTC [29–33]. While adsorption properties
of Fe-BTC are significant (e.g., up to 1105 mg/g of methylene blue) [34], the synthetic
procedures used require high temperatures or the use of organic solvents.

The purpose of this work was to examine the adsorption properties of a Fe-BTC MOF,
synthesized according to the method described by Sanchez-Sanchez at al. [27], to remove
the anionic dye alizarin red S (ARS) and the cationic dye malachite green (MG) from water
(Scheme 1). ARS is a synthetic anthraquinonic acid–base indicator [35,36], used in histology
to stain and locate calcium deposits in tissues [37], in geology to identify carbonate minerals,
and widely used in textile dyeing. MG is a toxic and carcinogenic triphenylmethane
dye, and is widely used in the textile and food industries, as well as in aquaculture
as an antifungal, antimicrobial, and antiparasitic agent [38–41]. The synthesized MOF
was characterized by means of XRD (X-ray diffraction), N2-adsorption isotherms, SEM
(Scanning Electro Microscopy), FTIR (Fourier-Transform Infrared Spectroscopy), TGA
(Thermogravimetric Analysis), and ELS (Electrophoretic Light Scattering) techniques. The
adsorption kinetics and isotherms of MG and ARS on Fe-BTC MOF were determined
in water at room temperature (298 K) by means of UV-Vis spectroscopy to examine the
application of Fe-BTC MOF for the removal of toxic dyes from waters.

Scheme 1. Use of Fe-BTC metal organic framework (MOF) for adsorption of alizarin red (S) and
malachite green.
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2. Results
2.1. Physico-Chemical Characterizations

Figure 1a shows the XRD pattern of the synthesized Fe-BTC MOF. The pattern is well
resolved with peaks at 2θ = 11◦, 19◦, 24◦, 28◦ and 34◦, in agreement with the literature re-
ports for Fe-BTC MOF [42,43]. The surface area and pore size distribution were obtained by
N2 adsorption/desorption isotherms (Figure 1b), using the Brunauer–Emmett–Teller (BET)
and Barrett–Joyner–Halenda (BJH) methods. The specific surface area was 443 m2/g and a
multi-modal pore size distribution ranged from 4 to 40 nm (Figure S2). Thermogravimetric
analysis (Figure 1c) showed a typical two-step decomposition pattern. The initial mass
loss at T <100 ◦C is due to the removal of water from the powder. The mass loss in the
range 100–325 ◦C can be attributed to the loss of coordination water [44]. Finally, the mass
loss from 325 to 520 ◦C is ascribed to the decomposition of the organic moiety (trimesic
acid) of the MOF [45,46]. The FTIR spectrum of Fe-BTC MOF is shown in Figure 1d. The
broad band from 3400 to 3600 cm−1 is due to the O-H stretching of adsorbed water. The
bands at 1627 and 1572 cm−1 and at 1450 and 1372 cm−1 are assigned to the asymmetric
and the symmetric stretching of the carboxylate groups of Fe-BTC [29,46,47], respectively.
The peaks between 770 and 450 cm−1 are due to the bending of aromatic C-H bonds.

Figure 1. Characterization of Fe-BTC MOF. (a) XRD pattern; (b) N2 physisorption isotherm; (c)
Thermogravimetric analysis; (d) FT-IR spectrum.
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2.2. Effect of pH on Dyes Adsorption on Fe-BTC MOF

The synthesized Fe-BTC MOF was used to adsorb alizarin red S (ARS) and malachite
green (MG) from water. Some studies have shown that dye adsorption on MOFs was
governed by electrostatic interactions [48]. Thus, it is expected that the pH of the adsorbing
solution affects the amount of adsorbed dye as a consequence of the presence/absence of
electric charges on both the dye molecules and the adsorbent surface. The pKa of ARS and
MG are 5.5 [49] and 6.9 [39], respectively. The former is due to the dissociation of one of
the phenolic groups (Scheme 2) [50], and the latter to the conversion of the cation into a
carbinol base through addition of OH− (Scheme 2) [51,52].

Scheme 2. Acid–base equilibria of (a) Alizarin red S (ARS) (b) Malachite green (MG) and (c)
Fe-BTC MOF.

The zeta potential of Fe-BTC suspension in water was measured over the pH range
3–7 (Figure 2a and Table S1). Fe-BTC is slightly positive at pH 3 (ζ = +8.3 ± 3 mV) and is
negatively charged at pH > 4 (ζ = −10.3 ± 3 mV) with a pHPZC (point of zero charge) value
of about 3.2 [53], in agreement with the literature [32]. Figure 2b shows the effect of pH on
the adsorbed amount at equilibrium (qe, mg/g) of ARS and MG on Fe-BTC. The qe values
of MG are generally higher than those of ARS. Moreover, while the qe of MG is unaffected
by pH, that of ARS linearly decreases in the pH range 3–7.
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Figure 2. (a) Zeta potential of Fe-BTC as a function of pH; (b) Adsorption capacity (qe) of Fe-BTC toward ARS and MG as a
function of pH; (c) Percentage adsorption of dyes as a function of pH.

Since the pHPZC (point of zero charge) of Fe-BTC is ca. 3.2 [53], anionic dyes are
adsorbed to a lower extent than cationic dyes [54]. Hence, as compared with ARS, higher
amounts of MG would be expected to be adsorbed. The two dyes also show different
adsorption efficiency (adsorbed amount %) trends (Figure 2c and Table S1) with Fe-BTC
possessing a maximum MG adsorption value of 98.5% at pH 4, while the highest value
for ARS was 59.1% at pH 3 (Figure 2c). At pH 7, the adsorption capacity was still high
for MG (82.9%), but quite low for ARS (23.3%). These trends can be explained by the fact
that, at pH 7, MG is neutral, and thus adsorption would predominantly occur via van der
Waals forces and would not be affected by electrostatic interactions. Adsorption of ARS on
Fe-BTC is not favored at pH 7 as both the dye and the absorbent are negatively charged.

2.3. Adsorption Kinetics

The adsorption kinetics of MG and ARS on Fe-BTC MOF were examined in aque-
ous solution (pH = 4, 298 K). The adsorption process was rapid for both dyes, reaching
equilibrium values (corresponding to the plateau in Figure 3a) in 30 min for ARS and
15 min for MG. Under these conditions (T = 298 K, pH = 4, initial concentrations of MG
and ARS of 1.5 mM), the qe of MG on Fe-BTC MOF was 177.3 mg/g, while that of ARS
reached qe = 80.4 mg/g. The experimental data were fitted to three different kinetic models,
namely, the pseudo-first order (Figure 3b), the pseudo-second order (Figure 3c), and the
intraparticle diffusion models (Figure 3d). The kinetic parameters obtained by each model
are listed in Table 1. The fitting of the experimental data using the pseudo-first order gave
low correlation coefficients (Table 1), thus, demonstrating the inadequacy of this model
to describe both ARS and MG adsorption on Fe-BTC. On the contrary, the pseudo-second
order model resulted in a very good fitting, as demonstrated by the high correlation co-
efficients (R > 0.99) and a good residuals plot (Figure S3b). Moreover, the values of qe
calculated from pseudo-second order models (177.31 mg/g for MG and 81.09 mg/g for
ARS) are very similar to the experimentally observed values (177.28 mg/g for MG and
80.39 mg/g for ARS, Figure 3a). The values of the kinetic constant (k”) confirmed that the
adsorption process for MG (k” = 3.98 × 10−2 g·mg−1 min−1) was faster than that for ARS
(k” = 4.29 × 10−3 g·mg−1 min−1). The fit of the model to the adsorption data demonstrate
that the adsorption of the dyes on the adsorbent sites is the rate determining step [29,55].
Figure 3d shows the variation of qt versus t0.5 according with the intraparticle diffusion
model. The slopes of the three straight lines in Figure 3d represent the kinetic constants of
the different steps (1, external diffusion; 2, internal diffusion; and 3, adsorption) involved
in the adsorption of ARS and MG dyes on Fe-BTC MOF. However, the fit of this model is
of lower quality than that of the pseudo-second order model (Figure S3c), which gives the
best description of the obtained kinetic data.
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Figure 3. (a) Amount of alizarin red S and malachite green adsorbed, qt, as a function of contact time. The data were fit using
linearized kinetics models; (b) Pseudo-first order; (c) Pseudo-second order; (d) Intraparticle diffusion. The experiments
were carried out in water at pH = 4 and T = 298 K.

Table 1. Comparison among different adsorption kinetic models for MG and ARS on Fe-BTC MOF.

qe exp
(mg g−1)

Pseudo-First Order Pseudo-Second Order Intraparticle Diffusion
k′

(min−1)
qe cal

(mg g−1) R k”
(g mg−1 min−1)

qe cal
(mg g−1) R ki

(g mg−1 min−1/2)
xi

(mg g−1) R

ARS 80.39 5.98 ×
10−3 12.78 0.946 4.29 × 10−3 81.09 0.992

27.77
1.10
0.33

10.44
64.81
72.38

0.885
0.873
0.999

MG 177.28 1.3210−2 1.75 0.707 3.98 × 10−2 177.31 1
11.33
0.58
0.02

149.38
172.51
176.88

1
0.828
0.434

2.4. Adsorption Isotherms

The adsorption isotherms of ARS and MG on Fe-BTC MOF (T = 298 K, pH 4) are shown
in Figure 4a. The MOF adsorbed MG to a greater extent than ARS, reaching the maximal
adsorbed amounts (qe,max), corresponding to the isotherm plateaus, qe,max = 177.3 mg/g and
qe,max = 80.4 mg/g for MG and ARS, respectively. Then, experimental data were tested by
applying a fitting procedure based on different linearized isotherm models, namely, Temkin
(Figure 4b), Freundlich (Figure 4c), and Langmuir (Figure 4d). The constants associated
with each model are reported in Table 2.
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Figure 4. (a) Adsorption isotherms of MG and ARS with MOF where qe is a function of the equilibrium
concentration. Adsorption data were fitted using linearized isotherms; (b) Temkin; (c) Freundlich; (d)
Langmuir. The experiments were carried out in distilled water for 24 h, at T = 298 K.

Table 2. Comparison among different isotherm models for ARS and MG adsorption on Fe-BTC MOF (pH = 4, T = 298 K).

Temkin Freundlich Langmuir

bT
AT

(L mg−1) R KF
(L mg−1) 1/n R KL

(L mg−1)
qe,max

(mg g−1) R ∆G◦

(KJ mol−1)

ARS 157.59 1.28·105 0.982 3.85·103 0.529 0.910 9.30·103 79.88 0.995 −54.21

MG 79.34 9.87·105 0.967 63.77·103 0.624 0.909 51.56·103 187.24 0.967 −58.61

By comparing the correlation coefficients (R) obtained by applying the different lin-
earized isotherms to the experimental data, with the resulting residual plots (Figure S4),
the Langmuir model fits the experimental data better than the other two models. This
indicates that a monolayer of adsorbate (dye molecules) was formed on the adsorbent
surface (Fe-BTC MOF). Generally, the larger the Langmuir constant KL, the more favorable
the adsorption process [56]. This confirms that adsorption of MG (KL = 51.56·103 L/mg)
was favored over that of ARS (KL = 9.30·103 L/mg) [57]. Then, the Langmuir constant,
KL, was used to calculate the thermodynamic equilibrium constant Ke

0 by means of the
equation [58] as:

K0
e =

KL MMAdsorbate[Adsorbate]0

γ
(1)
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where MMAdsorbate is the molecular mass of the adsorbate (MMMG = 364.91 g mol−1 and
MMARS = 342.26 g mol−1), [Adsorbate]◦ is the standard concentration of the adsorbate
(1 mol L−1), and γ is the activity coefficient (dimensionless) that can be considered to have
a value of 1 in dilute solution. The Ke

0 values thus calculated were used to determine the
standard Gibbs free energy (∆G0) for the adsorption process, according to the relationship:

∆G0 = −RTlnK0
e (2)

where R is the universal gas constant (8.314 J K−1 mol−1) and T is the absolute temperature
(298.13 K). As shown in Table 2, ∆G0 values were −54.21 kJ mol−1 and −58.61 kJ mol−1 for
the adsorption of ARS and MG, respectively. This indicates that, in standard conditions,
the desorption � adsorption equilibrium lies far to the right for both dyes, in agreement
with experimental observations.

3. Discussion

The adsorption of malachite green on a range of MOFs has been reported [59–62].
Table 3 summarizes the data from studies relevant to the present work. Among the various
types of MOFs tested, the lowest performing in terms of dye adsorption capacity were
Cu-BTC [57] and Mil-53-Al-NH2 [59]. Both the ZIF-67 prepared by Jin et al. [61] and
the UiO-66 prepared by Embaby et al. [55] acted as strong adsorbents with qe values of
2545 and 400 mg/g, respectively, with adsorption times between 30 and 60 min. The
Fe-BTC synthesized by Huo et al. [32] and the mixed-ligand Cu-BDC-BTC compound
prepared by Shi et al. [60] had adsorption capacities comparable to those obtained here,
205 and 185 mg/g, respectively, but the time required for the adsorption process (120 min)
was four times higher than that obtained by us (30 min).

Table 3. Comparison with other systems like that studied in this article.

Synthesis Kinetic Isotherm

Adsorbent T
(◦C) t (h) Solvent Dye qe(exp)

(mg/g)
t

(min) k” (g·mg min) Model K
(L·mg−1) Ref.

Fe-BTC 25 <1 H2O Alizarin red S 80 30 4.29 × 10−3 Langmuir 9.30·103
This workMalachite green 177 30 3.98 × 10−2 Langmuir 51.56·103

Fe-BTC 150 12 H2O Malachite green 205 120 6.67·10−3 Freundlich 6.49 [32]

UiO-66 120 1 DMF Alizarin red S 400 36 2.3·10−4 Langmuir 0.06 [55]

Cu-BTC 100 10 EtOH/DMF Methylene blue 4.68 10 42.39 Langmuir 1.89 [57]

Mil-53(Al) -NH2 150 24 DMF/H20
Malachite green 37.8 200 - Langmuir 0.29

[59]Methylene blue 45.2 200 - Langmuir 0.67

Cu-BTC/BDC 120 12 EtOH Malachite green 185 - - Freundlich - [60]

ZIF-67/PAN 25 <1 H2O Malachite green 2545 60 2.7·10−3 Langmuir 0.05 [61]

NH-ZIF-67 25 <1 MeOH Malachite green 114.1 240 - - - [62]

Li et al. found that the absorption capacity of MIL-53(Al) increased after function-
alization with amino groups [59], an increase that can be attributed to hydrogen bond
interactions [62] between the amino groups of the dye molecules and the amino groups
of MIL-53(Al)-NH2; the adsorption capacity achieved by this system is, however, rather
low (45.2 mg/g in the case of methylene blue and 37.8 mg/g in the case of malachite
green). Jin et al. prepared a ZIF-67 MOF integrated on a polyacrylonitrile membrane to
recover the MOF from water solution at the end of the adsorption process [61]. This system
had an adsorption capacity of 2545 mg/g of MG, and the time required to complete the
process was 60 min. The only study reported to date on the adsorption of alizarin red S by
MOFs (Table 3) was carried out by Embaby et al., who reported an adsorption capacity of
400 mg/g for ARS on zirconium-based MOF UiO-66 [55].

Most studies have confirmed that the Langmuir isotherm is the optimal model to
describe the adsorption of dyes on the MOF materials described in this study, with the
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pseudo-second order model representing the best kinetic model. However, in addition
to fast kinetics and a high adsorbing capacity, the successful use of an adsorbent for
environmental remediation should not be assessed only based on its performance, but also
in terms of factors such as cost and ease of preparation. The majority of reports on the use
of MOFs utilize synthetic methods that use organic solvents and/or high temperatures.
For example, among the adsorbents with higher qe, the synthesis of UiO-66 was carried out
in 1 h in dimethylformamide at 120 ◦C [55], while Cu-BDC-BTC was prepared in ethanol
by heating to 120 ◦C, for 12 h [60]. The Fe-BTC synthesized by Huo et al., despite being
prepared in water, required long synthetic times (12 h) and high temperatures (150 ◦C
in an autoclave) [32]. The most interesting material, both from the point of view of the
high adsorbing capacity and of synthesis conditions (25 ◦C in H2O), was the ZIF-67/PAN
fibrous membrane proposed by Jin et al. [61]. However, one of the starting reagents of this
MOF is the 2-methylimidazole, which is a carcinogenic compound [63,64]. The Fe-BTC
used here is significantly easier (and lower cost) to prepare, in an environmentally-friendly
manner, with synthesis in less than 1 h at room temperature, using distilled water as the
solvent and the reagents, FeCl3 and trimesic acid.

4. Material and Methods
4.1. Chemicals

Tris(hydroxymethyl)-aminomethane (TRIS,≥99.8%) was purchased from Bio-Rad Lab-
oratories. Iron(III) chloride (97%), sodium hydroxide, trimesic acid, and
4-{[4-(dimethylamino)phenyl](phenyl)methylidene}-N,N-dimethylcyclohexa-2,5-dien-1-iminium
chloride (malachite green) were purchased from Sigma-Aldrich. 3,4-Dihydroxy-9,10-dioxo-
2-anthracenesulfonic acid (alizarin red S) was purchased as the sodium salt from Fluka Chemie.

4.2. Synthesis and Characterization of Fe-BTC MOF

The Fe-BTC type MOF was prepared following the procedure reported by Sanchez-
Sanchez et al. [27,65]. Briefly, 0.3048 g of FeCl3 was dissolved in 10.203 mL of distilled
water. Then, a solution containing 0.263 g of trimesic acid, 3.685 mL of NaOH 1.06 M, and
6.388 mL of H2O was added dropwise under stirring. The solid was collected by filtration
under vacuum, washed with distilled water, and dried in air.

X-ray diffraction (XRD) analysis was carried out using an X’PERT Pro PANalytical
diffractometer using a Cu Kα radiation source. The data were collected from 5 to 40◦

with a 2θ step size of 0.013, for 99.19 s. The N2 adsorption/desorption isotherms at 77 K
were carried out on a ASAP 2020 (Micromeritics) instrument to obtain the surface area
(Brunauer–Emmett–Teller, BET) [66] and pore size distribution (Barrett–Joyner–Halenda,
BJH) [67]. The FTIR analysis was performed using a Bruker Tensor 27 spectrophotometer
equipped with a diamond-ATR accessory and a DTGS detector. A number of 128 scans at a
resolution of 2 cm−1 were averaged in the spectral range 4000–400 cm−1. Thermal analysis
data were collected with a STA6000 (Perkin Elmer) thermal analyzer in the 25–850 ◦C range,
under oxygen flow (heating rate = 10 ◦C/min, flow rate = 40 mL min−1). The Zeta potential
of Fe-BTC was measured using a Zetasizer Nano ZSP (Malvern Instruments) in backscatter
configuration (θ = 173◦), at a laser wavelength of λ = 633 nm, using Zetasizer software
(version 7.03) to analyze the data. Zeta potential values were calculated by means of the
Henry equation using water as the dispersant medium (εr = 78.5 and η = 0.89 cP at 25 ◦C)
and f(κa) = 1.5 (Smoluchowski approximation). The sample was prepared by suspending
Fe-BTC (2 mg/mL) in distilled water adding HCl and NaOH to vary the pH from 3 to 7.
Before the measurements the samples were sonicated for 30 min and left stirring overnight.
The scattering cell temperature was fixed at 25 ◦C.

4.3. Adsorption Studies

A mass of 100 mg of the synthesized MOF was dispersed in 1 mL of distilled water
using a vortex mixer (Figure S1a). To evaluate the optimal pH for the adsorption process, a
series of Eppendorf tubes were filled with 1 mL of dye solution and 35 µL of solid dispersion
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(Figure S1a) at different pH in the range 3–7. The pH was measured using a Metrohm pH-
meter and adjusted adding small volumes of HCl and NaOH solutions. All the mixtures
were put in a rotating mixer overnight, and then collected by centrifugation (1000 rpm for
1 min). The concentration of dye in the solutions before and after adsorption experiments
was determined using a Cary 60 UV-Vis spectrophotometer (Agilent) (λ = 516 nm for ARS
and 620 nm for MG). The solutions were diluted in Tris-HCl buffer (pH 7, 10 mM) to ensure
a constant pH during the measurements, since the absorbance peaks of the dyes, especially
in the case of ARS, are influenced by pH [68,69].

Adsorption kinetic studies were carried out analyzing samples withdrawn at different
times (from 1 min to 8 h) at a fixed pH of 4 and at a constant concentration of the dyes
(1.5 mM). Adsorption isotherms at T = 298 K were obtained at constant adsorption time
(24 h) and pH (4) at varying initial dye concentrations (from 0.01 to 2 mM).

4.3.1. Adsorption Kinetic Models

The adsorption kinetics were studied by measuring the decrease in concentration of
the dyes in solution at given times (qt) through the following equation,

qt =
(Ci − Ct)V

m
(3)

where Ci and Ct are the dye concentrations at time = 0 and time = t, while V and m are the
volumes of the solution and the mass of the solid, respectively.

The experimental data were fitted using the linearized equations of three different
kinetic models. A pseudo-first order model as follows:

ln(qe − qt) = lnqe − k′ · t (4)

A pseudo-second order model [70,71] as follows:

t
qt

=
1

q2
e · k′′

+
t
qe

(5)

and an intraparticle diffusion model [72] as follows:

qe = ki · t1/2 + xi (6)

where qe is the amount of adsorbed dye at the equilibrium, k′, k” and ki are the pseudo-first
order constant, pseudo-second order constant, and intraparticle diffusion constant, respectively.

4.3.2. Adsorption Isotherm Models

The adsorption isotherms were obtained by plotting the experimentally adsorbed
amounts of dyes, qe, versus the equilibrium concentration, Ce. The experimental data were
fitted through three different isotherm models’, i.e., Temkin (Equation (7)), Freundlich
(Equation (8)), and Langmuir (Equation (9)), in their linearized forms [73]:

qe =
RT
bT

lnAT +
RT
bT

lnCe (7)

where qe is the amount of adsorbed dye at the equilibrium, qe,max is the maximum monolayer
coverage capacity, bT is the Temkin constant, and AT is the Temkin equilibrium binding
constant.

lnqe = lnKF +
1
n

lnCe (8)
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where 1/n (dimensionless) and KF are the Freundlich constants, the heterogeneity factor,
and support capacity (characteristic of each adsorbate-adsorbent pair), respectively.

Ce

qe
=

1
qm · KL

+
1

qm
Ce (9)

where KL is the Langmuir constant [5,74].

5. Conclusions

An Fe-BTC MOF was synthesized following the procedure proposed by Sanchez-
Sanchez et al. The structure of the material was characterized by XRD, while its pore
diameter distribution (4–40 nm) and surface area (443 m2/g) were determined from N2
adsorption/desorption isotherms. The zeta potential of aqueous dispersions of Fe-BTC
was determined by ELS and a point of zero charge (pHpzc) of 3.2 was obtained. Further
qualitative characterizations were carried out using FTIR and TGA techniques. The data
obtained were comparable with those reported in the literature. Then, the Fe-BTC was
used as an adsorbent for the removal of two toxic dyes from water, alizarin red S (ARS) and
malachite green (MG). The adsorption capacity was measured as a function of time and of
the concentration of dye required to obtain the kinetic profiles and the adsorption isotherms
of the process, respectively. The adsorption of both dyes was rapid (<30 min) as compared
with other reports, which reached equilibrium generally in 60–200 min. The Langmuir
model provided the best fit to the adsorption process, with maximum adsorption capacities
of 80 and 177 mg/g for ARS and MG on Fe-BTC MOF, respectively. The data obtained for
adsorption on to Fe-BTC MOF compare favorably with literature reports. However, what
distinguishes this work is the green method used to synthesize the adsorbing material.
Indeed, the synthesis of the Fe-BTC MOF was performed in an aqueous solution at room
temperature in less than 1 h, unlike the generally used syntheses which require organic
solvents or high temperatures and longer times. Furthermore, the adsorption rate of the
dyes was higher than most of the other reported MOFs. Future work could be devoted to
test the adsorption performance of other toxic dyes or even other classes of toxic substances
and to verify the feasibility of continuous processes or on a larger scale. Further work
is needed to find the optimal conditions for dye desorption and MOF reuse for multiple
adsorption cycles.
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