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Abstract: This study evaluated the memristive switching characteristics of a biomaterial solid poly-
mer electrolyte (SPE) chitosan-based memristor and confirmed its artificial synaptic behavior with
analog switching. Despite the potential advantages of organic memristors for high-end electronics,
the unstable multilevel states and poor reliability of organic devices must be overcome. The fabricated
Ti/SPE-chitosan/Pt-structured memristor has stable bipolar resistive switching (BRS) behavior due to
a cation-based electrochemical reaction between a polymeric electrolyte and metal ions and exhibits
excellent endurance in 5 × 102 DC cycles. In addition, we achieved multilevel per cell (MLC) BRS
I-V characteristics by adjusting the set compliance current (Icc) for analog switching. The multilevel
states demonstrated uniform resistance distributions and nonvolatile retention characteristics over
104 s. These stable MLC properties are explained by the laterally intensified conductive filaments in
SPE-chitosan, based on the linear relationship between operating voltage margin (∆Vswitching) and
Icc. In addition, the multilevel resistance dependence on Icc suggests the capability of continuous
analog resistance switching. Chitosan-based SPE artificial synapses ensure the emulation of short-
and long-term plasticity of biological synapses, including excitatory postsynaptic current, inhibitory
postsynaptic current, paired-pulse facilitation, and paired-pulse depression. Furthermore, the grad-
ual conductance modulations upon repeated stimulation by 104 electric pulses were evaluated in
high stability.

Keywords: organic memristor; chitosan; solid polymer electrolyte; electronic synapses; multilevel state

1. Introduction

The rapid development of electronic technology and information science requires
various types of device structures, materials, and computing methods [1,2]. Memory de-
vices are among the most essential units in electronics [3,4]. In particular, memristor-based
memories have potential applications in next-generation information technology. Two-
terminal metal–insulator–metal structure memristors offer significant advantages due to
their geometrical simplicity, nonvolatile storage, and computations through continuous
analog resistance switching in the insulator layer [5–8]. Various materials can be utilized
for resistive switching (RS) layers in memristors, such as organic, inorganic, and hybrid
nanocomposites [9]. Among them, bio-inspired organics such as chitosan, starch, cellulose,
albumen, and gelatin are emerging materials, and numerous studies have reported RS be-
havior in bio-inspired organics [10–13]. Whereas the advanced electronics such as wearable,
skin-attachable, and digestible smart devices should be fabricated in not only rigid sub-
strate but, also, on flexible, stretchable, and transparent substrates [14,15]. Therefore, the
solution-based low-temperature processible natural organic materials can provide versatile
engineering platforms and are an interesting alternative to inorganic-based technology
with biodegradability, bio-absorbability, and nontoxicity [9,16]. Nevertheless, the poor
endurance, unstable long-term retention, and scarcity of states of bio-organic-based mem-
ristors must be overcome. Among various organic-based materials, chitosan electrolytes
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are promising for solid polymer electrolyte (SPE)-based memristor devices due to the
following advantages: chitosan is a cationic biopolymer derived from chitin extracted from
shrimp or crab shells, consisting of repeating β(1,4)-linked D-glucosamine (N-deacetylated
chitin) and N-acetyl-D-glucosamine units [17,18], (1) chitosan is natively insulating, but its
ionic conductivity can be modulated by adding acidic solution, (2) the amine and hydroxyl
groups in chitosan are extremely reactive with metal ions, (3) chitin, which is the source
material of chitosan, is the second-most abundant polysaccharide in the crust, followed by
cellulose, (4) chitosan is a nontoxic and biodegradable polymer, and (5) chitosan powder or
flakes are soluble in diluted acetic acid solution. Therefore, chitosan has low-cost solution
processability, and thin-film-formed chitosan has high transparency and flexibility by its
medium molecular weight [17,19–21].

In this study, we applied a biomaterial, SPE-chitosan, to the RS layer of a two-terminal
memristor device with a Ti/SPE-chitosan/Pt structure. There have been previously re-
ported literature using chitosan as the RS layer of memristor, but without an additional
powder-doping process or multilevel resistance, the properties on chitosan were not re-
ported [9,17,19]. The interaction between the SPE and electrode can be used for cation-
based electrochemical switching due to the redox reaction of mobile ions in the polymeric
electrolytes [17,22]. When an electric field is applied to the electrodes of the SPE-based
memristor, the electrochemical metallization (ECM) reaction strongly affects the RS phe-
nomenon. Electrochemically reactive metal electrodes provide mobile cations, and their
discharge leads to the growth of highly conductive filaments (CFs) [23]. As a result, we
evaluated the stable multilevel RS, endurance, retention, and analog switching characteris-
tics of the fabricated memristor devices without an additional doping process on chitosan.
In addition, we analyzed the RS mechanism of the SPE-chitosan layer and the short- and
long-term plasticity of chitosan-based SPE memristors, which are essential for synaptic
calculation and information storage.

2. Results and Discussion

Figure 1a shows the optical transmittance spectra. The insets show the spectra in
the visible light wavelength region (400–800 nm) for as-dried and 50 ◦C and 80 ◦C baked
SPE-chitosan layers on the glass substrate and a photograph of the 80 ◦C baked film. The
average transmittance is 90.6%, 90.7%, and 91.1% for the as-dried, 50 ◦C baked, and 80 ◦C
baked SPE-chitosan layers, respectively. Thus, the transmittance increases with the baking
temperature. Figure 1b presents the current–voltage (I-V) curve of the as-dried, 50 ◦C
baked, and 80 ◦C baked SPE-chitosan memristor device. A DC voltage and an electrical
synaptic pulse were applied to the Ti-TE (top electrode) with the Pt-BE (bottom electrode)
grounded, showing that the devices exhibit typical bipolar RS (BRS) behavior. The BRS
I-V characteristics were measured by applying a sequential DC bias voltage to the Ti-TE
of 0 V→ 2 V (compliance current (Icc) of 10 mA)→ −1.4 V (Vstop; Icc of 100 mA)→ 0 V
with a 0.05 V step. Compared with the as-dried and 50 ◦C baked devices, the 80 ◦C baked
SPE-chitosan memristor has a larger RS memory window, which is the difference in current
between the high-resistance state (HRS) and low-resistance state (LRS).

Figure 2 represents the RS endurance characteristics over 5 × 102 DC cycles of the
80 ◦C baked SPE-chitosan memristor device. When the Ti-TE voltage is swept in the positive
direction (1) in Figure 2a, the resistance state of SPE-chitosan changes from HRS to LRS,
which corresponds to the set operation and the conductive ON state. Conversely, with
sweeping in the negative direction (3), the resistance state changes from LRS to HRS, which
corresponds to the reset operation and the conductive OFF state.



Int. J. Mol. Sci. 2021, 22, 773 3 of 13Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 13 
 

 

 
Figure 1. (a) Optical transmittance spectra of as-dried, 50 °C baked, and 80 °C baked solid polymer electrolyte (SPE)-
chitosan layers on the glass substrate. The insets show the transmittance spectra in the visible light wavelength region 
(400–800 nm) and a photograph of the 80 °C baked SPE-chitosan layer. (b) Bipolar resistive switching (BRS) I-V character-
istics of as-dried, 50 °C baked, and 80 °C baked SPE-chitosan memristors. 

Figure 2 represents the RS endurance characteristics over 5 × 102 DC cycles of the 80 
°C baked SPE-chitosan memristor device. When the Ti-TE voltage is swept in the positive 
direction (1) in Figure 2a, the resistance state of SPE-chitosan changes from HRS to LRS, 
which corresponds to the set operation and the conductive ON state. Conversely, with 
sweeping in the negative direction (3), the resistance state changes from LRS to HRS, 
which corresponds to the reset operation and the conductive OFF state.  

 
Figure 2. RS endurance characteristics for 5 × 102 DC cycles of 80 °C baked SPE-chitosan memristors. (a) BRS I-V charac-
teristics. (b) Resistance values of a low-resistance state (LRS) and high-resistance state (HRS) extracted at a read voltage of 
0.1 V. (c) Cumulative distribution of the set and reset operating voltages. The inset depicts the calculated set and reset 
operating powers. 

In Figure 2a, it can be seen that the repetitive RS operation continuously occurs ac-
cording to the voltage sweep direction. Figure 2b shows the resistance values read at 0.1 
V for the LRS and HRS extracted for 5 × 102 repeated DC cycle tests. The on/off ratio of the 
RS window can be given as the minimum HRS (HRSmin)/maximum LRS (LRSmax), where 
HRSmin/LRSmax > 12.9 was maintained without deterioration. Figure 2c presents the cumu-
lative distribution of the set and reset operating voltages (Vset and Vreset) during 5 × 102 RS 
cycles. The Vset can be defined as the voltage at the point where the resistance state changes 
from HRS to LRS. On the other hand, the reset current (Ireset) can be defined as the peak 
current value when the current begins to decrease during the reset process, and the Vreset 
is the voltage corresponding to Ireset [24]. The inset depicts the power for the set and reset 

0 100 200 300 400 500

102

103

104

DC cycles (#)

R
es

ist
an

ce
 (Ω

)

> 12.9
LRSmax

HRSmin

 

Read voltage : 0.1 V
-1 0 1

0
20
40
60
80

100

Voltage (V)

C
um

ul
at

iv
e 

di
st

ri
bu

tio
n 

(%
)

ΔVSwitching

 Vset = 0.89 V
 Vreset = −0.58 V

> 1.2 V

3

6

9

12

15

 
Po

w
er

 (m
W

)

4.94 mW
9.23 mW

Reset

 

 

 Set

(a) (b) (c)

-2 -1 0 1 210-6

10-5

10-4

10-3

10-2

10-1

(Vreset , Ireset)

Vstop

Vset
 1 st
 2 nd
 5 th
 10 th
 20 th

 50 th
 100 th
 200 th
 500 th

3

4
1

2

C
ur

re
nt

 (A
)

Voltage (V)

Icc = 10 mA

Figure 1. (a) Optical transmittance spectra of as-dried, 50 ◦C baked, and 80 ◦C baked solid polymer electrolyte (SPE)-chitosan
layers on the glass substrate. The insets show the transmittance spectra in the visible light wavelength region (400–800 nm)
and a photograph of the 80 ◦C baked SPE-chitosan layer. (b) Bipolar resistive switching (BRS) I-V characteristics of as-dried,
50 ◦C baked, and 80 ◦C baked SPE-chitosan memristors.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 13 
 

 

 
Figure 1. (a) Optical transmittance spectra of as-dried, 50 °C baked, and 80 °C baked solid polymer electrolyte (SPE)-
chitosan layers on the glass substrate. The insets show the transmittance spectra in the visible light wavelength region 
(400–800 nm) and a photograph of the 80 °C baked SPE-chitosan layer. (b) Bipolar resistive switching (BRS) I-V character-
istics of as-dried, 50 °C baked, and 80 °C baked SPE-chitosan memristors. 

Figure 2 represents the RS endurance characteristics over 5 × 102 DC cycles of the 80 
°C baked SPE-chitosan memristor device. When the Ti-TE voltage is swept in the positive 
direction (1) in Figure 2a, the resistance state of SPE-chitosan changes from HRS to LRS, 
which corresponds to the set operation and the conductive ON state. Conversely, with 
sweeping in the negative direction (3), the resistance state changes from LRS to HRS, 
which corresponds to the reset operation and the conductive OFF state.  

 
Figure 2. RS endurance characteristics for 5 × 102 DC cycles of 80 °C baked SPE-chitosan memristors. (a) BRS I-V charac-
teristics. (b) Resistance values of a low-resistance state (LRS) and high-resistance state (HRS) extracted at a read voltage of 
0.1 V. (c) Cumulative distribution of the set and reset operating voltages. The inset depicts the calculated set and reset 
operating powers. 

In Figure 2a, it can be seen that the repetitive RS operation continuously occurs ac-
cording to the voltage sweep direction. Figure 2b shows the resistance values read at 0.1 
V for the LRS and HRS extracted for 5 × 102 repeated DC cycle tests. The on/off ratio of the 
RS window can be given as the minimum HRS (HRSmin)/maximum LRS (LRSmax), where 
HRSmin/LRSmax > 12.9 was maintained without deterioration. Figure 2c presents the cumu-
lative distribution of the set and reset operating voltages (Vset and Vreset) during 5 × 102 RS 
cycles. The Vset can be defined as the voltage at the point where the resistance state changes 
from HRS to LRS. On the other hand, the reset current (Ireset) can be defined as the peak 
current value when the current begins to decrease during the reset process, and the Vreset 
is the voltage corresponding to Ireset [24]. The inset depicts the power for the set and reset 

0 100 200 300 400 500

102

103

104

DC cycles (#)

R
es

ist
an

ce
 (Ω

)

> 12.9
LRSmax

HRSmin

 

Read voltage : 0.1 V
-1 0 1

0
20
40
60
80

100

Voltage (V)

C
um

ul
at

iv
e 

di
st

ri
bu

tio
n 

(%
)

ΔVSwitching

 Vset = 0.89 V
 Vreset = −0.58 V

> 1.2 V

3

6

9

12

15

 
Po

w
er

 (m
W

)

4.94 mW
9.23 mW

Reset

 

 

 Set

(a) (b) (c)

-2 -1 0 1 210-6

10-5

10-4

10-3

10-2

10-1

(Vreset , Ireset)

Vstop

Vset
 1 st
 2 nd
 5 th
 10 th
 20 th

 50 th
 100 th
 200 th
 500 th

3

4
1

2

C
ur

re
nt

 (A
)

Voltage (V)

Icc = 10 mA

Figure 2. RS endurance characteristics for 5 × 102 DC cycles of 80 ◦C baked SPE-chitosan memristors. (a) BRS I-V
characteristics. (b) Resistance values of a low-resistance state (LRS) and high-resistance state (HRS) extracted at a read
voltage of 0.1 V. (c) Cumulative distribution of the set and reset operating voltages. The inset depicts the calculated set and
reset operating powers.

In Figure 2a, it can be seen that the repetitive RS operation continuously occurs
according to the voltage sweep direction. Figure 2b shows the resistance values read at
0.1 V for the LRS and HRS extracted for 5 × 102 repeated DC cycle tests. The on/off ratio
of the RS window can be given as the minimum HRS (HRSmin)/maximum LRS (LRSmax),
where HRSmin/LRSmax > 12.9 was maintained without deterioration. Figure 2c presents
the cumulative distribution of the set and reset operating voltages (Vset and Vreset) during
5 × 102 RS cycles. The Vset can be defined as the voltage at the point where the resistance
state changes from HRS to LRS. On the other hand, the reset current (Ireset) can be defined
as the peak current value when the current begins to decrease during the reset process,
and the Vreset is the voltage corresponding to Ireset [24]. The inset depicts the power for
the set and reset operations, calculated as Pset = Vset × Icc and Preset = |Vreset × Ireset|,
respectively. The average Vset, Vreset, Pset, and Preset values required to accomplish set
and reset operations are 0.89 V, −0.58 V, 9.23 mW, and 4.94 mW, respectively. The total
operating parameters of SPE-chitosan memristor are represented in Table 1. In addition, a
sufficient operating voltage margin (∆Vswitching) larger than 1.2 V was obtained from the
relationship ∆Vswitching = Vset,min − Vreset,max.
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Table 1. Total operating parameters of solid polymer electrolyte (SPE)-chitosan memristor.

Average (µ) Standard Deviation (σ) µ ± σ

Set operating voltage (Vset) 0.89 V 0.08 V 0.89 ± 0.08 V

Set operating voltage (Vreset) −0.58 V 0.05 V −0.58 ± 0.05 V

Power for set operation (Pset) 9.23 mW 0.75 mW 9.23 ± 0.75 mW

Power for reset operation (Preset) 4.94 mW 0.42 mW 4.94 ± 0.42 mW

Figure 3 shows the nonvolatile multilevel per cell (MLC) characteristics of the SPE-
chitosan memristor device. Nonvolatile MLC characteristics in a single memristor cell are
essential to achieve a biological synaptic storage/computing system, as well as to provide
a large memory capacity in the same chip area. By adjusting the Icc during a set operation,
the conductance of the LRS increases as the filament widens, resulting in multiple LRS
levels with the same HRS level [25,26].
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Figure 3. Multilevel per cell (MLC) characteristics of SPE-chitosan memristors. (a) Multilevel BRS I-V curves obtained by
adjusting the set compliance current (Icc) value from 5 to 30 mA. (b,c) The enlarged positive- and negative-voltage regions
of the BRS I-V curves, respectively. (d) Cumulative probabilities of five different LRS and HRS levels during repetitive
cycling. Nonvolatile retention performance of six different resistance states during 104 s at (e) room temperature (25 ◦C)
and (f) a high temperature (85 ◦C).

Figure 3a depicts the multilevel BRS characteristics on a linear I-V scale. In Figure 3b,c,
as the Icc increases from 5 to 30 mA during the setup operation, the read current of the
LRS increases, resulting in one HRS level and five LRS levels until the reset operation.
Figure 3d presents the cumulative probability of multilevel resistance states for 30 cycles
of repetitive switching. The open and closed symbols correspond to the HRS and LRS
levels, respectively. It turns out that reliable multilevel RS operation and variability of
the resistance distribution decreases with the increasing Icc. The resistance values of the
average (µ) ± standard deviations (σ) of the LRS are 89.89 ± 3.16 Ω for Icc = 5 mA and
40.69 ± 1.03 Ω for Icc = 30 mA. The narrow LRS distribution at the high Icc is explained by
a well-defined conductive path with thick filament diameter formation [24,27]. The total
LRS resistance values of µ ± σ, according to the Icc, are represented in Table 2.



Int. J. Mol. Sci. 2021, 22, 773 5 of 13

Table 2. Total low-resistance state (LRS) resistances values of average (µ) ± standard deviations (σ), according to the Icc.

Set Compliance Current (Icc) 5 mA 10 mA 15 mA 20 mA 30 mA

Average (µ) 89.89 70.01 50.69 44.90 40.69

Standard deviations (σ) 3.16 2.19 2.01 0.92 1.03

µ ± σ 89.89 ± 3.16 70.01 ± 2.19 50.69 ± 2.01 44.90 ± 0.92 40.69 ± 1.03

Figure 3e,f shows the nonvolatile MLC retention performance over 104 s at room
temperature (25 ◦C) and a high temperature (85 ◦C), respectively. The retention tests for six
different multilevel resistance states, including the HRS, were performed under a nonde-
structive read voltage of 0.1 V. All resistance states exhibited stable nonvolatile memory
levels without a noticeable degradation in both the room and high-temperature conditions.

Figure 4a,b shows the voltage distribution of the set operation (Vset) and reset op-
eration (Vreset) according to the Icc and the ∆Vswitching, respectively. As the Icc increases
from 5 to 30 mA, the Vset and Vreset increase, resulting in a linear increase in ∆Vswitching.
This multilevel characteristic can be explained by the lateral growth of the CF in the SPE-
chitosan RS layer. The increase in the Icc of the chitosan memristor leads to a decrease in
the LRS resistance (RLRS) due to CF widening, which requires a higher Vset to form a larger
CF. On the other hand, the Vreset and Ireset increase with the increasing Icc, because higher
power is required to rupture a thicker filament [28–30]. Figure 4d provides a schematic
of the multilevel RS operating mechanism with variation of the set Icc value. The redox
reaction of the mobile ions originating from the Ti-TE in the polymeric SPE-chitosan can
lead to cation-based electrochemical switching. As the amine and hydroxyl groups of
chitosan are extremely reactive with metal ions, the ECM reaction strongly influences the
RS behavior [17,22,23,31]. When a positive bias is applied to the Ti-TE, the cation migration
and discharge lead to CF growth. As the Icc increases, the size of the CF path increases,
resulting in a higher value of Vset for the enhanced electrochemical reactions. Meanwhile,
in the reset process, higher values of the Vreset and Ireset are required as the Icc increases,
because the negative bias of the Ti-TE requires higher power to rupture the widened
CF [32,33]. Figure 4c depicts the dependence of the RLRS and Ireset on the set Icc. The Ireset
increases linearly with increasing the set Icc, and the relationship between the RLRS and Icc
was found to be RLRS α (Icc)−0.88 with a slope of −0.88 (R2 = 0.99). The multilevel resistance
data, well-fitted by the curve fitting, suggest the possibility of continuous analog resistance
switching in SPE-chitosan memristors [26,28,29,34].

In order to investigate the mechanism of the BRS operation in the SPE-chitosan
memristor, the I-V curves of the set operation and reset operation were plotted by double-
logarithmic plotting, as shown in Figure 5. In the 0→ 2 V region of the set operation, the
I-V curve is divided into two distinct sections: a linear relationship in the low voltage
regime (I ∝ V, blue line) and a quadratic relationship regime up to the set voltage (I ∝ V2,
red line). When a low voltage is applied to the Ti-TE, the number of injected carriers is less
than the thermally generated free charge carriers, because the electric field of SPE-chitosan
is insufficient, and the I-V relationship follows the Ohmic law [10,19]. When a higher
voltage is applied in the second regime, the injected carrier density exceeds the thermally
generated carriers, and the I-V curve follows the trap-controlled space-charge limited
conduction (SCLC) mechanism. The space charges arise from several sources: electrons
injection from the electrode, dopant ionization at the interfacial depletion regions, and
mobile ion accumulation at the electrode interfaces [31,35–37]. Thus, at higher voltages,
the trap centers are occupied by charge carriers, and the conduction mechanism of the HRS
shows an I ∝ V2 dependence consistent with SCLC. The insets in Figure 5 are the fitted
I-V curves in the high-voltage region, which correspond well to the I ∝ V2 relationship.
After the set operation, the linear I-V characteristic (I ∝ V, green line) in the 2 → 0 V
region indicates the formation of the filament conduction path, which is maintained until
the reset operation. In the negative bias region after the reset operation (−1.4 → 0 V),
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the transition between the SCLC-controlled mechanism and Ohmic conduction occurs
sequentially [31,38].
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Figure 5. Double-logarithmic plots of the BRS I-V curves of the SPE-chitosan memristor. The blue and red lines on the
HRS curve represent the linear and quadratic relations, respectively, and the green line on the LRS curve represents a
linear relation. The insets are the I-V curves of the HRS at high voltage, which are well-fitted by the space-charge limited
conduction (SCLC) mechanism.

In the biological neural system, neurons transmit information through synapses via
electrical or chemical stimuli, and in-memory computing is possible according to the synap-
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tic plasticity, which is the strength of the connection between neurons and plays the most
important role in the memory function of the brain. Figure 6a provides a schematic diagram
of a simplified biological synapse, and Figure 6b illustrates a typical learning/memory
model suggested by Atkinson and Shiffrin [39]. According to this model, most of the unat-
tended incoming information is quickly lost in the brain, but the information humans focus
on is temporarily stored as short-term memory (STM). Afterward, when the maintenance
rehearsal of stimuli is triggered, STM is transferred into long-term memory (LTM). This
basic principle of neurons for learning/memory is consistent with the RS phenomenon of
the memristor, and both are based on synaptic plasticity, which can be modulated by the
stimulus history [40,41].
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Figure 6. (a) Schematic diagram of a simplified biological synapse. (b) A typical learning and memory model describing
short-term memory (STM) and long-term memory (LTM) behaviors in the brain.

The paired-pulse facilitation (PPF) and paired-pulse depression (PPD) behaviors are
considered typical short-term synaptic plasticity characteristics crucial for both excitatory
and inhibitory responses between adjacent synaptic connections. As a function of the
interval time (∆t) between two consecutive presynaptic spikes, the second synaptic spike
after the first spike evokes a larger excitatory postsynaptic current (EPSC) for PPF or a
smaller inhibitory postsynaptic current (IPSC) for PPD. Figure 7a,b demonstrates the EPSC
and IPSC properties triggered by the paired presynaptic spikes of positive pulses (PPF; 1 V,
50 ms) and negative pulses (PPD; −1 V, 50 ms) with ∆t = 70 ms, respectively.

In the PPF response, the second PSC peak (A2)/first PSC peak (A1) is >1, whereas,
in the PPD response, the A2/A1 is <1. Figure 7c summarizes the indices of the PPF and
PPD responses as functions of the ∆t of the paired pulses in terms of A2/A1 (%). When the
∆t becomes sufficiently short (∆t = 60 ms), the response index exponentially increases to
~123% for PPF and significantly decreases to ~79% for PPD. On the other hand, when the ∆t
becomes sufficiently long (∆t > 2000 ms), both the PPF and PPD response indices gradually
decrease, saturating at about ~100% and mimicking the biological synaptic response [42,43].
In addition, the fitting curves were obtained using the following double-exponential decay
function. It can be seen that the measured PPF and PPD indices (closed circles) are well-
fitted by the double-exponential decay function (solid lines). The extracted relaxation
time constants τ1 and τ2 are 40.4 ms and 593.2 ms for the PPF response, and 60.3 ms and
986.6 ms for the PPD response, respectively. The time scales of these fitting results are
similar to those of typical biological synapses, which can be subdivided into rapid and slow
phases lasting tens and hundreds of milliseconds, respectively [44]. The total response
parameters in the PPF and PPD behaviors of SPE-chitosan memristor are represented in
Table 3.
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Table 3. Total response parameters in the paired-pulse facilitation (PPF) and paired-pulse depression
(PPD) behaviors of SPE-chitosan memristor. τ1 and τ2 are the relaxation time constants, and ∆t is the
time interval.

Index
(∆t = 60 ms)

Index
(∆t > 2000 ms) τ1 τ2

PPF ~123% ~100% 40.4 ms 593.2 ms

PPD ~79% ~100% 60.3 ms 986.6 ms

Meanwhile, the long-term plasticity of individual memristors facilitates the large-scale
processing of information. Moreover, the RS behavior of filamentary memristors has quite
analogous synaptic weight changes between adjacent synaptic connections. Therefore,
CF-based memristors are considered as a suitable candidate for biological neuromor-
phic systems [45–47]. To investigate the transition from analog filamentary switching in
the SPE-chitosan memristors, we evaluated the conductance modulation of the potentia-
tion/depression behavior through presynaptic pulses, as depicted in Figure 8. Figure 8a
exhibits a consecutive increase/decrease in conductivity with stimulation by 100 repeated
pulses (one cycle) in the SPE-chitosan memristor, and the insets show the pulse schemes for
potentiation, depression, and read behaviors. One cycle consists of 50 potentiation pulses
and 50 depression pulses, in which the pulse conditions used for potentiation/depression
were 1.2 V/10 ms and −1.6 V/10 ms, respectively. We performed 100 cycles of the con-
ductance modulation operation using a total of 104 pulses, as shown in Figure 8b. The
conductance modulation, in the dynamic range of ~2 mS, was well-modulated and almost
unchanged over the 100-cycles test. In addition, to clarify the difference in the DC I-V
curve before and after the cycling test, we compared the BRS characteristics and resistance
values of the initial, after 100-, after 200-, and after 300-cycle tests in Figure 8c,d. As a result,
it was verified that there was little change without remarkable degradation in the DC I-V
curve characteristics and resistance values of HRS and LRS after repeated pulse-induced
cycling tests in the SPE-chitosan memristor.
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Figure 8. Potentiation/depression behaviors of SPE-chitosan memristors obtained by repeated presynaptic pulses of 1.2 V
and −1.6 V with 10-ms widths, respectively. Conductance modulation in (a) one-cycle (insets show the potentiation,
depression, and read pulse schemes) and (b) 100-cycle tests with stimulation by 104 pulses. (c) BRS I-V characteristics and
(d) resistance values of the initial, after 100-, after 200-, and after 300-cycle tests.

3. Experimental
3.1. Materials

p-type Si wafer (resistivity range between 1–10 Ω·cm, LG SILTRON Inc., Gumi, Ko-
rea). Ti pellet (purity > 99.999%, TFN, Seoul, Korea). Pt pellet (purity > 99.95%, TFN, Korea).
Chitosan powder (derived from shrimp shell, medium molecular weight: 190–310 kDa,
deacetylation degree > 75%, Sigma Aldrich, Seoul, Korea). Acetic acid solution (purity > 99%,
Sigma Aldrich).

3.2. Chitosan Solution Preparation Procedure

The biomaterial chitosan electrolytic solution was prepared by the dissolution process
of chitosan powder and acetic acid mixture. The chitosan powder derived from a shrimp
shell of medium molecular weight (deacetylation degree > 75%, Sigma Aldrich) was
dissolved (2 wt%) in an acetic acid solution (purity > 99%, Sigma Aldrich) diluted (2 wt%)
with deionized water. Subsequently, the solution was mixed using a constant magnetic
stirring system at 800 rpm for 6 h at 50 ◦C. Finally, the resultant solution was filtered
through a 5-µm pore size polytetrafluoroethylene syringe filter (Whatman International
Ltd., Maidstone, UK) to remove impurities.

3.3. SPE-Chitosan Memristor Devices Fabrication

A 300-nm-thick thermally oxidized p-type Si wafer ((100) planes silicon wafer) was
cleaned by a standard Radio Corporation of America cleaning process. To form the bottom
electrode (BE), a 10-nm-thick Ti adhesive layer and 100-nm-thick Pt layer were sequentially
deposited on the substrate using an electron beam (E-beam) deposition system. The chitosan
electrolytic solution was spin-coated on the BE at 6000 rpm for 30 s. The coated film was
then dried under ambient conditions for 24 h and then baked at 80 ◦C for 10 min in a
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convection oven system to form a uniform SPE-chitosan layer with a thickness of 150 nm.
Finally, a 100-nm-thick Ti top electrode (TE) with a diameter of 200 µm was deposited
on the SPE-chitosan RS layer using an E-beam evaporation system and a shadow mask.
Figure 9a shows a schematic diagram of a fabricated two-terminal SPE-chitosan memristor
device with a Ti/SPE-chitosan/Pt structure, and Figure 9b,c provides optical microscope
images with magnifications of 150× and 300×, respectively.
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3.4. Characterization of SPE-Chitosan Memristor Devices

The memristive switching and electrical synaptic behaviors of the fabricated SPE-
chitosan memristor were analyzed using an Agilent 4156B Precision Semiconductor Pa-
rameter Analyzer (Hewlett-Packard Co., Palo Alto, CA, USA). The device was placed
on a two-point probe station system in a dark box to avoid light and electrical noise. To
investigate the synaptic operation, electrical pulses were applied with an Agilent 8110A
Pulse Generator (Hewlett-Packard Co., USA). In addition, the optical transmittance of the
SPE-chitosan layer was measured in the wavelength range of 190–1100 nm using an Agilent
8453 ultraviolet-visible spectrophotometer (Hewlett-Packard Co., USA). The optical micro-
scope image of the fabricated SPE-chitosan memristor was analyzed with magnifications
of 150 × and 300 × by using an SV−55 Microscope System (SOMETECH, Seoul, Korea).

3.5. Double-Exponential Decay Function

The PPF and PPD response indices were fitted by using the following double-exponential
decay function depicted:

F = C1exp(−∆t/τ1) + C2exp(−∆t/τ2) (1)

where C1 and C2 are the initial facilitation magnitudes, and τ1 and τ2 are the relaxation
time constants of the respective phases. The fitting procedures were carried out by using
the OriginPro 8.5 software program.

4. Conclusions

We evaluated the memristive switching characteristics of a biomaterial SPE-chitosan-
based memristor and demonstrated the possibility of artificial synaptic behavior with
analog switching. The solution-derived SPE-chitosan layer displayed uniform thickness
and high transparency in the visible light region. The SPE-chitosan memristor showed
stable BRS behavior through a cation-based electrochemical reaction between a polymeric
electrolyte and metal ions and exhibited excellent endurance in 5 × 102 DC cycles. In
addition, the nonvolatile MLC characteristics with five different LRS and one HRS were
achieved by adjusting the set Icc value. These multilevel states with uniform resistance
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distributions were stably maintained over a retention time of 104 s in both room and high-
temperature conditions. As the MLC properties are influenced by the lateral growth of CFs
in the SPE-chitosan layer, the ∆Vswitching and Ireset have linear dependences on the set Icc
value. Accordingly, the multilevel resistance suggests the feasibility of continuous analog
resistance switching in the SPE-chitosan memristors as an electronic synapse. Furthermore,
it was demonstrated that chitosan-based SPE artificial synapses ensure the emulation of
short- and long-term plasticity of biological synapses. In addition to the EPSC, IPSC, PPF,
and PPD, the conductivity modulation with stimulation by 104 repeated pulses (dynamic
range of ~2 mS) was also reliably evaluated. Therefore, this nontoxic, biodegradable bioma-
terial SPE-chitosan memristor with high transparency and low-cost solution processability
is expected to have potential applications in in-memory analog computing in artificial
intelligence processes by offering a versatile electronic platform.
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Abbreviations

BE Bottom electrode
BRS Bipolar resistive switching
CFs Conductive filaments
E-beam Electron beam
ECM Electrochemical metallization
EPSC Excitatory post-synaptic current
HRS High-resistance state
Icc Compliance current
IPSC Inhibitory post-synaptic current
LRS Low-resistance state
LTM Long-term memory
MLC Multi-level per cell
PPD Paired-pulse depression
PPF Paired-pulse facilitation
RS Resistive switching
SCLC Space-charge-limited conduction
SPE Solid polymer electrolyte
STM Short-term memory
TE Top electrode
Vreset Reset operating voltage
Vset Set operating voltage
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