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Abstract: Hypoxia has an important role in tumor progression via the up-regulation of growth
factors and cellular adaptation genes. These changes promote cell survival, proliferation, invasion,
metastasis, angiogenesis, and energy metabolism in favor of cancer development. Hypoxia also
plays a central role in determining the resistance of tumors to chemotherapy. Hypoxia of the tumor
microenvironment provides an opportunity to develop new therapeutic strategies that may selectively
induce apoptosis of the hypoxic cancer cells. Melatonin is well known for its role in the regulation
of circadian rhythms and seasonal reproduction. Numerous studies have also documented the
anti-cancer properties of melatonin, including anti-proliferation, anti-angiogenesis, and apoptosis
promotion. In this paper, we hypothesized that melatonin exerts anti-cancer effects by inhibiting
hypoxia-induced pathways. Considering this action, co-administration of melatonin in combination
with other therapeutic medications might increase the effectiveness of anti-cancer drugs. In this
review, we discussed the possible signaling pathways by which melatonin inhibits hypoxia-induced
cancer cell survival, invasion, migration, and metabolism, as well as tumor angiogenesis.

Keywords: melatonin; cancer; antioxidant; apoptosis; angiogenesis; metastasis

1. Introduction

Cancer is a major cause of morbidity and mortality worldwide [1]. Although genetic
mutations have a decisive role in cancer development, many cancers are a consequence of
environmental risk factors such as diet, smoking, pollutants, stress, inflammation, etc. [2].
Several features of cancer cells pave the way for tumor development, including persistent
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proliferation and insensitivity to growth suppressors, constant DNA replication, evasion of
both apoptosis and immune surveillance, impaired energy metabolism, sustained angio-
genesis, invasion, and metastasis [3].

Metastasis is the most common event that makes the treatment of cancer challenging.
During tumorigenesis, some cancer cells readily undergo metastasis; this process begins
with the dissociation of the cell’s tumor mass, and the invasion into the tumor microenvi-
ronment [3]. These invasive cells pass across the endothelial wall and enter into the blood
and/or lymphatic circulatory systems, a process known as intravasation. Some of these
circulating cells may escape the circulation (extravasation) and initiate growth at a distant
site to produce subsets of the original tumor. If this new colony continues the proliferation
it can form a secondary metastatic tumor [4]. In some cases, continued chemotherapy
leads to treatment resistance. Chemoresistance occurs often with recurrent cancers. The
recurrence of cancer is a result of surviving cancer stem cells; these cells play a central role
in tumor regrowth [5].

Neoangiogenesis is a notable feature of tumors in which new vessels sprout from
pre-existing blood vessel networks to provide vital nutrients and oxygen for cancer cell
growth and proliferation [3]. It has been shown that the disruption of pro-angiogenic and
anti-angiogenic regulators could lead to uncontrolled angiogenesis [5].

Hypoxia (oxygen tension less than 7 mmHg), which is sensed by hypoxia-inducible
factors (HIFs), induces overexpression of the growth factors and cellular adaptation genes
which subsequently promote angiogenesis, cancer cell survival, proliferation, and energy
metabolism [6]. The newly created vessels are immature and leaky, and therefore the
oxygenation and drug delivery are sometimes diminished in these vessels; accordingly,
hypoxic tumors are usually resistant to chemotherapy. The hypoxic state in the tumor
microenvironment may provide new therapeutic approaches to selectively destroy the
hypoxic cells. In this regard, two distinct approaches have been proposed, including
“bioreductive prodrugs” and “molecular target inhibitors” [7]. Moreover, targeting the
pro-angiogenic factors or their receptors is considered a valuable strategy for limiting the
growth and metastasis of tumors [8].

Melatonin (N-acetyl-5-methoxytryptamine), a multifunctional molecule, is produced
in and released from the pineal gland and likely synthesized in the mitochondria of all other
cells, where it is used locally and not released into the blood [9]. Many functions have been
reported for melatonin, including the regulation of circadian rhythms and annual cycles of
reproduction, antioxidant actions, and immune system regulation [10,11]. Additionally,
melatonin has multiple anti-cancer properties such as anti-proliferation, anti-angiogenesis,
immune system modulation, and apoptotic activities [12–15]. More interestingly, studies
have demonstrated that melatonin modulated hypoxia-induced tumorigenesis [16–18],
and co-administration of melatonin in combination with other therapeutic compounds
increased the effectiveness of those treatments [19–21]. This review aims to describe the
pathways involved in hypoxia-induced cancer development and more importantly explain
how melatonin can possibly inhibit hypoxia-mediated tumor progression. Moreover, the
current study provides possible mechanisms involved in the inhibition of hypoxia-induced
tumor progression by melatonin.

2. Hypoxia and Cancer (Tumor) Progression

Hypoxia occurs in many solid tumors and plays a role as a selective agent throughout
metastatic transformation and progression [22]. Although hypoxia negatively affects tumor
proliferation in some conditions, it mainly allows tumor cells to adapt to insufficient oxygen
and nutrients and consequently enhances the activity and aggressiveness of cancer cells.
Moreover, genomic changes occurring in the tumor cells under low oxygen conditions
can make it feasible for them to survive. In turn, the excessive proliferation of cancer cells
exaggerates the hypoxic state. As a result, a vicious circle of hypoxia and tumor progression
develops [23]. Hypoxia is also associated with genomic instability and induces malignant
phenotypes such as apoptosis resistance [24]. Furthermore, poor vascularity reduces tumor
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cell exposure to drugs during chemotherapy and oxidative damage during radiotherapy;
thus, it is common for tumors to develop resistance to chemotherapy and radiotherapy
under hypoxic conditions [23].

Hypoxia up-regulates growth factors and cellular adaptation genes by increasing the
levels of HIF proteins which have a significant impact on cancer progression [6]. Interest-
ingly, mutations that cause either oncogene activation or tumor suppressor inactivation
can increase HIF-1α expression in cancer cells [25]. Hypoxia positively induces survival,
invasion, migration, metabolism, and angiogenesis in cancer cells, as discussed below
(summarized in Figure 1).
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Figure 1. The mechanisms of hypoxia in cancer progression. Hypoxia enhances cancer cell survival
by inducing autophagy via hypoxia-inducible factor-1 alpha (HIF-1α) and nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB). Subsequently, it causes (1) the down-regulation of
caveolin-1 (Cav-1), leading to the up-regulation of TP53-inducible glycolysis and apoptosis regulator
(TIGAR) and protects cells against oxidative stress and apoptosis, and (2) protection of the cells
from apoptosis via BCL2 interacting protein 3 (BNIP3) and BCL2 interacting protein 3-like (BNIP3L).
Hypoxia can induce tumor angiogenesis by (1) increasing proangiogenic factors such as vascular
endothelial growth factor (VEGF), angiopoietin-2 (Ang-2), platelet-derived growth factor (PDGF), and
basic fibroblast growth factor (bFGF), (2) decreasing angiogenesis inhibitors such as thrombospondin,
(3) up-regulation of extracellular matrix (ECM) proteins, such as lysyl oxidase (LOX) and matrix
metalloproteinases (MMPs), and (4) activating Notch and Wnt signaling pathways. Hypoxia increases
cancer cell invasion and migration by the down-regulation of cell adhesion molecules and the
up-regulation of ECM degradation molecules such as MMP-9 and urokinase-type plasminogen
activator receptor (uPAR). Hypoxia affects the metabolic pathways to provide high energy for
cancer cells by (1) enhancing the transcription of glucose transporters genes (GLUT1 and GLUT3),
VEGF, and glycolytic enzymes (e.g., lactate dehydrogenase, LDHA), (2) inducing the expression of
glycogenesis enzymes including phosphoglucomutase-1 (PGM1), glycogen synthase-1 (GYS1), UDP-
glucose pyrophosphorylase 2 (UGP2) and 1,4-alpha-glucan branching enzyme 1 (GBE1), (3) reducing
glycogen phosphorylase (GP) activity, and (4) diverting pyruvate from the citric acid cycle into lactate
by pyruvate dehydrogenase kinases-1 and -3 (PDK-1 and -3).
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2.1. Hypoxia Induces Cancer Cell Survival

The oxygen state determines whether a cell will or will not undergo apoptosis [26].
Moreover, based on the duration of exposure to hypoxia, the response of cancer cells can
vary from death to survival. The cycling hypoxia-induced high production of reactive
oxygen species (ROS) is associated with tumor cell survival and progression [27]. How-
ever, there are sometimes atypical actions regarding the role of the hypoxia-induced HIF
pathway in cancer cell survival. For example, HIF-1 can either prevent cell death or induce
apoptosis [28]. It is also reported that HIF-1 regulates insulin-like growth factor 2 (IGF-2),
a crucial survival factor, in hypoxic tumor cells [29]. Hypoxia-related pathways including
PI3K/AKT/mTOR, ERK, and the NF-kB are also involved in cancer cell proliferation and
survival [30]. Hypoxia can lead to autophagy via HIF-1α and NF-κB. It is well-established
that autophagy is a pro-survival process that generates nutrients and biomolecules re-
quired by rapidly growing cells, and this also protects the cells from apoptosis via Bcl-2
subfamilies such as BNIP3 (Bcl-2/adenovirus E1B 19 kDa interacting protein 3) and BNIP3L
(Bcl-2/adenovirus E1B 19 kDa interacting protein 3-like) [31]. Hypoxia can also down-
regulate caveolin-1 (Cav-1), and studies have demonstrated that loss of Cav-1 up-regulates
TIGAR (TP53-induced glycolysis and apoptosis regulator) which protects cells against
oxidative stress and apoptosis [31]. In summary, it can be postulated that hypoxia, at
least in the short term, induces cancer cell survival by activating autophagy, suppressing
apoptosis, and inducing metabolic adaptation [32].

2.2. Hypoxia Induces Tumor Angiogenesis

One of the most significant effects of hypoxia is the induction of neoangiogenesis in
the tumor [33]. Angiogenesis is a critical step in cancer progression that provides nutrients
and oxygen [34]. For this purpose, the tumor forms a prerequisite vascular network not
only by recruiting the host vessels, but also by forming new microvessels. The newly
formed vasculature displays various irregularities in structure and function which result in
abnormal blood flow and inefficient oxygen delivery to the tumor cells, and consequently,
the development of the hypoxic status [23]. Additionally, the enlargement rate of the
tumor exceeds the growth of new blood vessels which also causes a relative hypoxic
area, especially near the center of the tumor [35]. In a growing tumor, oxygen demand
is increased but its availability decreased, which may help the hypoxia–angiogenesis
cycle. Hypoxia induces a cascade of proangiogenic factors, including VEGF, angiopoietin 2
(Ang-2), platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF),
while also reducing angiogenic inhibitors such as thrombospondin through HIF-1 [36].
There is some evidence that HIF-2α plays a role in the up-regulation of VEGF and its
receptor [37].

VEGF and Ang-2 are the most prominent regulators of angiogenesis which are induced
by hypoxia [38]. In this regard, Olaso et al. [39] have demonstrated that hepatic stellate cells
existing in hypoxic conditions release VEGF during the formation of micrometastases. The
development of macrometastases can be possible after the endothelial cells accumulate and
form a sustainable stable vasculature. Moreover, hypoxia up-regulates extracellular matrix
(ECM) proteins such as lysyl oxidase and matrix metalloproteinases (MMPs), which have
a role in angiogenesis [40]. The MMP-inducers such as ECM metalloproteinase inducer
(EMMPRIN/CD147) promote angiogenesis not only by acting as a protease, but also by
increasing levels of the soluble VEGF isoforms [41]. Furthermore, membrane-type 1 matrix
metalloproteinase (MT-MMP) is present in some cancer cells, and has a central role in the
release of Sema4D, a tumor-inducing angiogenesis factor under hypoxic conditions [42].
Additionally, hypoxia down-regulates the soluble receptor of VEGF (known as sFlt-1, a
VEGF antagonist), and thus increases VEGF activity [43,44]. Hypoxia-induced HIF-1α can
also up-regulate the Notch signaling pathway which, along with Wnt signaling, determines
the vascular density [45]. Finally, hypoxia promotes angiogenesis by stimulating proangio-
genic factor IL-8 via activation of NF-κB [46]. The above-mentioned findings clearly show
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the role of hypoxia in tumor angiogenesis. However, further studies are required to define
the underlying mechanisms and mediators that are involved in these processes.

2.3. Hypoxia Induces Invasion and Migration of Cancer Cells

The first step in metastasis is the invasion of cancer cells between endothelial cells that
allow them to enter the lymphatic or cardiovascular system for further spreading. Generally,
cancer cell invasion begins with the degradation of the extracellular matrix by MMPs and
the destruction of integrin adhesion [47]. The potential of cancer cells to alter extracellular
matrix remodeling and digestion of the basement membrane also contributes to tumor
progression and invasion [38,47]. Hypoxia leads to the detachment of tumor cells by down-
regulating cell adhesion molecules, and by up-regulating the molecules involved in the
degradation of integrin and cell attachment components such as MMP-9 and urokinase-
type plasminogen activator receptor (uPAR) [48,49]. Hypoxia, by stabilizing microtubules
and facilitating integrin localization in the cell membrane, also stimulates the cell motility
which is needed for invasion and migration [47]. Hypoxia-induced NF-κB also up-regulates
cyclooxygenase-2 (COX-2) and consequently the expression of some essential cell surface
and cytoskeletal proteins required for tumor invasion, including matrix metalloproteinase-
2 (MMP-2) and urokinase-type plasminogen activator (uPA) [23,50]. Moreover, the Rho
family member A (RhoA) which is required for the activation of MT1-MMP is increased
in the hypoxic microenvironment [47]. Furthermore, hypoxic macrophages can indirectly
stimulate the secretion of MMPs [51].

2.4. Hypoxia Regulates the Metabolism of Cancer Cells

The ATP source in normal cells is mitochondrial oxidative phosphorylation, whereas
in tumor cells it is cytosolic glycolysis in both normoxic (Warburg effect) or hypoxic (Pas-
teur effect) conditions [23]. The tumor cells change their glycolytic pathway to reduce
oxygen consumption by increasing the rate of glucose uptake and lactic acid fermenta-
tion [52]. It has been reported that there is a correlation between lactate production and the
metastatic spread of tumors [53,54]. This glycolytic processing is likely regulated by the
hypoxic inducible factor (HIF-1) to increase transcription of genes encoding glucose trans-
porters (GLUT1 and GLUT3), VEGF, and glycolytic enzymes (lactate dehydrogenase A,
LDHA) [55]. For example, LDHA, a target of HIF-1, catalyzes the conversion of pyruvate to
lactate which is crucial for tumor initiation, maintenance, and progression [56]. Moreover,
HIF-1 increases pyruvate dehydrogenase kinases (PDK) 1 and 3 which reduce mitochon-
drial uptake of pyruvate and divert it for conversion into lactate by LDH [57]. Hypoxia
can also increase glycogen synthesis as a survival strategy under harsh conditions; this
process is carried out by HIF-1 and HIF-2 via up-regulation of glycogenesis enzymes, in-
cluding phosphoglucomutase 1 (PGM1), glycogen synthase 1 (GYS1), glucose-1-phosphate
uridylyltransferase (UTP), and 1,4-α glucan branching (GBE1) [52]. These collective data
show that hypoxia induces several metabolic changes in favor of providing high energy for
cancer cells.

3. Melatonin as an Inhibitor of Hypoxia-Induced Pathways
3.1. Melatonin Definition and Physiological Roles

Melatonin (N-acetyl-5-methoxytryptamine) has attracted a great deal of attention in
various medical contexts. Although this molecule is produced and secreted by the pineal
gland, especially at night, all cells likely produce melatonin where it is used locally [58,59].
In vertebrate cells, melatonin synthesis happens in mitochondria, which contain much
higher concentrations of this molecule relative to other organelles. Importantly, these high
levels of melatonin are maintained even after pinealectomy [60]. Mitochondria as a source
of melatonin are also supported by the observation that isolated mitochondria from oocytes
could synthesize melatonin [61].

The roles of this molecule in the regulation of the sleep–wake cycle, circadian and cir-
cannual rhythms, seasonal adaptations, reproduction, and immune response have been well
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documented. Over the last four decades, numerous reports have confirmed that melatonin
acts as an endogenous oncostatic agent for many cancer types [59,62–64]. The anti-cancer
effects of melatonin are often mediated by both receptor-dependent and independent mech-
anisms [65,66]. The receptor-dependent mechanisms involve the G-protein receptor-related
family of melatonin receptors, MT1 (Mel1a) and MT2 (Mel1b), which inhibit the MAPK and
PI3K signaling pathways. The receptor-independent mechanisms are mediated via direct
inhibition of calmodulin and cAMP-related pathways by melatonin [67,68], and are related
to its ability to modulate oxidative homeostasis [69]. Melatonin acts as an anti-tumor
factor by interfering with different properties of cancer cells such as growth, proliferation,
metastasis, angiogenesis, immune evasion, and cellular metabolism [70]. Many of these
data have been elegantly summarized by Hill and colleagues [70].

3.2. Melatonin as a Proposed Therapeutic Factor for the Inhibition of Hypoxia-Induced
Tumor Progression

As discussed in previous sections, hypoxia is an important factor in tumor progression
that positively affects survival, angiogenesis, invasion, migration, and the metabolic status
of cancer cells (see Section 2. Hypoxia and cancer (tumor) progression). Hypoxia also
contributes to the radioresistance and chemoresistance of the tumor. Melatonin is a potent
anti-tumor agent that likely inhibits various hypoxia-induced signaling pathways in cancer
cells. Thus, we propose that a way by which melatonin inhibits cancer growth and
progression and also improves therapeutic efficacy is the inhibition of hypoxia-induced
survival, angiogenesis, migration, and invasion (Figure 2). The following section describes
how melatonin prevents hypoxia-induced properties of cancer cells.

3.2.1. Melatonin Inhibits the Hypoxia-Induced Survival of Cancer Cells

Accumulating evidence has confirmed that hypoxia down-regulates apoptotic ele-
ments, including caspase-3, -8 and -9, cytochrome complex (Cyt c), Fas/FasL, and Bax in
cancer cells and therefore supports these cell’s survival [14,71]. On the contrary, melatonin
inhibits the survival of cancer cells by up-regulating/activating apoptotic components.
Furthermore, melatonin down-regulates/inactivates Bcl-2 and Bcl-xL in hypoxic cancer
cells [72,73]. Melatonin also blocks the cell cycle and up-regulates p21/WAF1 and p53,
which subsequently inhibit the proliferation of hypoxic tumor cells [74]. Melatonin also
decreases the expression of cyclin A and cyclin D in hypoxic cells, thereby regulating the
cell cycle. Moreover, it has been shown that melatonin could reduce the proliferation of
hypoxic pancreatic stellate cells [14].

Different hypoxia-induced signaling pathways may be targets for melatonin to inhibit
cancer cell survival. For instance, hypoxia stimulates the adenylyl cyclase (AC)/cAMP/
protein kinase A (PKA) signaling pathway to provide suitable microenvironmental pH
for cancer cell survival [75]. In addition, hypoxia mediates overexpression of the carbonic
anhydrase IX (CA IX) gene in an HIF-1α-dependent manner which acts as a pH regulator
in the tumor [76]. Conversely, melatonin modulates cAMP-related pathways as well as
CA IX expression and activity, and thereby makes the condition less suitable for cancer
cells [77]. Moreover, it has been demonstrated that melatonin could increase and decrease
the phosphorylation of respectively p38 and JNK in pancreatic stellate cells in hypoxic
conditions, leading to a decrease proliferation of the cells [78]. Melatonin has been found
to induce apoptosis by sensitizing the hepatocellular carcinoma cells to sorafenib and
modulating autophagy through the PERK-ATF4-Beclin1 signaling pathway [79]. Another
study showed that melatonin inhibited the proliferation of gastric cancer cells via the
IRE/JNK/Beclin1 signaling pathway [80].
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Figure 2. The mechanisms through which melatonin inhibits hypoxia-induced tumor progression.
Melatonin inhibits the survival of hypoxic cancer cells by (1) up-regulating and activating the apop-
totic factors, (2) down-regulating and inactivating anti-apoptotic factors [B-cell lymphoma 2 (Bcl-2)
and B-cell lymphoma-extra large (Bcl-xL)], (3) blocking the cell cycle by up-regulating p21/WAF1
and p53, and (4) inhibiting carbonic anhydrase IX (CA IX) expression and activity and cAMP-related
pathways to make an unsuitable environmental pH. Melatonin inhibits hypoxia-induced angio-
genesis by (1) suppressing the activity of vascular endothelial growth factor (VEGF), angiopoietin-
2 (Ang-2), stromal-derived factor 1 (SDF-1), matrix metalloproteinase-2 and -9 (MMP-2 and -9),
angiopoietin-1 and -2 (ANGPT-1 and -2), (2) inhibiting the expression of lipoxygenase (LOX) via in-
teracting with RZR/RORα nuclear receptor, and (3) blocking the hypoxia-induced tumor-associated
macrophages (TAMs) and membrane-type 1 matrix metalloproteinase (MT1-MMP) activity and
subsequently reducing Semaphorin-4D (Sema4D). Melatonin inhibits the hypoxia-induced invasion
and migration of cancer cells by (1) decreasing levels of proteases including Cathepsin C (CTSC),
MMP-2, MMP-9, MT1-MMP, and urokinase-type plasminogen activator (uPA), (2) up-regulating
the adhesion proteins, such as integrin and E-cadherin, (3) suppressing oxidative-stress-induced
detachment of cancer cells via overexpression of the β1 integrin and down-regulation of ROS-αvβ3
integrin-FAK/Pyk2 (focal adhesion kinase/proline-rich tyrosine kinase 2) signaling pathway, and
(4) blocking hypoxia-induced microtubule organization and rearrangement via blocking the Rho-
kinase 1 (ROCK1) signaling pathway. Melatonin disturbs hypoxia-induced cancer cell metabolism by
(1) reducing reactive oxygen species (ROS) and down-regulating hypoxia-inducible factor-1 (HIF-1),
VEGF and glycolysis-related enzymes such as glucose transporter 1 (GLUT1) and progestins activate
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), and (2) competing with glucose
in binding to GLUT1, and 3) inhibition of 3-phosphoinositide-dependent protein kinase 1 (PDK-1)
signaling pathway.

Hypoxia-related factors (e.g., HIF-1) up-regulate different cell survival factors such as
transforming growth factor α (TGFα), endothelin 1 (EDN1), IGF-2, VEGF, and EPO [81],
whereas melatonin suppresses these factors. For example, melatonin at a physiologic
concentration (1 nM) down-regulates NF-κB, TGF, VEGF, and c-Myc and up-regulates p53
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and p21 in breast cancer cells [74]. Moreover, in a study by Leon et al. [82], inactivation
of NF-κB and PKC and down-regulation of EDN1 were observed in colon cancer cells fol-
lowing melatonin treatment. Moreover, the hypoxic condition triggerred various signaling
pathways such as PI3K/AKT/mTOR, ERK, and NF-κB which are involved in cancer cell
survival [30,83]. Melatonin at extremely high pharmacological doses (1 mM) reportedly
inhibited these signaling pathways, possibly due to its toxic effect at this concentration [84].

One of the survival strategies against chemotherapy in hypoxic cancer cells is HIF-
1-induced chemoresistance. The main player in this process is truncated VDAC1-∆C
(voltage-dependent anion channel 1) which acts as a channel to maintain ATP and inhibit
apoptosis [85]. Kristinina et al. [86] revealed that co-treatment of melatonin and retinoic
acid down-regulated VDAC1 and the activity of the electron transport chain complexes
in HL-60 cells; therefore, it can be postulated that melatonin also puts the survival of
chemoresistant cancer cells in danger.

3.2.2. Melatonin Inhibits the Hypoxia-Induced Angiogenesis of Tumors

The positive effect of HIF-1 on the expression of several proangiogenic factors such as
VEGF, stromal-derived factor 1 (SDF-1), Ang-2, PDGF, bFGF, and angiopoietin (ANGPT)
-1, -2, is well documented [36,81]. Melatonin exerts its anti-angiogenesis role mainly by
reducing the levels of HIF-1 [87]. The augmented level of ROS in hypoxic cells leads to the
inactivation of PHD and the stability of HIF-1α [73]. Melatonin suppresses the hypoxia-
induced production of ROS and so reduces the stability of HIF-1α [18]. Furthermore,
melatonin inhibits angiogenesis by suppressing the activity of VEGF, Ang-2, SDF-1, MMP-2,
MMP-9, ANGPT-1, and ANGPT-2 [88,89]. Moreover, the inhibitory effect of melatonin on
PDGF has been reported in liver fibrosis [90]; therefore, it can be assumed that melatonin
may also attenuate PDGF levels in hypoxic cancer cells.

Hypoxia increases ECM proteins such as LOX which is associated with angiogene-
sis [40,91], and, on the contrary, melatonin suppresses LOX expression via interacting with
the RZR/RORα nuclear receptor [92]. Moreover, melatonin suppresses the production of
Sema4D, an important angiogenic factor released by MT1-MMP and TAMs, by blocking
the hypoxia-induced TAM activity [93]. It can be concluded that melatonin, directly and
indirectly, inhibits hypoxia-induced angiogenesis in tumors by modulating HIF-1-induced
angiogenic factors and HIF-1 levels/activity.

3.2.3. Melatonin Inhibits the Hypoxia-Induced Invasion and Migration of Cancer Cells

Hypoxia helps cancer cells to invade and migrate to other parts of the body. In
fact, the hypoxic condition makes the invasion and migration of cancer cells possible
by both the down-regulation of cell adhesion molecules and the up-regulation of pro-
teases [48]. Hypoxia-induced HIF-1 mediates the up-regulation of ECM degradation
enzymes (e.g., CTSC, MMP-2, MMP-9, MT1-MMP, uPA [81]. On the other hand, melatonin
inhibits the migration and invasion of cancer cells by decreasing levels of several proteases
including CTSC, MMP-2, MMP-9, MT1-MMP, and uPA [94]. Furthermore, melatonin
has the potential to inhibit cancer cell migration via up-regulating the adhesion proteins,
such as integrin and E-cadherin [74]. Melatonin also suppresses oxidative-stress-induced
detachment of cancer cells via overexpressing the β1 integrin and down-regulation of
ROS-αvβ3 integrin-FAK/Pyk2 signaling pathway [95,96]. HIF-1α overexpresses RhoA and
Rho kinase 1 (ROCK1) leading to actin–myosin contraction and cell motility [17]. Moreover,
Rho triggers the focal adhesion kinase (FAK) signaling pathway and consequently induces
motility and an invasive phenotype of hypoxic cancer cells [97]. Interestingly, melatonin
blocks hypoxia-induced microtubule organization and rearranges the microtubules via the
ROCK1 signaling pathway [66,98]. Moreover, Doganlar et al. [99] showed that melatonin
could suppress the invasion of human glioblastoma tumor spheroids by the regulation of
angio-miRNAs and subsequently blocking the HIF1-α/VEGF/MMP9 signaling pathway.
The published evidence suggested the inhibitory effect of melatonin on hypoxia-induced
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cancer cell invasion and migration. Further studies are required to clarify the potential of
melatonin in inhibiting the invasion and its underlying mechanisms.

3.2.4. Other Effects of Melatonin on Hypoxia-Mediated Tumor Progression

Hypoxia changes the metabolic activity of cancer cells toward lower oxygen demand
and elevated glucose uptake and lactic acid fermentation [54]. HIF-1 plays a major role
in this scenario by up-regulating glycolytic enzymes (e.g., LDHA), GLUT1, GLUT3, and
VEGF [55]. Moreover, the expression of PDK-1 and PDK-3, regulators of aerobic glycolysis,
are increased by HIF-1 leading to proliferation and chemo-resistance of tumor cells. Con-
versely, melatonin as a regulator of redox homeostasis reduces ROS levels and consequently
down-regulates HIF-1 and glycolysis-related enzymes such as GLUT1 and PFKFB3 [83,100].
In this regard, it was shown that melatonin treatment limits the expression of GLUT1 in
breast cancer cells [101]. Sanchez et al. [102] also demonstrated that melatonin inhibited
the Warburg effect in Ewing sarcoma cells by decreasing the glucose uptake and LDH
activity. The inhibitory effect of melatonin on Warburg-type metabolism was also reported
by Reiter and co-workers [103]. Another mechanism by which melatonin may influence
glucose uptake into cancer cells is competition with glucose in binding to GLUT1 [104].

Hypoxia also stimulates levels of free intracellular Ca2+ and calmodulin (CaM) ac-
tivity as well as the Ca2+/CaM signaling pathway [105]. Melatonin probably exhibits
oncostatic actions by regulating Ca2+ signaling pathways via interacting with GPCR or
modulating voltage-gated Ca2+ channels and also binding to CaM, tubulin, and retinoic
acid receptors [67,106]. Moreover, melatonin regulates the Ca2+ signaling pathway via its
ROS-scavenging activity [107].

4. Conclusions

It is well documented that hypoxia is involved in tumor progression via various
mechanisms, including the induction of cancer cell invasion and migration, tumor angio-
genesis, and modification of cell metabolism. On the contrary, melatonin can act as an
anti-tumor agent partly through the inhibition of hypoxia-induced pathways. Herein, we
discussed the possible signaling pathways by which melatonin inhibits hypoxia-induced
cancer cell survival, invasion, migration, metabolism as well as tumor angiogenesis. The
accumulated data overwhelmingly supported the idea that melatonin is an anti-cancer
agent, independently or in combination with other chemotherapeutic agents. Considering
melatonin efficacy and safety, it should be considered as part of the therapeutic regimen to
treat certain types of cancer. Additional studies would further clarify the mechanisms by
which melatonin acts as an oncostatic agent including the details of the proposed outline
in this report. Plastic,
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Abbreviations

HIF hypoxia-inducible factor
GLUT glucose transporters
ROS reactive oxygen species
IGF insulin-like growth factor
Cav-1 caveolin-1
Ang-2 angiopoietin 2
PDGF platelet-derived growth factor
bFGF basic fibroblast growth factor
ECM extracellular matrix
MMPs matrix metalloproteinases
COX cyclooxygenase
LDHA lactate dehydrogenase A
PDK pyruvate dehydrogenase kinase
AC adenylyl cyclase
PKA protein kinase A
TGFα transforming growth factor α
EDN1 endothelin 1
ANGPT angiopoietin
ROCK1 Rho kinase 1
FAK focal adhesion kinase
CaM calmodulin
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