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Abstract: Protein dynamics has been investigated since almost half a century, as it is believed to
constitute the fundamental connection between structure and function. Elastic network models
(ENMs) have been widely used to predict protein dynamics, flexibility and the biological mechanism,
from which remarkable results have been found regarding the prediction of protein conformational
changes. Starting from the knowledge of the reference structure only, these conformational changes
have been usually predicted either by looking at the individual mode shapes of vibrations (i.e., by
considering the free vibrations of the ENM) or by applying static perturbations to the protein network
(i.e., by considering a linear response theory). In this paper, we put together the two previous
approaches and evaluate the complete protein response under the application of dynamic perturba-
tions. Harmonic forces with random directions are applied to the protein ENM, which are meant to
simulate the single frequency-dependent components of the collisions of the surrounding particles,
and the protein response is computed by solving the dynamic equations in the underdamped regime,
where mass, viscous damping and elastic stiffness contributions are explicitly taken into account.
The obtained motion is investigated both in the coordinate space and in the sub-space of principal
components (PCs). The results show that the application of perturbations in the low-frequency
range is able to drive the protein conformational change, leading to remarkably high values of
direction similarity. Eventually, this suggests that protein conformational change might be triggered
by external collisions and favored by the inherent low-frequency dynamics of the protein structure.

Keywords: protein dynamics; low-frequency vibrations; modal analysis; elastic network model;
harmonic perturbation; conformational change; principal component analysis

1. Introduction

Proteins affect virtually every biological process occurring in the human body [1].
Their correct functioning is pivotal for a variety of tasks, such as delivery of nutrients
throughout and across cells, recognition and neutralization of pathogenic bacteria and
viruses, providing of suitable strength and rigidity to tissues, activation of signaling
pathways and catalytic reactions, etc. [2]. All these activities are performed within the
physiological environment and in a highly dynamic fashion. This explains why so much
research has been carried out in the last decades regarding protein dynamics and its
relationship with the biological functionality. One of the main computational approaches
used to investigate protein dynamics is molecular dynamics (MD) [3,4]. MD is based on the
numerical integration of Newton’s laws of motion of the molecular system under scrutiny,
subjected to the forces arising from the gradients of the interatomic potentials [5]. Despite
the high potential of MD simulations, its applicability to large peptide chains and protein
complexes, especially for the investigation of the large-scale slow dynamics, remains quite
elusive and requires cautious analysis of the results.
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While trying to overcome the limitations of MD simulations and come up with more
simplified approaches which could be of value for a general understanding of protein
functionality, it was found that elastic models based on single-parameter Hookean poten-
tials are still able to describe the slow protein dynamics in good detail [6]. These models
treat the protein as a network of elastic springs, connecting the atoms whose positions in
the reference structure are assumed to be at the equilibrium, around which the thermal
fluctuations take place [7–9]. Despite the simplicity of this model, the predicted fluctua-
tions as well as the obtained vibrational frequencies were found in good agreement with
those obtained by considering more complex semi-empirical potentials [6]. This discovery
paved the way for the development of the coarse-grained elastic network models (ENMs),
such as the Gaussian network model (GNM) [10–16] and the anisotropic network model
(ANM) [17]. The GNM assumes that the protein structure undergoes isotropic fluctuations
around the equilibrium position, therefore it predicts the amplitude of these fluctuations
and hence it can be identified as a unidimensional model. Conversely, the ANM takes also
into consideration the directionality of the expected motion, the protein structure being
modelled as an actual three-dimensional network.

The ANM was extensively used for the investigation of protein dynamics for three
main reasons. Firstly, the computed fluctuations are found to exhibit a good agreement
with the B-factors obtained from crystallographic experiments, thus providing good es-
timates of the protein flexibility [17–23]. Secondly, the ANM low-frequency motions
are found to describe fairly accurately the directionality of the protein conformational
change [20,24–34]. These conformational changes usually occur when the protein switches
its three-dimensional shape while performing its biological activity (e.g., during ligand-
binding or phosphorylation phenomena) and, therefore, they are informative of the protein
biological mechanism [1]. Thirdly, this model allows to obtain useful insights on the low-
frequency dynamics with small computational burden, especially if compared with the
more time-consuming MD simulations.

From a structural mechanics viewpoint, we have recently shown that the ANM can
be seen as a spatial truss elastic model, where the atoms of the protein network can be
replaced by frictionless spherical hinges and the Hookean connections by linear elastic
bars [35,36]. In the traditional formulation of the ANM, the Hessian matrix of the network
is computed and diagonalized to obtain the eigenvalues and eigenvectors. The former are
associated with the vibrational frequencies, while the latter identify the mode shapes of
vibration [17]. However, since the mass of the protein is not explicitly taken into account
in the classical ANM, the eigenvalues are only qualitatively related to the vibrational
frequencies. In our previous works, we have also added the explicit mass information, thus
obtaining more quantitative information about the frequencies of vibration via a classical
free-vibration modal analysis [35,36]. In particular, in the case of lysozyme, we observed
that the lowest-frequency modes lie in the sub-THz frequency range, with frequency values
of the order of few tens of GHz, in agreement with previous studies [6,37–40].

Another powerful application of the ANM, which has been developed since the last
decade, is based on application of perturbations on the protein elastic network, both to
probe protein flexibility and conformational changes. Eyal and Bahar [41] developed a
methodology that made use of the ANM normal modes to assess the anisotropic mechani-
cal resistance of proteins under external pulling forces. This analysis was able to explain
the anisotropy of the mechanical resistance observed from single-molecule manipulation
techniques, such as atomic force microscopy (AFM). More recently, we made use of two
structural metrics, which are well-known in the field of structural mechanics (i.e., com-
pliance and stiffness), to study the flexibility of protein structures under pairwise force
application [42]. These metrics enabled to predict the distribution of protein flexibility
and rigidity throughout the protein chain and were verified against the experimental
B-factors. Referring to protein conformational changes, Ikeguchi et al. [43] observed that
protein transitions can be numerically simulated by evaluating the linear response of the
protein reference structure subjected to external forces applied at specific locations. Based
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on this finding, the Atilgan’s group developed the perturbation-response scanning (PRS)
technique, where directed forces are applied to the protein structure at single residues
and the protein response is calculated and compared with the conformational change
observed experimentally [44]. The method was shown to work well for the prediction of
a variety of protein conformational changes [45], as well as for the detection of allosteric
sites [46]. More recently, the PRS method was used by Liu et al. [47], coupled with an
energy-based Metropolis Monte Carlo (MMC) algorithm, in order to simulate the complete
closed-to-open transition of the GroEL subunit, induced by directional forces applied at
the ATP-binding site.

From what we have reported above, it is evident that, when starting from the knowl-
edge of the reference structure only, protein conformational changes have been analyzed
with the ANM by following two separate approaches: (1) Evaluating the normal modes
of vibration of the reference elastic model, with subsequent comparison between each
individual mode shape and the conformational change; (2) applying forces to the protein
reference structure and evaluating the response of the network in terms of displacements,
with subsequent comparison with the observed conformational change. Fundamentally,
approach (1) considers the free-vibration dynamics of the protein, whereas approach
(2) focuses on the static response of the protein structure under external forces. In this
work, we put the two approaches together, thus applying forces to the protein structure
in a dynamic fashion. In this way, we exploit the main ideas behind both approaches:
(1) Conformational changes might be favored by the intrinsic protein dynamics along its
low-frequency modes of vibration [24,29]; (2) conformational changes might be triggered
by external perturbations [43,45].

In particular, we apply external harmonic perturbations, randomly distributed in the
space-domain but with a well-defined frequency content in the time-domain, to the protein
ANM. The equations of motions are numerically solved, by considering mass, viscous
damping and elastic stiffness contributions, in order to assess the complete time-dependent
dynamic response of the protein. The time-history of nodal displacements is then evaluated
both in the coordinate space, as well as in the sub-space of principal components (PCs)
via the application of principal component analysis (PCA). The obtained time-dependent
displacements are then compared to the observed conformational change, in order to find in
which conditions these external perturbations are able to drive the conformational change.
Results are shown here for lysine-arginine-ornithine(LAO)-binding protein, considering
different perturbation patterns, damping coefficients and frequencies of excitation. The
results of the analysis reveal that, when the external perturbation is applied in the low-
frequency range, the protein structure undergoes a displacement field closely aligned with
the observed conformational change, with a remarkably high overlap score (up to 0.95).

2. Methodology

In this section we describe the fundamentals of the ANM, starting from the calculation
of the natural modes of vibration (Section 2.1), the evaluation of the protein response under
external perturbations applied in a static fashion (Section 2.2) and, finally, how the two
approaches can be put together in order to retrieve the complete protein response under
time-dependent external perturbations (Section 2.3).

2.1. ANM Fundamentals and Free-Vibration Analysis

The anisotropic network model (ANM) treats the protein structure as a network of
atoms connected by Hookean connections, which are meant to simulate the interatomic
interactions in a simplified manner. In its traditional coarse-grained representation, Cα

atoms are usually taken as the reference nodes for each amino acid [17]. The positions of
these nodes can be taken from the coordinates of the crystal structure, which is available
from the Protein Data Bank [48] and assumed to be the equilibrium state of the protein.
Each pair of nodes i and j lying at a distance ri,j lower than a certain cutoff threshold rc
are connected by a linear elastic spring, having a spring constant equal to γi,j. Commonly
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employed values of rc are around 12–15 Å [17]. For each connection among nodes i and
j, the Hessian (stiffness) matrix [Hi,j] can be computed based on the values of the spring
constant γi,j and coordinates of atoms i and j [17,35]:

[
Hi,j
]
= −

γi,j

ri,j
2


(
xj − xi

)2 (
xj − xi

)(
yj − yi

) (
xj − xi

)(
zj − zi

)(
xj − xi

)(
yj − yi

) (
yj − yi

)2 (
yj − yi

)(
zj − zi

)(
xj − xi

)(
zj − zi

) (
yj − yi

)(
zj − zi

) (
zj − zi

)2

. (1)

For a protein network made up of N nodes, the complete 3N × 3N Hessian matrix [H]
can be computed as a Boolean combination of the sub-matrices [Hi,j], i.e.,

[H] =



[H1,1] [H1,2] . . . [H1,i] . . . [H1,N ]
[H2,1] [H2,2] . . . [H2,i] . . . [H2,N ]

. . . . . . . . . . . . . . . . . .
[Hi,1] [Hi,2] . . . [Hi,i] . . . [Hi,N ]

. . . . . . . . . . . . . . . . . .
[HN,1] [HN,2] . . . [HN,i] . . . [HN,N ]

, (2)

where:

[Hi,i] = −
N

∑
j=1,j 6=i

[
Hi,j
]
. (3)

At this point, the ANM looks for the eigenvalues and eigenvectors of [H]. The former
are qualitatively associated with the fundamental frequencies of vibration, while the latter
reflect the natural mode shapes of the protein network [17]. Notice that, since the protein
is not externally constrained, the first six mode shapes are associated with rigid-body
motions (translations + rotations) of the entire molecule at zero-frequency. Thus, the
mode shapes accounting for the internal deformability of the protein are related to the
subsequent 3N − 6 eigenvectors. These vibrational modes have been extensively used to
analyze and predict protein conformational changes, and good agreement has often been
found, especially for the most collective conformational transitions [24,27–30].

In order to have more quantitative information about the frequencies of vibration, the
mass of the structure needs to be included into the calculations [35,36,49–51]. This can be
easily done by considering the 3N × 3N mass matrix [M] of the network:

[M] =



[M1,1] [0] . . . [0] . . . [0]
[0] [M2,2] . . . [0] . . . [0]
. . . . . . . . . . . . . . . . . .
[0] [0] . . . [Mi,i] . . . [0]
. . . . . . . . . . . . . . . . . .
[0] [0] . . . [0] . . . [MN,N ]

, (4)

where [Mi,i] = mi[I], mi being the mass of node i (e.g., equal to the actual mass of the
ith amino acid for a Cα-only coarse-grained model), and [I] represents a 3 × 3 unitary
matrix. The Hessian and mass matrices reported above can then be diagonalized together,
following the well-known approach of modal analysis to retrieve the fundamental modes
of vibration. This yields the fundamental eigenvalue-eigenvector equation [52]:

([H]−ωn
2[M]){δn} = {0}, (5)

where ωn is the angular frequency of vibration associated with mode n, and {δn} the 3N × 1
vector containing the mass-weighted displacements associated to the nth mode shape.
Notice that ωn is related to the vibrational frequency fn by fn = ωn/2π. As in the traditional
ANM, the mode shapes evaluated from Equation (5) can be used to characterize the low-
frequency dynamics of the protein [35,36] and investigate its conformational changes.
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In order to obtain fully quantitative information about the natural vibrational fre-
quencies fn, we do not only need to include mass into the model but also to fix properly
the values of the spring constants γi,j. Multiple choices can be made in this regard: the
traditional ANM sets γi,j as a constant value for all connections, i.e., γi,j = γ [17], while
other ANM-based approaches make these values dependent on the distance between the
nodes, i.e., γi,j ∝ ri,j

−p (p = 1 in [35,36], 2 in [20], in the range 0–2.8 in [18]). In this work,
we use the traditional ANM convention (i.e., all springs have a unique spring constant
equal to γ). This value can be quantified by comparing the computed fluctuations arising
from the normal modes to the experimental ones, which are known as the B-factors [17,35].
B-factors constitute a fingerprint of protein flexibility and can be experimentally retrieved
from crystallographic experiments. These experimental values can be compared to the ones
obtained from the normal mode calculations, based on the following expression [35,53]:

Bi =
8
3

π2kBT
3N

∑
n=7

δn,i
2

ωn2 , (6)

where Bi represents the B-factor calculated for node i of the network, kB is the Boltzmann’s
constant (1.38 × 10−23 J/K), T is the absolute temperature, δn,i is the mass-weighted
displacement of node i associated with mode n, and ωn is the angular frequency of mode
n. By posing that the mean value of the calculated B-factors matches the mean value of
the experimental B-factors, one is able to obtain the value of the spring constant γ, finally
being able to obtain quantitative information about the vibrational frequencies [35,36].

2.2. Time-Independent Response under External Perturbations

As mentioned in the Introduction, the ANM has also been used to predict protein
flexibility and conformational changes upon the application of external perturbations to
the protein network [41,42,44,45,47]. This is usually done in a static fashion, meaning that
dynamic effects are neglected. In this case, the protein response is obtained by solving the
following matrix equation:

{F} = [H]{u}, (7)

where [H] is the ANM Hessian matrix evaluated from Equation (2), {F} is a 3N × 1 vector
of external forces and {u} is the 3N × 1 vector of nodal displacements accounting for the
protein response. The choice of the force vector {F} depends on the specific application.
For example, in [42] pairwise pulling forces are applied for each couple of residues i and j,
whereas in the PRS technique a point force is usually applied at a single node [44,45] or in
a localized region [46,47] with a random direction. In any case, the protein response {u} is
computed by inverting Equation (7) as follows:

{u} = [H−1]{F}, (8)

where [H−1] is the pseudo-inverse Hessian matrix, which can be computed from the
3N – 6 eigenvalues λn and eigenvectors {δn} of the Hessian matrix, as follows:

[H−1] =
3N

∑
n=7

1
λn
{δn}{δn}T. (9)

The protein response {u} computed through Equations (7)–(9) has been often compared
to the observed conformational change, and good agreement has been found in certain
cases [44,45,47].

2.3. Time-Dependent Response under External Harmonic Perturbations

The method developed in the present work can be seen as the generalization of the
techniques reported in the previous subsections, in the sense that we consider the dynamics
of the system while applying external perturbations (i.e., we apply forces to the protein



Int. J. Mol. Sci. 2021, 22, 10501 6 of 21

ANM in a dynamic fashion). In this case, we can write the full equilibrium equations as
follows [52]:

[M]
d2

dt2 {u(t)}+ [C]
d
dt
{u(t)}+ [H]{u(t)} = {F(t)}, (10)

where [M], [C] and [H] are the 3N × 3N mass, damping and Hessian matrix of the sys-
tem, respectively; {u(t)} is 3N × 1 displacement vector representing the time-dependent
protein response; and {F(t)} is the 3N × 1 vector of external time-dependent perturba-
tions. Notice that when no forces act on the system and damping effects are neglected
(i.e., {F(t)} = {0} and [C] = [0]), the problem reduces to the free-vibration analysis reported
in Section 2.1. Conversely, if inertia and damping forces are neglected and the external
perturbations are time-independent (i.e., [M] = [0], [C] = [0] and {F(t)} = {F}), the prob-
lem reduces to the calculation of the protein response under external static perturbation
described in Section 2.2. If all the terms are taken into account (i.e., [M] 6= [0], [C] 6= [0]
and d{F(t)}/dt 6= {0}), Equation (10) allows to obtain the complete time-dependent protein
response under external dynamic perturbations.

In this work, we apply an external pattern of forces which is random in the space-
domain, but it has a harmonic content in the time-domain. Therefore, the time-dependent
force vector can be written as {F(t)} = {F}sin(ωFt), where {F} is a 3N × 1 vector of force
components randomly extracted from the uniform distribution U~(−1,1)× 10−10 N, and ωF
is the angular frequency associated to the harmonic excitation, with frequency fF = ωF/2π.
The protein response {u(t)} can be decoupled in the space- and time-domain through
the well-known relation {u(t)} = [∆]{p(t)}, where [∆] is the 3N × 3N matrix containing
the eigenvectors {δn} obtained via modal analysis from Equation (5), and {p(t)} is the
3N × 1 vector of principal coordinates associated with each normal mode {δn}. In this way,
Equation (10) can be rewritten as [52]:

[M][∆]
d2

dt2 {p(t)}+ [C][∆]
d
dt
{p(t)}+ [H][∆]{p(t)} = {F} sin(ωFt). (11)

Pre-multiplying both sides of Equation (11) by [∆]T, we observe that [∆]T[M][∆] = [I]
and [∆]T[H][∆] = [Ω], where [I] is the 3N × 3N identity matrix and [Ω] is the 3N × 3N
diagonal matrix containing the 3N natural angular frequencies ωn

2. At this point, by
assuming that the matrix product involving the damping matrix, [∆]T[C][∆], yields a
diagonal matrix itself, the 3N-degree-of-freedom problem reported in Equation (11) can be
fully decoupled into a set of 3N single-degree-of-freedom equations, as follows [52]:

d2

dt2 pn(t) + 2ξnωn
d
dt

pn(t) + ωn
2 pn(t) = {δn}T{F} sin(ωFt), n = 1, . . . , 3N, (12)

where ξn is the dimensionless damping coefficient associated with the nth mode of vibration
{δn}. Since we are only interested in the internal deformation of the protein, we can focus on
the 3N – 6 set of equations related to the non-rigid motions, i.e., n = 7, . . . , 3N. Considering
underdamped conditions, i.e., ξn < 1, the general solution of Equation (12) is:

pn(t) = e−ξnωnt[An cos(ωd,nt) + Bn sin(ωd,nt)] + Cn sin(ωFt + φn), (13)

where the first term in the right-hand side represents the solution of the general integral,
which is associated with the decaying damped response, while the latter represents the
solution of the particular integral, which is related to the steady-state response due to
the external harmonic excitation at frequency ωF [52], and ωd,n is the reduced frequency
of mode n, i.e., ωd,n

2 = ωn
2(1–ξn

2). The amplitude Cn and phase φn of the steady-state
response can be written as [52]:

Cn =
{δn}T{F}

ωn2
√
(1− βn2)

2 + (2ξnβn)
2

, φn = −arctan
(

2ξnβn

1− βn2

)
, (14)
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where βn is the ratio between the frequency of applied excitation ωF and the one of the nth
normal mode ωn (i.e., βn = ωF/ωn). The integration constants An and Bn depend on the
initial conditions of the system. Assuming an initial resting condition (i.e., p (t = 0) = 0 and
dp/dt (t = 0) = 0), one obtains:

An = −Cn sin φn, Bn =
ξnωn An − Cnωn cos φn

ωd,n
. (15)

The numerical computation of Equations (13)–(15) allows to obtain the complete
temporal evolution of the vector of principal coordinates {p(t)} and, therefore, the vector of
time-dependent displacements of the protein nodes {u(t)} = [∆]{p(t)}.

2.4. Model Parameters, Comparison between the Protein Response and the Observed
Conformational Change and Principal Component Analysis (PCA)

Besides the mass, damping and stiffness features of the protein network, the time-
dependent response {u(t)} depends on the applied force vector {F} and frequency of excita-
tion ωF. As mentioned above, the force vector has been chosen as a random vector, whose
components are picked up from a uniform distribution in the range (−1, 1) × 10−10 N.
The simulation has been run for 100 different random force patterns, in order to assess
the influence of the specific force pattern on the protein response. As for the value of the
frequency fF, 500 different values have been used in the range 0.001–0.5 THz, in order to
investigate the influence of the excitation frequency on the response of the elastic network.
The mass values have been set based on the actual amino acid atomic weights. The elastic
network has been built from the protein crystal coordinates obtained from the PDB, and
by adopting a cutoff value rc of 15 Å. All springs have been set the same stiffness value γ,
which has been defined based on the quantitative comparison between the experimental
and numerical B-factors, as explained in Section 2.1. Finally, since the damping charac-
teristics of the system are not easy to understand, as a preliminary testing condition we
worked in the underdamped limit, by carrying out the analysis with three different values
of the dimensionless damping coefficients ξn, i.e., ξn = 0.001, 0.01 and 0.1. This value
has also been kept equal for all modes. Discussions about the effect of damping and the
reasonableness of these choices are addressed below. In conclusion, for a certain protein
structure, 150,000 different simulations have been run, by considering 100 random force
patterns, 500 different excitation frequencies and 3 different damping coefficients.

After the evaluation of the induced time-dependent displacement field {u(t)}, this was
compared with the experimentally-observed conformational change. The conformational
change can be characterized by a 3N × 1 vector of nodal displacements {CC}, which
is evaluated from the two crystal protein conformations available on the PDB (usually
referred to as the “open” and “closed” form of the protein) after superposition [24]. The
comparison can be quantitatively assessed by calculating the overlap between the two
vectors {u(t)} and {CC}, which is defined as [24]:

O(t) =
|{u(t)}T{CC}|√

{u(t)}T{u(t)}·
√
{CC}T{CC}

. (16)

The overlap defined in Equation (16) provides a numerical estimate of the alignment
between the calculated displacements {u(t)} and the conformational change {CC}. If the
two vectors are perfectly aligned, the overlap reaches the maximum value of 1, whereas
it provides a value of 0 if the two vectors are orthogonal. In the previous literature, the
overlap has been extensively used to assess the directionality correlation between the
conformational change and the individual normal modes of vibrations [24,28,29]. In that
case, since each normal mode of vibration has a fixed direction over time, the overlap is
time-independent. Conversely, in this case, we are comparing the observed conformational
change to the time-dependent response of the protein network {u(t)}, thus the overlap
changes over time as the displacement field evolves in the time-domain. From the analysis
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of the obtained overlap values, we can infer whether the induced time-dependent protein
response is in agreement with the experimentally-observed conformational change.

Principal component analysis (PCA) is also used here to investigate the generated
ensemble of protein conformations. PCA is a numerical technique widely adopted for
dimensionality reduction [54], and it has also been used to evaluate the apparent motions of
proteins from a set of experimental crystal structures [33,55]. The input of PCA is a matrix
of coordinates [X], with dimension s × 3N, s being the number of available structures and
N the number of protein residues. In our case, s is equal to the number of generated protein
conformations upon harmonic perturbations. From [X], the covariance matrix [Σ] can be
calculated as [33]:

Σi,j =< (ri− < ri > )
(
rj− < rj >

)
> , (17)

where ri and rj represent the X-, Y- and Z-coordinates associated with conformation i and
j, respectively, and < > stands for the average over all the conformations. The covariance
matrix [Σ] is then decomposed as:

[Σ] = [P][Λ][P]T, (18)

where [Λ] is the 3N × 3N diagonal matrix of eigenvalues and [P] is the 3N × 3N matrix
of eigenvectors. Each column of [P] represents a principal component (PC), ordered for
descending order of its total variance, which is directly proportional to the corresponding
eigenvalue included in [Λ]. PCA is applied here to reduce the problem dimensionality and
study the protein trajectory in the PC sub-space.

3. Results and Discussion

In this section, the results are reported for the case of LAO-binding protein, a widely
studied protein, known to exhibit two different conformations (i.e., an open form (PDB code:
2lao) and a closed form upon ligand-binding (PDB code: 1lst)) [24]. In the Supplementary
Material, the results for other three proteins are reported (i.e., maltodextrin-binding protein
(PDB codes: 1omp, 1anf), lactoferrin (PDB codes: 1lfh, 1lfg) and triglyceride lipase (PDB
codes: 3tgl, 4tgl)). The coordinates of the open form are used to build the elastic network
model, with a cutoff of 15 Å (Figure 1a). Free-vibration modal analysis is run first, in order
to obtain the theoretical B-factors from Equation (6) and the value of the spring constant
γ, which is found to be equal to 0.10 N/m (~0.15 kcal/molÅ2). As a result, the frequency
spectrum of the 3N – 6 (N = 238) non-rigid modes related to the coarse-grained elastic
network is found to lie in the range 0.05–0.8 THz (Figure 1b), the lowest frequency being
equal to 50.9 GHz.

Figure 1c shows the displacement field involved in the open-to-closed conformational
change (continuous line). By carrying out the traditional overlap comparison between
the displacement field {CC} and each individual normal mode {δn}, it is found that the
first non-rigid normal mode (i.e., {δ7}) is the one exhibiting the highest overlap value
(0.76), as shown in Figure 1c,d. The second low-frequency mode {δ8} agrees with the
conformational change with an overlap of 0.55, while all the higher-frequency modes have
lower overlap scores (Figure 1d). From these results, it is clear that the low-frequency
modes are strictly related to the observed conformational change, as already reported in
the previous literature [24,29].
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a total RMSD of about 2.3 Å. This leads to a dynamic amplification value, evaluated as the 
ratio between the dynamic RMSD and static RMSD, of about 8.4. Such dynamic 
amplification factors might also explain why protein vibrations and responses under 
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Figure 1. LAO-binding protein normal modes: (a) Elastic network model of the open conformation
(PDB code: 2lao), obtained with rc = 15 Å; (b) distribution of vibrational frequencies obtained from
free-vibration modal analysis; (c) normalized values of the displacements of the open-to-closed
conformational change (continuous line) and displacements associated with the first non-rigid
normal mode (dashed line); (d) overlap values obtained from the comparison of the open-to-closed
conformational change to each normal mode of vibration (maximum overlap 0.76).

The results reported above are based on the traditional analysis aimed at evaluating
the similarity between the individual mode shapes of the protein structure and its confor-
mational change [24]. What happens if we look at the complete time-dependent protein
response upon harmonic random perturbations, as described in Section 2.3? Figure 2
shows the time-dependent response of LAO-binding protein, subjected to the random
force pattern reported in Figure 2a, with an exciting frequency of 0.05 THz and a damping
coefficient ξ of 0.01. The response is reported in Figure 2b in terms of the global root-mean-
squared-deviation (RMSD). The RMSD is a measure of the average displacements of the
atoms from the initial position. It can be simply computed as:

RMSD(t) =

√√√√ 1
N

N

∑
i=1

ui(t)
2, (19)

where ui(t) is the absolute displacement of the ith node at instant t. As can be noticed
from Figure 2b, the response of the protein network exhibits a transitory response at the
beginning, and then enters a steady-state oscillation approximately from 400 ps onwards.
Note that, with the frequency of the external oscillation of 0.05 THz, its period is equal to
20 ps. Moreover, since this frequency value is very close to the natural frequency of the first
mode (f7 = 0.051 THz), high amplifications in the response occur, leading to RMSD values
of about 20 Å (Figure 2b). On the other hand, if we applied the same force pattern in a
static way (i.e., by following the approach reported in Section 2.2), we would obtain a total
RMSD of about 2.3 Å. This leads to a dynamic amplification value, evaluated as the ratio
between the dynamic RMSD and static RMSD, of about 8.4. Such dynamic amplification
factors might also explain why protein vibrations and responses under external forces,
which are supposed to be theoretically valid only in the small-amplitude regime, might
actually trigger large-scale conformational changes.
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{CC} and the time-dependent displacement vector {u(t)} at each instant t (maximum overlap 0.94). 

Figure 2c shows the time-dependent overlap, obtained by comparing the calculated 
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space-domain (Figure 2a), its dynamic application is able to drive the protein structure 
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suggests that the direction of the protein motion {u(t)} from the open towards the closed 
conformation is not linear—see Equation (16). As a matter of fact, if this motion were 
linear, we would find a roughly constant value of the overlap throughout the entire 
simulation. The fact that this does not happen suggests that, while jiggling around its 
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in a continuous fashion and involve curvilinear pathways, as suggested here from our 
overlap calculations and already reported by previous authors [28,56–60]. 

The complete trajectory of LAO-binding protein upon the force pattern shown in 
Figure 2a is represented in the Supplementary Movie S1, which is available in the 
Supplementary Material. In the movie the blue structure refers to the protein 
conformation generated at each instant t starting from the open form. Conversely, the red 
structure refers to the known closed form of the protein and it is kept fixed in all frames 
to help the visualization of the conformational change. As can be seen, after the motion 
enters in the steady-state regime, the perturbed protein structure keeps oscillating 
between open and closed conformations. Note that several times the known closed 
conformation (in red) is reached with high accuracy during the motion. The instants at 
which this occurs are the ones where high levels of overlap values have been obtained 
and reported in Figure 2c. As an example, Figure 3a shows the snapshot of the dynamic 
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Figure 2. Dynamic force application on LAO-binding protein: (a) Elastic network model of the open
conformation, with applied external forces with random directions (shown as blue arrows). Exciting
frequency of the external perturbation equal to 0.05 THz and damping coefficient ξ equal to 0.01;
(b) evolution of RMSD in the time-domain; (c) overlap values between the conformational change
{CC} and the time-dependent displacement vector {u(t)} at each instant t (maximum overlap 0.94).

Figure 2c shows the time-dependent overlap, obtained by comparing the calculated
displacement field {u(t)} with the conformational change {CC}, as described in Section 2.4.
The results are astonishing, since values as high as 0.94 are frequently met. This un-
equivocally suggests that, even if the applied force pattern is completely random in the
space-domain (Figure 2a), its dynamic application is able to drive the protein structure
towards the known closed conformation, with remarkably high levels of agreement.

Additionally, it is interesting to observe how the overlap score is not maintained to
these high values constantly, but it keeps oscillating between low and high values. This
suggests that the direction of the protein motion {u(t)} from the open towards the closed
conformation is not linear—see Equation (16). As a matter of fact, if this motion were linear,
we would find a roughly constant value of the overlap throughout the entire simulation.
The fact that this does not happen suggests that, while jiggling around its equilibrium
position, the protein is sampling a variety of different conformations, among which lies the
known closed form. These dynamic jumps between conformations happen in a continuous
fashion and involve curvilinear pathways, as suggested here from our overlap calculations
and already reported by previous authors [28,56–60].

The complete trajectory of LAO-binding protein upon the force pattern shown in
Figure 2a is represented in the Supplementary Movie S1, which is available in the Sup-
plementary Materials. In the movie the blue structure refers to the protein conformation
generated at each instant t starting from the open form. Conversely, the red structure
refers to the known closed form of the protein and it is kept fixed in all frames to help the
visualization of the conformational change. As can be seen, after the motion enters in the
steady-state regime, the perturbed protein structure keeps oscillating between open and
closed conformations. Note that several times the known closed conformation (in red) is
reached with high accuracy during the motion. The instants at which this occurs are the
ones where high levels of overlap values have been obtained and reported in Figure 2c.
As an example, Figure 3a shows the snapshot of the dynamic displacements evaluated at
t = 513.5 ps, compared with the displacements of the known open-to-closed conformational
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change. The overlap value and correlation coefficient between the two displacement fields
are 0.935 and 0.904, respectively, showing high level of agreement. Higher than that found
by following only the first normal mode of vibration (compare Figure 3a with Figure 1c).
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it comes back (Figure 4a). Conversely, non-linear motions imply cosine values different 
from unity, which are also supposed to change during the simulation (Figure 4a). The 
more frequent the change, the stronger the non-linearity of the motion. Figure 4b shows 
the values of the normalized cosine for all 238 residues of LAO-binding protein for the 
entire simulation. As can be seen, the cosine values assume all possible values in the range 
between −1 (dark blue) and +1 (bright yellow), suggesting that the motion is non-linear. 
Moreover, this variation appears to be cyclical, confirming what already observed visually 
from the Supplementary Movie S1, namely that the motion presents a strong harmonic 
nature. Figure 4c reports an enlargement of Figure 4b for residues 17–27 (the highly 
flexible flap of LAO-binding protein in the first domain) in the time range between 480 
and 540 ps. This figure shows more clearly that each residue experiences a wide range of 
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Figure 3. Trajectory of LAO-binding protein upon harmonic perturbations to the open form, with
fF = 0.05 THz, ξ = 0.01 and force pattern depicted in Figure 2a: (a) Comparison between the displace-
ments of the experimental conformational change (blue line) and dynamic displacements evaluated
at t = 513.5 ps (orange line); (b) PC score plot of all conformations. The blue points represent the
ensemble of generated conformations, whereas the black and red point represent the open (pdb: 2lao)
and closed (pdb: 1lst) conformation, respectively. The green arrows are associated with the trajectory
in the steady-state regime. A scale factor of 0.35 has been applied to the force pattern in order to have
comparable values of absolute displacements. See Supplementary Movies S1 and S2 for more details
about the protein trajectory in the coordinate and PC space, respectively.

In order to describe more quantitatively the ensemble of generated conformations,
PCA has been applied to the set of structures obtained during the trajectory according
to Equations (17) and (18). Figure 3b reports the PC score plot of all conformations in
the PC1-PC2 sub-space. Note that PC1 and PC2 account for 93.2% and 6.7% of the total
variance, thus they account for 99.9% of the total variance. The black point refers to the
open form (pdb: 2lao), the red point to the closed form (pdb: 1lst), while all the points
associated with the generated conformations are in blue. A dynamical representation of
Figure 3b can be observed in the Supplementary Movie S2, where the time-dependent
evolution of the conformations in the PC1-PC2 plot is reported. From the movie and
Figure 3b we see that, after a transitory, the steady-state trajectory implies a harmonic
motion of the protein around the open form, mostly along the first PC (green arrows in
Figure 3b). The information contained in Supplementary Movies S1 and S2 also suggests
that the direction of PC1 involves mostly an opening-closing mechanism of the protein.
During this harmonic oscillation, the closed conformation (red point in the PC score plot)
is closely approached several times throughout the motion.

It is also interesting to observe that, even though we are applying forces at a frequency
very close to the first natural mode (fF = 0.05 THz and f7 = 0.051 THz), the time-dependent
displacement field contains the information about the complete dynamics of the system,
and not only that of the first natural mode. This can be immediately understood if one
looks at the overlap values. By considering the trajectory which would be induced by the
first natural mode alone, we would get a 0.74 overlap with the conformational change for
the entire trajectory (Figure 1d). On the other hand, applying forces dynamically excites all
modes and eventually leads to a much higher agreement with the conformational change,
with Omax = 0.94 (Figures 2c and 3a).

Here, it is also important to notice that the methodology developed in this work does
not require any a priori knowledge of the target conformation. The closed conformation is
only used to assess whether the conformations generated by perturbing dynamically the
reference structure overlap properly with the target. Other methods have been developed in
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the existing literature based on the ANM, in order to find intermediate conformations given
the two end structures [47,56,57,59,61,62]. Conversely, the methodology presented here
relies only on the knowledge of the reference structure and aims at evaluating its dynamic
response upon external harmonic perturbations. As a result, the generated conformations
do not depend on the target form, but only on the intrinsic dynamics of the reference
structure and how it responses to external perturbations. Nevertheless, the conformations
generated by following this approach are able to reach the other form of the protein known
experimentally with high levels of agreement (see Figure 3a).

We have briefly mentioned above that the oscillating trend of the overlap values
is a fingerprint of the non-linearity of the protein motion. This can also be assessed
by a geometrical evaluation, as reported in Figure 4a. For each residue i, the coordinate
difference between two subsequent conformations at time t and t + ∆t provides the direction
of the instantaneous motion at each time frame {∆ui(t)} [59]. By calculating the normalized
cosine between vector {∆ui(t)} and the direction of motion at time t = 0 ps, i.e., {∆ui(0)}, as:

cos[θi(t)] =
{∆ui(t)}T{∆ui(0)}√

{∆ui(t)}T{∆ui(t)}·
√
{∆ui(0)}T{∆ui(0)}

, (20)

we can geometrically evaluate the non-linearity of the trajectory. If the motion were
completely linear throughout the entire simulation, the cosine would only assume values
+1 and −1, the former when the protein moves in the positive direction and the latter when
it comes back (Figure 4a). Conversely, non-linear motions imply cosine values different
from unity, which are also supposed to change during the simulation (Figure 4a). The
more frequent the change, the stronger the non-linearity of the motion. Figure 4b shows
the values of the normalized cosine for all 238 residues of LAO-binding protein for the
entire simulation. As can be seen, the cosine values assume all possible values in the range
between −1 (dark blue) and +1 (bright yellow), suggesting that the motion is non-linear.
Moreover, this variation appears to be cyclical, confirming what already observed visually
from the Supplementary Movie S1, namely that the motion presents a strong harmonic
nature. Figure 4c reports an enlargement of Figure 4b for residues 17–27 (the highly flexible
flap of LAO-binding protein in the first domain) in the time range between 480 and 540 ps.
This figure shows more clearly that each residue experiences a wide range of cosine values
between −1 and +1, thus the motion is non-linear.

In the analysis reported above, the protein was perturbed with a specific random
force pattern (Figure 2), pulsing at a selected frequency (fF = 0.05 THz) and with a defined
damping coefficient (ξ = 0.01). What happens if these three variables are modified? Figure 5
shows the obtained RMSD dynamic amplification, computed as the ratio between the max-
imum dynamic RMSD and the RMSD obtained under the application of the perturbation
in a static fashion, for the whole investigated frequency range (0.001–0.5 THz) and for the
three selected damping coefficients ξ (0.001, 0.01 and 0.1). The different colored curves
are associated with each of the 100 different random force patterns applied to the protein
structure.
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THz) and for the three selected damping coefficients ξ (0.001, 0.01 and 0.1). The different 
colored curves are associated with each of the 100 different random force patterns applied 
to the protein structure. 

Clear peaks are recognizable in the low-frequency range, around 0.05–0.15 THz, 
where the low-frequency protein modes are found to occur (Figure 1b). The intensity of 
the peaks is highly dependent on the adopted value of the damping coefficient. Very low 
values of ξ, such as 0.001 and 0.01, lead to amplifications of the order of 20–30. Conversely, 

Figure 4. Evaluation of the motion non-linearity: (a) Sketch of the vectors for the numerical evaluation
of motion non-linearity; (b) values of the normalized cosine reported in Equation (20) for the
238 residues of LAO-binding protein for the entire simulation; (c) enlarged portion of Figure 4b for
the segment 17–27 and in the time frame between 480 and 540 ps. The value of the normalized cosines
is reported in color scale, from dark blue (cosine equal to −1) to bright yellow (cosine equal to +1).
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Clear peaks are recognizable in the low-frequency range, around 0.05–0.15 THz, where
the low-frequency protein modes are found to occur (Figure 1b). The intensity of the
peaks is highly dependent on the adopted value of the damping coefficient. Very low
values of ξ, such as 0.001 and 0.01, lead to amplifications of the order of 20–30. Conversely,
amplification coefficients lower than 5 are found for higher damping coefficients. It is also
evident that the most intense peaks are associated with the first low-frequency modes,
in the region 0.05–0.06 THz. Other pronounced peaks are also found for higher modes,
especially in the region between 0.08 and 0.15 THz. In the higher region of the spectrum, the
dynamic amplification gets lower, eventually leading to de-amplified responses (i.e., with
an RMSD amplification factor lower than 1), especially in the presence of higher damping
coefficients (ξ = 0.1). Moreover, it can be seen that the specific force pattern has an influence
on the overall system amplification. Nevertheless, highly amplified responses are always
found in the low-frequency range (Figure 5). As briefly mentioned above, this dynamic
amplification might be one underlying reason which enables the protein to achieve the
large-scale conformational changes when it gets triggered in the low-frequency range,
despite the theory behind all these calculations being strictly valid in the small-amplitude
regime.

Figure 6 shows the maximum overlap values obtained during ten cycles of dynamic
perturbation by comparing the calculated displacement field {u(t)} with the observed
conformational change {CC}, as a function of the exciting frequency, damping coefficient
and specific force pattern. As can be seen, remarkably high values up to 0.95 are found
in the low-frequency range, especially between 0.02 and 0.08 THz. It is interesting to
observe how in this low-frequency range the maximum overlap score is always very high,
despite the specific force pattern. The upper panel of Figure 7 shows the maximum overlap
scores obtained for each of the 100 different force patterns, for each selected damping
coefficient, while the lower panel reports the exciting frequency in correspondence of
which the best overlap is met. As can be seen, despite the specific random force pattern,
very high values of the overlap are always obtained (up to 0.95) with applied frequencies
in the range 0.02–0.08 THz, which corresponds to the low-frequency end of the spectrum
(Figure 1b). From Figure 6, it can also be seen that if the protein is excited at higher
frequencies, say with frequencies higher than 0.1 THz, the obtained overlap scores become
lower, suggesting that the closed conformation cannot be sampled by applying harmonic
excitations in this frequency range. Additionally, it can be noticed that the overlaps are
higher when the damping coefficients are relatively low (ξ = 0.001 and 0.01).
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Figure 6. Maximum obtained overlap score for the LAO-binding protein response with respect to the
observed conformational change, as a function of damping (ξ = 0.001, 0.01, 0.1) and different random
force patterns. Each colored curve represents one of the 100 different random force patterns.
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Figure 7. Maximum overlap score and corresponding applied frequency fF for the LAO-binding
protein conformational change, as a function of damping (ξ = 0.001, 0.01, 0.1) and specific random
force pattern. The maximum overlap values, shown in the upper panels, are defined as the maximum
values obtained over all the applied frequencies in the range 0.001–0.5 THz, and the corresponding
optimal frequencies are reported in the lower panels depending on each of the 100 random force
patterns.

Putting together the results obtained above, we can conclude that, by exciting the
open structure with external dynamic perturbations in the low-frequency range, we can
sample the closed conformation with remarkably high values of directionality correlations.
In case of low damping coefficients (ξ = 0.001 and 0.01), one also obtains high dynamic
amplification factors in that frequency range, therefore potentially allowing to reach the
closed conformation even with a small amount of force involved. Finally, it also seems that
the specific force pattern, which is completely random in the space-domain (Figure 2a), has
not a huge influence on the results, almost always leading to high overlap scores, as long
as the forces are applied with an exciting frequency in the lower part of the mode spectrum
(Figure 7).

The analysis reported above focused on LAO-binding protein. However, the same
analysis was carried out with other proteins (i.e., maltodextrin-binding protein, lactoferrin
and triglyceride lipase; see Supplementary Material). For the maltodextrin-binding protein
(PDB code of the open form: 1omp, PDB code of the closed form: 1anf, N = 370), one
obtains a maximum overlap of 0.81 when comparing the second normal mode with the
open-to-closed conformational change (Figure S1). However, overlap values as high as
0.95 can be found again when applying dynamic perturbations in the low-frequency range
(Figures S3 and S4). As in the case of the LAO-binding protein, the overlaps are higher
for lower damping coefficients (ξ = 0.001 and 0.01), which also lead to higher dynamic
amplifications (Figure S2). In the case of lactoferrin (PDB code of the open form: 1lfh,
PDB code of the closed form: 1lfg, N = 691), a maximum overlap of 0.46 is obtained
between the third ANM mode and the conformational change (Figure S5). However, if
the structure is perturbed dynamically in the low-frequency range, overlap values up
to 0.88 can be obtained (Figures S7 and S8). From the comparison between lactoferrin
and the two previous proteins, we understand that, when the individual modes have a
higher agreement with the conformational change, the full dynamic response can sample
the closed conformation better. Nevertheless, even when individual modes have lower
similarities (Omax = 0.46 for lactoferrin), the perturbation-based dynamic response allows to
achieve a better agreement with the closed conformation (Omax = 0.88). Finally, in the case
of triglyceride lipase (PDB code of the open form: 3tgl, PDB code of the open form: 4tgl,
N = 265), one obtains a really low value of the overlap when comparing individual ANM
modes to the conformational change (Omax = 0.27 for the fourteenth mode, Figure S9). As
a result, the maximum overlap found by applying dynamic perturbation to the protein
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ANM is only 0.44 (Figures S11 and S12), showing that, in this case, the closed conformation
cannot be sampled with high accuracy by the proposed method. This shows that the
method proposed here always leads to higher overlaps than those obtained through the
classic individual mode comparison. However, the method works better when the low-
frequency modes have already a relevant similarity with the conformational change. As
Tama and Sanejouand showed in their seminal work [24], this is a direct consequence of
the degree of collectivity of the conformational change. Collective transitions are usually
better captured by the low-frequency modes, whereas localized conformational changes
usually are not. For the four proteins investigated here, the collectivity degree of their
conformational transitions are 0.68 (LAO-binding protein), 0.67 (maltodextrin-binding
protein), 0.48 (lactoferrin) and 0.07 (triglyceride lipase). As a result, the LAO-binding
protein and the maltodextrin-binding protein reach very high values of the overlap from
the full dynamic response (0.95), lactoferrin reaches a high value (0.88), while triglyceride
lipase reaches a quite low value (0.44). This leads us to conclude that, with the proposed
methodology, starting from the open conformation of the protein and without any a priori
knowledge of the closed form, we are able to capture the closed conformations accurately
as long as the conformational transition is quite collective in nature.

In all previous examples, we have investigated the conformational change from the
open to the closed conformation. Figures S13 and S14 show the results of the analysis for
LAO-binding protein, this time considering the closed conformation (pdb: 1lst) as reference
and the open conformation (pdb: 2lao) as target. In agreement with what said above for the
open-to-closed conformational transitions, the time-dependent force application generally
allows to reach higher overlap values than those obtained by comparison with individual
modes. As a matter of fact, when only looking at individual modes, the third ANM mode
is the one showing the highest overlap, with Omax = 0.56 (Figure S13). Conversely, apply-
ing dynamic forces can enhance this maximum overlap, reaching values of Omax = 0.75
(Figure S14). Again, this suggests that the target conformation can generally be captured
better by considering the full dynamic response of the protein, rather than looking at the
trajectory generated with individual modes. However, despite the improvement, this value
is lower than the one obtained when looking at the open-to-closed conformational change
(compare Figure S14 with Figure 6). This suggests that, as already noticed by Tama and
Sanejouand [24] and subsequent researchers, the closed-to-open transition is generally
more difficult to generate than the open-to-closed one when working with ENMs.

From the lower panels of Figures 7 ,S4, S8 and S12, one can also observe that there
is not a unique value of the exciting frequency leading to the maximum overlap score.
In fact, there exists a range of low-frequency values, where each specific force pattern is
able to sample the target conformation with the highest directionality correlation. This
suggests that, although we are often in the range of the first fundamental frequency (i.e., the
frequency associated to the first non-rigid mode shape), the optimal excitation frequency
might be slightly different than the fundamental frequency, mostly due to the not negligible
involvement of higher-order modes in the definition of the complete protein dynamic
response. Moreover, the exact values of these frequencies must be treated carefully, as they
are strongly dependent on the model parameters, such as the cutoff and the definition of
spring network [35,36]. The absolute values of these frequencies strongly depend on the
value of the adopted spring constant γ, which in turn is defined upon comparison between
the numerical and experimental B-factors (Section 2.1). In doing such direct comparison,
we are implicitly assuming that the experimental B-factors are dominated by the protein
fluctuations, i.e., they only depend on the internal protein dynamics. Unfortunately, this
is not always the case, since studies have shown that B-factors might also include other
contributions coming from rigid motions, crystal disorder, refinement effects, etc. [63–66].
Therefore, for all the above mentioned reasons, when using ENMs for the understating of
protein motions and their corresponding frequencies of vibration, we can only have some
insights on the expected frequency range, and not on the individual frequency values.
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Additional considerations need to be done regarding the damping coefficients adopted
in the present analysis. In this work, values of ξ = 0.001, 0.01 and 0.1 have been used,
meaning that the problem is treated in the underdamped regime (ξ < 1). Moreover, the
value of ξ has been kept constant for all the vibrational modes (i.e., ξn = ξ). However, one
should be careful about such choices. As a matter of fact, in the framework of NMA and
ENMs, the dynamic response of proteins is studied with no damping at all (i.e., ξ = 0).
Conversely, few studies using Langevin network models (LNMs) have shown that the
dynamics of macromolecules and proteins might be strongly overdamped (i.e., ξ >> 1),
at least for the lowest-frequency modes [67,68]. We might also reasonably expect that the
damping characteristics change for the different modes of vibration, the lowest-frequency
ones being the more damped, the highest-frequency ones the less damped [68]. By using the
LNM, Miller et al. [68] showed that at normal water viscosities most of the protein modes
should be overdamped. Nevertheless, recent studies based on optical Kerr-effect (OKE)
spectroscopy revealed the existence of underdamped global protein vibrations in the THz
frequency range [69]. Therefore, it is evident that there is still little consensus nowadays
about the damping nature of these functional protein vibrations. Previous numerical results
showing that undamped vibrational modes correlate well with protein conformational
changes [24,28,29], as well as the outcomes of our calculations based on the underdamped
assumption, seem to suggest that these functional conformational transitions can indeed
be retrieved by working in the underdamped limit. Yet, extensive research efforts still need
to be carried out in the future to address this open issue.

Remarks need to be given also regarding the physical meaning associated with the
adopted perturbation scheme (i.e., harmonic excitations with a random direction in the
space-domain but with a well-defined frequency content in the time-domain). In the pre-
vious literature, different force application patterns have been applied in a static fashion
to probe protein flexibility [41,42] and protein conformational changes [44,45,47]. The
approach proposed here (i.e., applying random forces to the protein ANM in a dynamic
fashion) is supposed to simulate the external perturbations to the protein structure mainly
due to Brownian motions of the surrounding particles [70]. These collisions can be numeri-
cally simulated as random forces both in the space- and time-domain [68]. However, we
know that every time-dependent variable can be decomposed according to their frequency
component (e.g., via the Fourier transform (FT) or other signal transformation techniques).
In this way, a random excitation in the time-domain can always be represented as a sum
of harmonic excitations at specific frequencies, weighted by their FT amplitude. Based on
these considerations, the application of harmonic forces with random directions can be
seen as the attempt to investigate the response of the protein structure under the different
frequency-based components of the complex time-dependent excitations due to the particle
collisions. From the results of the present analysis, we obtained that the low-frequency
components of these excitations are able to drive the protein conformational change. Con-
versely, high-frequency components are not particularly relevant for the conformational
transition (see Figure 6).

4. Conclusions

In this paper, the ANM was used for the first time in order to investigate the complete
dynamic response of protein structures under external dynamic perturbations. In particular,
by considering the mass, viscous damping and elastic stiffness features of the protein ENM,
the equations of motions were numerically solved in order to retrieve the protein response
under the effect of harmonic forces applied to the protein structure. From the results, it
was observed that the application of dynamic forces to the open protein conformation
in the low-frequency range is able to drive the protein towards the closed form with a
high directionality alignment (overlap of 0.95). Such correlation is even higher than that
usually obtained when comparing individual modes to the conformational change. This is
mostly due to the fact that, when the external perturbations are applied harmonically at



Int. J. Mol. Sci. 2021, 22, 10501 18 of 21

selected frequencies, the full dynamics of the system depends on the combination of the
most involved modes, and not only on a single mode.

By analyzing the time-dependent overlap values, it was possible to recognize how
the closed form of the protein is not reached through a straight line pathway, since the
overlap score usually oscillates between low and high values. This suggests that the protein
samples the target conformation among a variety of other conformations, and it does so
by following curvilinear pathways, as already suggested in the existing literature [58–60].
This was also been confirmed by geometrical calculations shown in this paper, where we
looked at the evolution of displacement vectors throughout the motion. The trajectory of
the protein upon harmonic perturbation was also shown and PCA was used to reduce
the problem dimensionality and investigate the ensemble of generated conformations in
the sub-space of the PCs. Furthermore, taking into account the dynamic response of the
protein network under these external forces, high dynamic amplification values are often
found, especially when the perturbation is applied in the low-frequency range and for low
values of the damping ratio (resonance effect). These high dynamic amplifications might
explain why a combination of the normal modes of vibration, which theoretically are only
valid in the small-amplitude regime, allows the target form of the protein to be reached
even in the case of large-scale conformational transitions. Moreover, the dynamic nature
(frequency) of the excitation seems to be the central parameter driving the conformational
transition, the specific force pattern having a smaller influence on the capability of the
protein to sample its target conformation.

The well-known case of the LAO-binding protein was addressed in the main text
of this paper. The results related to the maltodextrin-binding protein, lactoferrin and
triglyceride lipase were briefly discussed and are available in the Supplementary Material.
From all the cases, we observed that external harmonic excitations in the low-frequency
range always lead to higher overlaps with the observed conformational change, rather than
those obtained by comparing individual modes. These overlap values are generally higher
the more collective the conformational transition is. Moreover, as expected, we observed
that the open-to-closed conformational change is easier to be captured than the closed-to-
open one. Future research efforts will be dedicated to investigating the effect of the ENM
parameters, such as the cutoff, spring constant distribution, the damping ratio, as well as
the nature of protein conformational change on the obtained outcomes. Notwithstanding,
the preliminary results shown here seem to suggest that the low-frequency components
of the random external perturbations to the protein structure, due to the surrounding
environment, might play a key role in driving the biologically-relevant conformational
transition.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms221910501/s1, Figures S1–S4: results from the harmonic perturbation on maltodextrin-
binding protein and comparison with the open-to-closed conformational change,
Figures S5–S8: results from the harmonic perturbation on lactoferrin and comparison with the open-to-
closed conformational change, Figures S9–S12: results from the harmonic perturbation on triglyceride
lipase and comparison with the open-to-closed conformational change, Figures S13, S14: results
from the harmonic perturbation on LAO-binding protein and comparison with the closed-to-open
conformational change. Supplementary Movie S1: trajectory of LAO-binding in the space-domain
upon harmonic perturbations, Supplementary Movie S2: trajectory of LAO-binding protein in the
sub-space of PCS upon harmonic perturbations.
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