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Abstract: The highly challenging hexaploid wheat (Triticum aestivum) genome is becoming ever more
accessible due to the continued development of multiple reference genomes, a factor which aids in
the plight to better understand variation in important traits. Although the process of variant calling
is relatively straightforward, selection of the best combination of the computational tools for read
alignment and variant calling stages of the analysis and efficient filtering of the false variant calls
are not always easy tasks. Previous studies have analyzed the impact of methods on the quality
metrics in diploid organisms. Given that variant identification in wheat largely relies on accurate
mining of exome data, there is a critical need to better understand how different methods affect the
analysis of whole exome sequencing (WES) data in polyploid species. This study aims to address
this by performing whole exome sequencing of 48 wheat cultivars and assessing the performance of
various variant calling pipelines at their suggested settings. The results show that all the pipelines
require filtering to eliminate false-positive calls. The high consensus among the reference SNPs called
by the best-performing pipelines suggests that filtering provides accurate and reproducible results.
This study also provides detailed comparisons for high sensitivity and precision at individual and
population levels for the raw and filtered SNP calls.
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1. Introduction

Advances in next-generation sequencing technologies have paved the way for im-
proved genomic studies, providing enormous amounts of high-quality data in a fast and
affordable manner [1]. Whole exome sequencing (WES) is one such advance, which focuses
on capturing only exonic regions of the genome [2], and since its development, has been
widely used to identify and understand structural variations of many disease-causing
mutations [3,4]. Many molecular markers have been developed to highlight variation
linked to characterized eco-, agronomically important traits, showcasing the importance of
innovating technology for gene variant capture [5]. A benefit to this technology is that it
only captures ~1–2% of the whole genome depending on species [6], focusing solely on re-
gions that code for protein sequences, further increasing cost-effectiveness [7,8]. As a result
of its economic viability and availability of high-quality data, WES is rapidly becoming a
standard approach for detecting gene variants, where the major challenge of accurate and
reproducible variant detection has shifted toward improving computational pipelines.

The process of variant discovery is composed of two major steps: Read mapping and
variant calling, in which the aligner maps the reads to a reference genome and the caller
determines the variant position and assigns a genotype [9]. Over the years, several new
bioinformatic pipelines and computational tools have become available, enabling better
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analysis and interpretation of WES data. The most widely used aligners include Burrows–
Wheeler transform (BWT)-based aligners such as BWA [10,11], Bowtie2 [12], and Hisat2 [13]
as well as hash table based aligners such as GSNAP [14] and Novoalign. The most widely
used variant callers include SAMtools/BCFtools [15] and VarScan2 [16]. However, different
combinations of aligners and variant callers have demonstrated conflicting results for the
superiority of one tool over another [17].

The performance of different aligners and variant callers have previously been as-
sessed [18–20] to better characterize their potential in different organisms including hu-
mans, where exome sequencing plays a large role in clinical settings [2]. Comparative
analysis of the variant calling pipelines in plants is limited to diploid species including
tomato and Arabidopsis thaliana [21,22]. However, this is yet to be assessed in polyploid
species. Even though similar WES computational pipelines have been used in both human
and plant genomics to date, structural differences in the polyploid genomes impose new
challenges on this. Aside from being highly repetitive, polyploid plant genomes possess
nearly identical subgenomes and hence are more complex to analyze. Allohexaploid
Triticum aestivum (wheat) is among the most important crops worldwide. Wheat has a large
and complex genome [8] where its complexity partially arises from its highly repetitive
homeologous chromosomes [23]. The hexaploid wheat is composed of three subgenomes
with a high degree of collinearity and sequence conservation for the expressed genes [24].
Considering the conservation of the expressed gene sequences among the homeologous
loci, reads mapping to multiple loci would be expected for exome sequencing data. As
such, the performance of variant callers in detecting true variants in combination with the
aligners remains to be evaluated in polyploid species.

With the recent release and availability of reference genomes [8], the wheat genome
has become more accessible for the characterization of structural elements with possible
regulatory functions. Although genomic resources have recently become richer [1,25,26],
there is still no consensus regarding the optimal tool combinations for read alignment or
variant calling. Given the current reference genome annotations and the availability of
several advanced bioinformatic tools, the question has now become a matter of choice:
Which tools to use? Providing an answer is not an easy task, especially when considering
new users. As with every analysis, there is a need to ensure that results are both reliable
and reproducible. This highlights a need to evaluate the bioinformatic pipelines for WES
variant calling in wheat. Hence, this study aims to meet these needs by assessing the
overall performance of various computational methods in a whole exome sequencing
(WES) analysis pipeline using wheat exome data.

2. Results
2.1. Datasets and Pipelines Evaluated

The performances of 24 variant calling pipelines were evaluated using whole exome
sequencing (WES) data for the wheat HAPMAP data [25], WhealBI dataset [26], where
1000 wheat exomes including both landraces and elite cultivars were sequenced [1] and
48 elite wheat cultivars. The schematic of general variant calling pipeline is shown in
Figure 1. The number of read pairs ranged between 55.1 M and 77.5 M, totaling 3.05 B,
whereas the number of unique read pairs ranged between 26 M and 35.9 M, totaling 1.51 B.
All t48 WES datasets were aligned to the IWGSC wheat reference genome v1.0 separately
using a range of aligners outlined below.
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aligners included Hisat2, GSNAP, STAR, and Novoalign. For variant calling, the three 
tools included were FreeBayes, VarScan, and BCFtools. Using different combinations of 
the eight aligners and three variant callers (Figure 1), a total of 24 pipelines was assessed. 
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Computational Cost  

The eight read aligners were compared at their suggested settings by their basic map-
ping statistics such as mapping percentages, coverage, and computation time. Overall, all 
aligners provided high mapping percentages with an average of >89% paired-end map-
ping and with a standard deviation up to 0.93 (Figure 2). Among all the aligners, STAR 
exhibited the highest percentage of paired-end alignments (100%) to the reference genome 
in all 48 samples. For Bowtie2-local and BWA-mem, >99% of the read pairs mapped to the 
reference genome for all 48 samples. The lowest alignment percentage (86.9%) was ob-
served in one sample alignment using Novoalign. 

Figure 1. Schematic of the variant calling pipeline used.

The aligners include both an old and new version of BWA; bwa aln and bwa mem,
which from this point on will be referred to as BWA-backtrack and BWA-mem, respectively.
Both functions of Bowtie2, Bowtie2 and Bowtie2-local were also included. Other aligners
included Hisat2, GSNAP, STAR, and Novoalign. For variant calling, the three tools included
were FreeBayes, VarScan, and BCFtools. Using different combinations of the eight aligners
and three variant callers (Figure 1), a total of 24 pipelines was assessed.

2.2. Aligners Provided High Percentage of Paired-End Alignments with Varying
Computational Cost

The eight read aligners were compared at their suggested settings by their basic
mapping statistics such as mapping percentages, coverage, and computation time. Overall,
all aligners provided high mapping percentages with an average of >89% paired-end
mapping and with a standard deviation up to 0.93 (Figure 2). Among all the aligners, STAR
exhibited the highest percentage of paired-end alignments (100%) to the reference genome
in all 48 samples. For Bowtie2-local and BWA-mem, >99% of the read pairs mapped to
the reference genome for all 48 samples. The lowest alignment percentage (86.9%) was
observed in one sample alignment using Novoalign.

The average run time of the aligners was compared across all samples. Table 1 shows
the aligners and the average run times per exome data. Observed run times varied greatly
from minutes to weeks. Due of the potential of longer calculations, longer run times were
expected for aligners with high mapping percentages and vice versa; however, the results
showed the opposite, with optimality in mapping algorithms. Interestingly, STAR showed
the highest mapping percentage as well as the shortest computation time. Novoalign, on
the other hand, showed the lowest mapping percentages and the longest run times.
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and standard filtering if applicable (Methods S1). The number of SNPs called varied 
greatly among the variant calling pipelines (Table S1). Note that read aligners and variant 
callers in a pipeline are separated with an underscore symbol. The highest and the lowest 
number of SNPs were called by the GSNAP_BCFtools (5,079,109) and Hisat2_VarScan 
(143,629) pipelines, respectively. The number of SNPs called across all 48 samples ranged 
from 3,834,097 to 7,135,397 for GSNAP_BCFtools, and from 88,545 to 195,879 for the 
Hisat2_VarScan pipeline.  

Figure 2. Mapping percentage of the eight aligners; Bowtie2-local (bowtie2local), Bowtie2, BWA-mem (bwamem), BWA-
backtrack (bwa), GSNAP, Hisat2, Novoalign, and STAR.

Table 1. Average run time of aligners per exome data.

Aligner Average Run Time Number of Threads

STAR 00–00:22:17 20
Hisat2 00–00:24:36 20

BWA-mem 00–01:10:26 20
Bowtie2 00–01:29:16 20

Bowtie2-local 00–01:39:30 20
BWA-backtrack 00–04:50:49 20

GSNAP 05–05:36:37 20
Novoalign 14–16:30:00 1

Run time: days-hours: minutes:seconds.

2.3. Number of Variations Varied Greatly among the 24 Pipelines

All three variant callers were run in combination with each of the eight aligners. Each
variant caller was run according to their recommended settings using built-in functions
and standard filtering if applicable (Methods S1). The number of SNPs called varied
greatly among the variant calling pipelines (Table S1). Note that read aligners and variant
callers in a pipeline are separated with an underscore symbol. The highest and the lowest
number of SNPs were called by the GSNAP_BCFtools (5,079,109) and Hisat2_VarScan
(143,629) pipelines, respectively. The number of SNPs called across all 48 samples ranged
from 3,834,097 to 7,135,397 for GSNAP_BCFtools, and from 88,545 to 195,879 for the
Hisat2_VarScan pipeline.

As shown in Table S1, different aligner and variant calling tool combinations can
have a profound influence on the final set of variants. In fact, the results demonstrated
that different variant callers identified different sets of variants from the same input files
(Table S1). Therefore, the choice of the variant caller is a crucial step in selecting the optimum
variant calling pipeline. Indeed, the initial screenings suggest that the number of SNPs
called is more dependent on the variant caller rather than the read aligner. Figure 3 shows
the number of SNPs called by each pipeline for all 48 samples. In general, the BCFtools
pipelines called the highest number of SNPs across all aligners except STAR, which returned
the highest number of variations when in combination with FreeBayes (Table S1). VarScan
pipelines, on the other hand, were evidently the most conservative pipelines and called
the lowest number of SNPs on average in combination with all aligners, except that of
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Bowtie2-local. The difference in the total number of SNPs called might be associated with
the differences in the recommended settings of each variant caller such as the stringent
filtering parameters of VarScan, as opposed to the less stringent parameters of FreeBayes
and BCFtools (Methods S1). However, stringent filtering parameters alone do not explain
the higher number of variations called by STAR_FreeBayes than the STAR_BCFtools
pipeline (Table S1). Although FreeBayes standard filtering is more stringent than BCFtools,
FreeBayes called more SNPs (1,581,001) than BCFtools (733,697) for the STAR alignments.
Similarly, although VarScan applies a more stringent filtering than FreeBayes, FreeBayes
called fewer SNPs than VarScan for Bowtie2-local alignments (Table S1), suggesting that
the default stringent filtering of VarScan does not always result in the lowest number
of variations called. A parameter fine tuning was applied to each pipeline later in this
manuscript to adjust hard filtering parameters for all pipelines and compare the accuracy
of the variant callers for high quality SNPs only.
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2.4. Diversity among Pipelines

The variant site concordance was assessed among the 24 pipelines using the Jac-
card index metric for each of the 48 samples. For each sample, the Jaccard index of each
aligner/caller pair was calculated based on the presence and absence of SNPs. The aver-
age Jaccard indexes across all 48 samples between each pipeline are shown in Figure 4.
The results showed a clustering among variant callers, indicating that global similarities
between variants called by different pipelines are largely dependent on variant callers.
The highest Jaccard indexes (>0.7) were observed among most of the VarScan pipelines.
However, VarScan pipelines are highly dissimilar from the pipelines that use FreeBayes
and BCFtools, except in the following cases: STAR_BCFtools and Bowtie2-local_BCFtools.
Interestingly, the STAR_BCFtools and Bowtie2-local_BCFtools pipelines showed higher
similarity to the FreeBayes and VarScan pipelines than the other BCFtools pipelines.
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Interestingly, the aligners BWA-mem and Novoalign showed the highest similarity in
combination with any of the three variant callers (Jaccard index >0.7). Although BWA-mem
and BWA-backtrack are different functions of the same aligner, BWA-mem showed the
highest similarity to Novoalign. Additionally, relatively high Jaccard indexes (>0.5) were
observed between different functions of the same aligners; for example, between BWA-
backtrack and BWA-mem pipelines, and between Bowtie2 and Bowtie2-local pipelines.

2.5. Hard Filtering Eliminated Most of the False Positive Predictions

The false positive prediction performance of the variant calling pipelines was assessed
using the exome sequencing data of one of the cultivars, Sonmez, against the preliminary
sequence scaffolds of the same cultivar (unpublished data). Any variants detected are
likely to be artifacts since both the genome and the exome sequencing data derive from
the same cultivar. Initial results showed that regardless of the pipeline, variant calling is
highly error-prone and resulted in a number of false positives (FP) in each of the pipelines
even within the same genetic material (Table S2). The number of FP SNP calls varied
greatly among the variant calling pipelines before filtering. Similar to the observation with
the wheat genome reference sequence, the GSNAP_BCFtools pipeline called the highest
number of SNPs (3,662,264) for the Sonmez genome and the Hisat2_VarScan pipeline called
the lowest number (52,101) of SNPs (Table S2). Although the number of SNPs called within
the same genetic material was less than the number of SNPs called from the wheat genome,
the results here suggest that the standard filtering parameters included in the variant callers
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are not sufficient to eliminate false-positive calls and all variant calling pipelines require
further variant filtering to eliminate the false positive predictions.

Variant filtering is one of the key steps in variant calling, which minimizes the number
of false positive as well as the true-positives. Many variant callers have built-in variant
filtering parameters as the default. However, these variant callers aim to report as many
true variant calls as possible without losing too much sensitivity. Repetitive and paralogous
sequences like allohexaploid wheat genome can give rise to high numbers of false positives.
The filtering parameters were optimized to eliminate the filtering effect of the different vari-
ant callers and to eliminate most of the false-positive calls. The first filtering parameter was
the strand bias [27], where the variants were removed if more than 90% of the alternative
reads mapped to one strand. Remaining variants were filtered by genotype quality (<20)
and by depth (<10). Additional filtering on higher depth values or on different parameters
like mapping quality did not completely eliminate the false-positive calls. Therefore, the
filtering parameters were empirically adjusted to minimize the detection of false-positive
calls while preserving the sensitivity for the true-positives.

On average 91%, 86%, and 28% of the false positive SNPs were filtered in the BCFtools,
FreeBayes, and VarScan pipelines, respectively (Table S2). After filtering, the average num-
ber of false positive SNP calls was similar among the BCFtools (102,322), VarScan (95,763),
and FreeBayes (93,929) pipelines. FreeBayes showed the highest variation across the align-
ers. The average number of false positives was the highest for the GSNAP_FreeBayes
pipeline (194,601) and was the lowest for the Bowtie2_FreeBayes pipeline (12,083) among
the 24 variant calling pipelines. Since VarScan already applies stringent filtering as a
default, these filtering parameters reduced the false positive predictions at their lowest in
the VarScan pipelines. Overall, these filtering cutoffs eliminated the vast majority of the
false-positive calls and resulted in a similar average number of false positives among the
variant callers.

2.6. Construction of the Reference Dataset

Ideally, a gold standard dataset with all SNP positions known should be used for
comparison purposes; however, such a dataset is not yet available for wheat. Therefore,
a list of reference SNP positions was compiled from four independent wheat variation
datasets to evaluate the prediction accuracy of variant calling pipelines. There are several
SNP datasets available, each including tens to thousands of wheat samples. Variant calling
pipelines and sample varieties differ greatly among these studies. For example, the wheat
HAPMAP data were constructed from 62 samples using Bowtie2 and BWA-backtrack as an
aligner [25], whereas the WhealBI dataset was constructed from 487 samples using BWA-
mem as an aligner [26]. In another study, 1000 wheat exomes including both landraces and
elite cultivars were sequenced [1], leading to a highly comprehensive SNP dataset.

Ongoing efforts to unravel important elements of the wheat genome have revealed
vast numbers of variants; however, little consensus among data of different consortiums
points to the lack of a comprehensive SNP dataset for wheat. Figure 5 shows the number of
common and specific SNP positions in the four large scale SNP datasets used in this study.
More than 4.8 M (4,879,492) SNP positions were presented, where only 20,810 (0.43%) were
common among all four datasets; 134,574 (2.76%) were common among three datasets;
and 485,171 (9.97%) were common in at least two datasets. For each of these datasets,
genotyping error rates were estimated to be smaller than ~2% by the authors [1,25,26]
as validation of the SNPs called. As these studies include different varieties, every SNP
position in four publicly available datasets was retrieved to increase variation coverage.
The variety of samples and variant calling pipelines in these independent studies provided
robustness for this study.
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2.7. Assessment of the True-Positive Prediction Performance of the Pipelines at the Sample Level

The SNPs identified from the 48 elite wheat WES samples were subjected to variant
filtering for further analyses. The average number of SNPs called from the 48 WES data
varied greatly among variant calling pipelines even after filtering (Table S1). On average,
89%, 87%, and 31% of the SNPs were filtered from the BCFtools, FreeBayes, and VarScan
pipelines, respectively. The highest and the lowest numbers of SNPs were called by the
GSNAP_BCFtools and Bowtie2-local_FreeBayes pipelines, respectively.

To infer the true-positive prediction performance of the pipelines at the sample level,
the SNP positions identified in each sample were compared to the reference dataset. The
results showed that SNP filtering eliminated 71%, 74%, and 30% of the reference SNP calls
on average from the BCFtools, FreeBayes, and VarScan pipelines, respectively. On the other
hand, 95%, 92%, and 63% of the nonreference SNP calls were filtered. These results suggest
that SNP filtering eliminated most of the false SNP calls; however, at the cost of losing
true-positive calls.

The average number of TP SNPs per sample was the highest in the BCFtools pipelines
(118,265 following BWA-mem and 107,157 following GSNAP) and the lowest in the Free-
Bayes pipelines (17,524 following Bowtie2-local and 25,580 following Bowtie2) (Table S3).
In general, the number of TP SNP calls were higher in the pipelines that called a higher
number of SNPs (both true-positives and false positives).

In order to assess the overall prediction performance of the pipelines at the sam-
ple level, the precision, sensitivity, and F1 score were calculated for each of the 48 WES
data. Average accuracy metrics are shown in Table S3. The results showed that the
BWA-mem_BCFtools pipeline provided the highest sensitivity and F1 score for each of
the 48 WES data. However, its precision (~0.47) stayed lower from the average preci-
sion (0.53) among the 24 pipelines. The highest precision (~0.73) was obtained from
the Bowtie2_FreeBayes pipeline for all of the 48 WES data; however, the total num-
ber of TP SNPs, sensitivity, and the F1 score per sample were way below the average
scores among the variant calling pipelines. Finally, the pipelines were selected for gen-
eral use that provided above the average scores per sample for (i) precision, (ii) sen-
sitivity, and (iii) F1 score. These pipelines, sorted by the total number of TPs, were
STAR_BCFtools, BWA-backtrack_BCFtools, Bowtie2-local_BCFtools, Bowtie2_BCFtools,
and BWA-backtrack_varscan.

2.8. Population Level Comparison of the Variant Calling Pipelines

Other than in the individual datasets, the performance of the variant calling pipelines
were assessed at the population level using all the wheat samples. SNP calls from 48 WES
data were merged for each of the 24 variant calling pipelines using the BCFtools merge
function. Merging SNPs from the individual samples for each variant calling pipeline
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resulted in a more comprehensive set of SNPs. Total number of SNP positions called by
the pipelines was increased by 6- to 10-fold from the average number of SNPs per sample,
indicating that most of the SNP positions were called from more than one sample. The
ranking of the pipelines based on the accuracy metrics were the same as the ranking at the
sample level (Table S3).

The results showed that there is usually a trade-off between precision and sensitivity.
The highest precision was observed in the Bowtie2_FreeBayes pipeline with a cost of low
precision and F1 score. The highest number of TP calls, sensitivity, and F1 score were
observed in the BWA-mem_BCFtools pipeline with a cost of low precision. The pipelines
with the highest precision may be better suited for the identification of a short list of high
confidence variations rather than novel variations and/or complete sets of variations for a
GWAS study. Given the highest F1 score, sensitivity, and the higher number of TP calls,
the BWA-mem_BCFtools pipeline might be better suited for obtaining a comprehensive
set of SNPs, allowing the false calls to some extent for a GWAS study. For the optimum
results, this study suggests the five pipelines providing above average scores for each of the
accuracy metrics. These pipelines were ranked by the highest number of TP calls as follows:
STAR_BCFtools, BWA-backtrack_BCFtools, Bowtie2-local_BCFtools, Bowtie2_BCFtools,
and BWA-backtrack_VarScan.

2.9. Final Comparison of the Five Best-Performing Pipelines

The best-performing pipelines were selected and the consensus among the true-
positive variants was assessed at the population level. The best-performing pipelines
included the BCFtools in combination with STAR, BWA-backtrack, Bowtie2-local, Bowtie2,
and VarScan in combination with BWA-backtrack. Figure 6A shows the number of truly de-
tected SNPs by these top five performing tools across all samples. Among the variants iden-
tified as true-positives, ~63% of the observations were common across the best-performing
pipelines (Figure 6A) and only ~9% were uniquely identified by one of these pipelines,
suggesting a consistency in the predicted variations by the top performing pipelines.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 9 of 15 
 

 

data were merged for each of the 24 variant calling pipelines using the BCFtools merge 
function. Merging SNPs from the individual samples for each variant calling pipeline re-
sulted in a more comprehensive set of SNPs. Total number of SNP positions called by the 
pipelines was increased by 6- to 10-fold from the average number of SNPs per sample, 
indicating that most of the SNP positions were called from more than one sample. The 
ranking of the pipelines based on the accuracy metrics were the same as the ranking at the 
sample level (Table S3).  

The results showed that there is usually a trade-off between precision and sensitivity. 
The highest precision was observed in the Bowtie2_FreeBayes pipeline with a cost of low 
precision and F1 score. The highest number of TP calls, sensitivity, and F1 score were ob-
served in the BWA-mem_BCFtools pipeline with a cost of low precision. The pipelines 
with the highest precision may be better suited for the identification of a short list of high 
confidence variations rather than novel variations and/or complete sets of variations for a 
GWAS study. Given the highest F1 score, sensitivity, and the higher number of TP calls, 
the BWA-mem_BCFtools pipeline might be better suited for obtaining a comprehensive 
set of SNPs, allowing the false calls to some extent for a GWAS study. For the optimum 
results, this study suggests the five pipelines providing above average scores for each of 
the accuracy metrics. These pipelines were ranked by the highest number of TP calls as 
follows: STAR_BCFtools, BWA-backtrack_BCFtools, Bowtie2-local_BCFtools, Bow-
tie2_BCFtools, and BWA-backtrack_VarScan.  

2.9. Final Comparison of the Five Best-Performing Pipelines 
The best-performing pipelines were selected and the consensus among the true-pos-

itive variants was assessed at the population level. The best-performing pipelines in-
cluded the BCFtools in combination with STAR, BWA-backtrack, Bowtie2-local, Bowtie2, 
and VarScan in combination with BWA-backtrack. Figure 6A shows the number of truly 
detected SNPs by these top five performing tools across all samples. Among the variants 
identified as true-positives, ~63% of the observations were common across the best-per-
forming pipelines (Figure 6A) and only ~9% were uniquely identified by one of these pipe-
lines, suggesting a consistency in the predicted variations by the top performing pipelines. 

 
Figure 6. Venn diagram depicting the number of SNPs identified as true-positives from the best performing pipelines. 
Number of overlapping SNPs with reference set were shown for (A) variants merged for 48 samples, and (B) variants 
merged for 48 samples and filtered by missing genotypes (C) variants merged for 48 samples and filtered by missing 
genotypes after imputation. V1: STAR_BCFtools, V2: BWA-backtrack_BCFtools, V3: Bowtie2-local_BCFtools, V4: Bow-
tie2_BCFtools, and V5: BWA-backtrack_BCFtools. 

The variant sites called from >25% of the samples and with minor allele frequency 
(MAF) >0.01 were further investigated. Figure 6B shows the number of truly detected 
SNPs by these top five performing tools after variant site filtering. Total number of com-
mon SNPs among the top performing pipelines decreased to 24% after filtering and the 

Figure 6. Venn diagram depicting the number of SNPs identified as true-positives from the best performing pipelines.
Number of overlapping SNPs with reference set were shown for (A) variants merged for 48 samples, and (B) variants merged
for 48 samples and filtered by missing genotypes (C) variants merged for 48 samples and filtered by missing genotypes
after imputation. V1: STAR_BCFtools, V2: BWA-backtrack_BCFtools, V3: Bowtie2-local_BCFtools, V4: Bowtie2_BCFtools,
and V5: BWA-backtrack_BCFtools.

The variant sites called from >25% of the samples and with minor allele frequency
(MAF) >0.01 were further investigated. Figure 6B shows the number of truly detected
SNPs by these top five performing tools after variant site filtering. Total number of
common SNPs among the top performing pipelines decreased to 24% after filtering and
the number of unique SNPs increased to 28%. These results suggested that this additional
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filtering by missing genotypes and MAF did not improve consistency among the pipelines.
Additionally, this filtering lowered the prediction accuracy metrics in all five pipelines.

Recently, WES studies have employed imputation to resolve missing genotype calls
based on common variants in a population. To prevent filtering true variant sites based on
missing genotype calls, the missing genotypes in each of the top performing pipelines were
recovered using a standard imputation by Beagle 5.1. Each variant calling pipeline was
subject to imputation, and high confidence variant calls were retrieved by filtering variant
positions with >75% missing genotypes and <0.01 MAF. Figure 6C shows the number of
SNPs identified as true-positives among the high confidence set of imputed variants. After
imputation, the total number of observations increased drastically (~9-fold). However,
the percentage of common (23%) and unique (24%) SNPs across all observations in the
best-performing pipelines did not show any improvement (Figure 6B), thus suggesting
that the consistency among the pipelines cannot be improved by imputation alone. On the
other hand, imputation alone increased the number of TP calls identified by the pipelines
(Figure 6B,C), which consequently increased the sensitivity.

3. Discussion

The two main stages of variant discovery are read alignment and variant calling.
There are a vast number of tools available for each stage. The present study compared
24 variant calling pipelines based on a combination of eight aligners and three variant
callers. This study followed the manuals and the tutorials of each of the pipelines for the
optimized parameters set by the developers. Additionally, the impacts of missing data
imputation and variant filtering were evaluated. This comparative analysis aims to provide
guidance as to how to choose the best variant calling pipeline for an individual dataset or
multiple datasets.

Wheat has a highly repetitive allohexaploid genome that contributes to the reads
mapping to multiple loci. Multi mapping reads are assigned by lower mapping scores
and even eliminated if mapped to too many loci by the aligners. Variant callers take these
scores into account when considering a variant site. Efforts to call variants from uniquely
mapped reads in tetraploid peanut have resulted in limited success as this conservative
approach severely limited the total number of SNPs to only 1765 SNPs [28]. Additionally,
considering the highly repetitive and nearly identical subgenomes of allohexaploid wheat,
this study included multimapping reads and allowed the algorithms of variant callers
to make supervised decisions based on the mapping scores. Among the variant callers,
only FreeBayes offers the ploidy parameter; however, the results were highly variable in
the FreeBayes pipelines when combined with different aligners (Table S1). The variation
among the number of SNPs called by each pipeline suggests the lack of consensus among
the pipelines and further suggests that many of the calls might be false-positives filtered by
other pipelines, and thus further refinement of the variants is required for all the pipelines.

The false positive prediction rates of the 24 pipelines were assessed by using the
genome and the exome sequencing data of the one of the wheat elite cultivars, Sonmez.
The results showed that none of these pipelines were sufficient to eliminate false-positive
calls in the raw data without filtering. Hard filtering by strand bias, depth, and quality
greatly reduced the false-positive calls, resulting in a similar number of false-positives for
each of the variant callers. Hard filtering resolved the discrepancy among the number of
SNPs identified by each of the variant callers and eliminated the vast majority of the false-
positives. It is important to note that hard filtering did not eliminate the false-positive calls
completely and increasing stringency will also eliminate the true-positive calls. Therefore,
this study assessed the prediction performance of the pipelines based on F1 score, precision,
and recall. Later, the best performing pipelines were selected among the pipelines above
the average scores for each of the metrics.

Different quality metrics might be preferred depending on the research question.
High sensitivity is desirable when a high number of true-positive variations is required.
BCFtools following the BWA-mem, GSNAP, STAR, and BWA and FreeBayes following
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GSNAP provided the highest sensitivity at the sample and at the population level analyses.
However, many of these pipelines provided lower precision scores, which is required for a
high quality of the variants without a background noise. FreeBayes following Bowtie2 and
Bowtie2-local, VarScan following the Hisat2, and BCFtools following Bowtie2, Bowtie2-
local, STAR, and BWA provided the highest precision. Considering both accuracy metrics
as well as the harmonic mean of sensitivity and precision (F1 score), the best pipelines
were determined for optimum use, providing higher precision and sensitivity compared to
the remaining pipelines. The optimum results were obtained with the BCFtools following
STAR, BWA, Bowtie2-local, and Bowtie2 and with the VarScan following BWA. Given the
highest number of true-positives obtained and providing one of the highest scores for each
evaluation metrics, the results of this study suggest STAR in combination with BCFtools
and hard filtering for further studies.

This study showed that the variant callers tested had a greater influence on the
variation identification than the read aligners. Additionally, merging individual datasets
increased the number of true-positive calls in the elite wheat population. The pipelines
provided similar performances at the sample and population levels. The top performing
pipelines provided consistent reference SNP calls where only ~9% of the SNP sites were
uniquely identified by a pipeline.

Additional filtering of the variant sites with >25% missing genotypes and <0.01 MAF
resulted in an increased number of pipeline specific variants and provided lower precision
and sensitivity. Imputation, on the other hand, recovered the lower scores and increased the
number of TP calls. Therefore, this study suggests imputation prior to variant site filtering
based on missing genotypes and allele frequencies. This study provided an assessment of
24 different variant calling pipelines based on the whole exome sequencing data of 48 elite
wheat cultivars. The findings of this study serve the plant genomics studies for accurate
variants that can be reproducible by many pipelines.

4. Materials and Methods
4.1. Preparation of Wheat Exome Capture Libraries

Exome regions were captured with SeqCap EZ Developer Reagents (Roche Sequencing,
Indianapolis, IN, USA). The libraries for 48 elite wheat cultivars were sequenced using a
HiSeq 4000 Sequencing Kit version 1 (University of Illinois at Urbana Champaign, Roy J.
Carver Biotechnology Center, Chicago, USA). Generated FASTQ files were demultiplexed
with the bcl2fastq v2.17.1.14, which removes adaptors from the 3’-end of the reads.

FastQC [29] quality assessment was successful for all of the metrics other than per base
sequence content and sequence duplication. Per base sequence content failed at the end of
reads, which is natural, as adaptor trimming introduces a composition bias at read ends.
Fluctuations in the base sequence content for the first 10 to 15 bases were also generated by
many sequencing platforms. Additionally, the sequence duplications levels were ~50% for
most of the dataset, which corresponds to natural read duplication due to fragmentation
bias for exome sequencing datasets [30].

4.2. Alignment Parameters

The overall pipeline starting from raw FASTQ files and ending with filtered VCF
files is shown in Figure 1. After quality controls, WES reads for 48 wheat cultivars were
aligned to the IWGSC Chinese Spring wheat reference genome assembly v1.0 separately
using eight different aligners. Aligners included were Bowtie2 v2.3.4.1 [12], Bowtie2-local
(Bowtie2-local), BWA aln/sampe v0.7.17 (BWA-backtrack) [11], BWA mem v0.7.17 (BWA-
mem), GSNAP Version 2018-03-25 [31], Hisat2 v2.1.0 [32], STAR v2.6.1a [33], and Novoalign
v3.09.00 (http://novocraft.com/, accessed on 15 September 2020). These aligners converted
FASTQ files into raw SAM files. Multiple threads were used where available.

Alignments were processed further before variant calling to prepare a sorted and
clean BAM file. First, PCR duplicates were marked from each SAM file using SAMblaster
v0.1.24 [34]. Then, SAM files were converted into BAM files and sorted using SAMtools

http://novocraft.com/
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v1.9 [15]. Finally, group IDs were inserted according to file names using SAMtools. The
detailed commands for each stage of these analysis are provided in Methods S1.

4.3. Variant Calling

Three variant calling methods were executed for each alignment (48 samples * 8
aligners): FreeBayes v1.2.0 [35], BCFtools call (BCFtools) v1.8, and VarScan v2.4.2 (SAM-
tools) [16]. The variant calling step was performed separately, as FreeBayes and VarScan
required a very high memory usage for the merged files (>240 GB for 48 samples merged).
Built-in functions and standard filtering parameters were applied to each tool as suggested
by their tutorials (Methods S1).

Variant sites on an unknown chromosome were removed from further analyses using
the BCFtools filter function. Single-nucleotide polymorphism (SNP) calls were extracted
from the resulting VCF files using the BCFtools view function.

4.4. Filtering and Imputation

The BCFtools filter function was used to filter low quality SNPs based on alternate
allele strand bias (>90%), quality (<20), and depth (<10) (Methods S1). A merged VCF file
was prepared for each variant calling pipeline by merging individual VCF files of 48 wheat
samples using the BCFtools merge function.

For imputation, merged VCF files were subjected to Beagle software (v5.1) [36]
with the effective population size parameter set to ‘ne = 1300’ according to previous
estimates [37]. Additional filtering by <75% missing data and <0.01 minor allele frequency
(MAF) was applied on the merged VCF files before and after imputation using the BCFtools
filter function.

4.5. High Confidence Reference Dataset

To create high coverage in the reference dataset, this study used SNP positions from
four comprehensive SNP datasets: WhealBI variations [26], wheat HAPMAP data [25],
1000 wheat exomes project [1], and varietal SNPs identified by the Akhunov lab and the
Dubcovsky lab, which can be obtained from the wheat-urgi database (https://wheat-
urgi.versailles.inra.fr/Seq-Repository/Variations, accessed on 15 September 2020) and
GrainGenes (https://wheat.pw.usda.gov, accessed on 15 September 2020) [38]. A reference
SNP dataset was compiled from the SNP positions in these four datasets.

4.6. Evaluation Criteria

To assess performance of each variant calling pipelines, the accuracy metrics of sensi-
tivity, precision, and F-score was used. True-positive (TP) calls were defined as reference
variants called by the variant calling pipelines. False-positive (FP) calls were defined as
variants called by the variant calling pipeline, which were not reference variants. False-
negative (FN) calls were defined as reference variants that were not called by the variant
calling pipeline. Accuracy metrics were calculated as follows:

precision = TP
(TP+FP)

sensitivity = TP
(TP+FN)

F1 − score = (2∗precision∗recall)
(precision+recall)

In order to assess the similarity among pipelines, the Jaccard index between variant
calling pipelines was calculated. The Jaccard index is also known as intersection over union
and is calculated as the total number of variations at the intersection of the datasets divided
by the size of the union of datasets. Jaccard indexes are distributed between 0 and 1, where
1 indicates identical datasets. Jaccard indexes were visualized on a heatmap using python.

https://wheat-urgi.versailles.inra.fr/Seq-Repository/Variations
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Variations
https://wheat.pw.usda.gov
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5. Conclusions

Understanding genetic variations is vital for studying genetic and physical mapping,
diversity, evolution, and breeding. However, as most variant calling tools have been
developed and optimized to perform with diploids, additional steps need to be taken to
streamline the process for plant species such as wheat, which has a complex polyploid
genome. In this study, the 24 variant calling pipelines were evaluated and used at their
suggested settings with newly sequenced whole exome data of 48 wheat cultivars. Consid-
ering that only a small overlap exists among the current comprehensive wheat datasets,
the results of the present study will provide a better assessment of the variant calling
pipelines for accurate and reproducible variant calls in polyploid species. These findings
are intended to serve as more accurate variants that can be repeatable and reproducible by
many pipelines.
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