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Abstract: Protein kinase C (PKC) activation can evoke vasoconstriction and contribute to coronary
disease. However, it is unclear whether PKC activation, without activating the contractile machinery,
can lead to coronary arteriolar dysfunction. The vasoconstriction induced by the PKC activator phor-
bol 12,13-dibutyrate (PDBu) was examined in isolated porcine coronary arterioles. The PDBu-evoked
vasoconstriction was sensitive to a broad-spectrum PKC inhibitor but not affected by inhibiting
PKCβ2 or Rho kinase. After exposure of the vessels to a sub-vasomotor concentration of PDBu
(1 nmol/L, 60 min), the endothelium-dependent nitric oxide (NO)-mediated dilations in response
to serotonin and adenosine were compromised but the dilation induced by the NO donor sodium
nitroprusside was unaltered. PDBu elevated superoxide production, which was blocked by the
superoxide scavenger Tempol. The impaired NO-mediated vasodilations were reversed by Tempol or
inhibition of PKCβ2, xanthine oxidase, c-Jun N-terminal kinase (JNK) and Rho kinase but were not
affected by a hydrogen peroxide scavenger or inhibitors of NAD(P)H oxidase and p38 kinase. The
PKCβ2 protein was detected in the arteriolar wall and co-localized with endothelial NO synthase.
In conclusion, activation of PKCβ2 appears to compromise NO-mediated vasodilation via Rho
kinase-mediated JNK signaling and superoxide production from xanthine oxidase, independent of
the activation of the smooth muscle contractile machinery.

Keywords: oxidative stress; coronary disease; phorbol esters; nitric oxide; vasodilation; vasoconstric-
tion; superoxide

1. Introduction

Protein kinase C (PKC) is a critical intracellular signaling molecule that orchestrates
various vascular functions, including gene expression [1], cell differentiation [2] and pro-
liferation [1], angiogenesis [3], permeability [4], vesicle trafficking [5], and vasoconstric-
tion [6–11]. Cumulative evidence suggests a close relationship between PKC activation
and production of reactive oxygen species (ROS) in vascular cells subjected to high pres-
sure or hyperglycemic challenge [12]. Therefore, activation of PKC links to oxidative
stress-associated vascular complications and blood flow dysregulation during disease de-
velopment, including diabetes [13,14], ischemia-reperfusion injury [15], dyslipidemia [16],
atherosclerosis [1], and hypertension [12]. Moreover, inhibition of PKC has been shown
to attenuate vascular superoxide production in various forms of cardiovascular stress
in animals [14,17,18] and humans [14,19]. Interestingly, recent studies suggested a role
of mitogen-activated protein kinases (MAPKs) or Rho kinase in superoxide production
from coronary microvessels subjected to inflammatory insults [20–22] or harvested from
animals with cardiovascular diseases [21,23,24]. However, it remains unclear whether
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direct activation of PKC signaling in the healthy vasculature can cause MAPK/Rho kinase
activation and excessive superoxide production, with consequent vasomotor dysfunction.

It is well established that the vascular smooth muscle activity can be modulated
by vasoactive substances released from the endothelium [25]. Numerous studies have
shown that micromolar concentrations of phorbol 12,13-dibutyrate (PDBu), a direct PKC
activator, evoke a sustained vasoconstriction in various tissues [7–11,26]. Interestingly,
the endothelium-dependent vasodilation can be blunted by PDBu due to inhibition of
synthesis/release and the action of nitric oxide (NO) [8]. These studies indicate that PKC
activation not only elicits vasoconstriction but also compromises endothelial NO func-
tion. Therefore, the endothelial dysfunction is likely to accentuate the vasoconstriction
following PKC activation. Alternatively, the vasoconstriction evoked by PKC can poten-
tially mask endothelium-dependent vasorelaxation. Furthermore, the finding that the
synthesis/release of endothelial vasodilators is influenced by the contractile activity of the
underlying vascular smooth muscle cells [27,28] adds another complexity to vasomotor
regulation by PKC. Interestingly, the elevated smooth muscle Ca2+ during contraction can
feedforward to the endothelium to evoke vasodilation [29]. This aforementioned crosstalk
between smooth muscle and endothelial cells can confound interpretation of the endothe-
lial effect of PKC in vasomotor regulation if the smooth muscle contractile machinery is
also activated by the PKC. Therefore, the direct impact of PKC activation on endothelial
NO function and the involved signaling molecules in association with oxidative stress
remain unclear.

Herein, we directly addressed the impact of PKC activation by PDBu on endothelium-
dependent NO-mediated dilation of isolated porcine coronary arterioles using a sub-
vasomotor concentration of PDBu. The specific PKC isoform and the role of p38 kinase,
c-Jun N-terminal kinase (JNK), and Rho kinase in oxidase activation and superoxide
production were also determined in these microvessels, which are known to be responsible
for coronary blood flow regulation [25,30].

2. Results
2.1. Vasomotor Effect of PDBu and PKC Involvement

To evaluate the vasomotor effect of PDBu, the isolated coronary arterioles were ex-
posed to cumulative concentrations of PDBu and the responses were recorded. Coronary
arterioles (96 ± 5 µm maximum diameter; n = 10) developed a stable basal tone (67 ± 2%
of maximal diameter) and constricted in response to PDBu in a concentration-dependent
manner (Figure 1A). PDBu at a 1 nmol/L concentration did not cause vasoconstriction
but at 1 µmol/L it elicited a 50% reduction in the resting diameter (Figure 1A). The vaso-
constriction caused by PDBu (0.1 µmol/L) was abolished by a pan-PKC inhibitor Gö6983
(1 µmol/L, n = 5) but was not affected by a PKCβ2 inhibitor CGP53353 (0.3 µmol/L, n = 5)
or Rho kinase inhibitor Y27632 (0.1 µmol/L, n = 5) (Figure 1B).

In another series of experiments, the endothelium-dependent, NO-mediated vasodila-
tions in response to serotonin (0.1 nmol/L to 0.1 µmol/L) and adenosine (0.1 nmol/L to
10 µmol/L) were examined before and after treating the vessel with a sub-threshold concen-
tration (1 nmol/L) of PDBu for 60 min. PDBu did not significantly alter the resting diameter
of the vessels but inhibited the arteriolar dilations in response to serotonin (Figure 2A) and
adenosine (Figure 2B). Addition of NO synthase (NOS) inhibitor L-NAME (10 µmol/L)
did not affect the inhibitory effect of PDBu on vasodilations (Figure 2). Co-incubation of
PDBu with a pan-PKC inhibitor Gö6983 or with PKCβ2 inhibitor CGP53353 prevented the
inhibitory effect of PDBu (Figure 2). PDBu (1 nmol/L) had no effect on the vasodilation
elicited by the NO donor sodium nitroprusside (Figure S1).
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Figure 1. PDBu elicited concentration-dependent constriction of porcine coronary arterioles. (A) The low concentration
of PDBu (1 nmol/L) had no effect on vascular tone, but higher concentrations (≥10 nmol/L) caused significant vaso-
constrictions (n = 6). * p < 0.05 vs. resting diameter (R), one-way repeated measures ANOVA with Dunnett’s multiple
comparison test. (B) PDBu-induced vasoconstriction (PDBu 0.1 µmol/L, n = 5) was prevented by the pan-PKC inhibitor
Gö6983 (1 µmol/L, n = 5) but was not affected by the PKCβ2 inhibitor CGP53353 (0.3 µmol/L, n = 5) or Rho kinase inhibitor
Y27632 (0.1 µmol/L, n = 5). * p < 0.05 vs. the control, one-way ANOVA with Dunnett’s multiple comparison test.

Figure 2. Impact of PKC activation on NO-mediated vasodilations to serotonin and adenosine. Vasodilations in response
to serotonin (A) and adenosine (B) were inhibited by pre-treating the vessels with 1 nmol/L PDBu for 60 min (n = 6).
The pan-PKC inhibitor Gö6983 (1 µmol/L, n = 5) and PKCβ2 inhibitor CGP53353 (0.3 µmol/L, n = 5) prevented the
PDBu-induced impairment of endothelium-dependent vasodilations. NOS inhibitor L-NAME (10 µmol/L, n = 4) did not
alter the inhibitory effect of PDBu. * p < 0.05 vs. the control, two-way repeated measures ANOVA with Tukey’s multiple
comparison test.

2.2. Role of ROS, NAD(P)H Oxidase, and Xanthine Oxidase in the PDBu-Induced Superoxide
Production and Vascular Dysfunction

To determine whether ROS is involved in the attenuation of endothelium-dependent
NO mediated vasodilation, vessels were treated with PDBu (1 nmol/L) in the presence
of either the superoxide scavenger Tempol (1 mmol/L) or H2O2 scavenger PEG-catalase
(500 U/mL). Pretreating the vessels with Tempol completely prevented the adverse effects
of PDBu on vasodilations in response to serotonin (Figure 3A) and adenosine (Figure 3B).
However, the cell-permeable H2O2 scavenger PEG-catalase had no effect on the inhibitory
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action of PDBu (Figure 3A,B). To determine whether NAD(P)H oxidase or xanthine oxidase
contributes to the adverse effect of PDBu, vessels were treated with PDBu in combination
with inhibitor of NAD(P)H oxidase (apocynin, 100 µmol/L) or of xanthine oxidase (allop-
urinol, 10 µmol/L). In the presence of allopurinol, but not apocynin, the vasodilations to
serotonin (Figure 3C) and adenosine (Figure 3D) were preserved. The vessels treated with
PDBu significantly elevated the superoxide production in a manner sensitive to Tempol
(Figure 4).

Figure 3. Role of oxidative stress in the adverse effect of PKC activation. The inhibitory effect of PDBu on vasodilations
in response to serotonin (A) and adenosine (B) was prevented by pre-treating the vessels with the superoxide scavenger
Tempol (1 mmol/L, n = 5) but not by the cell permeable H2O2 scavenger PEG-catalase (500 U/mL, n = 5). The inhibitory
effect of PDBu on vasodilations induced by serotonin (C) and adenosine (D) was prevented in vessels treated with the
xanthine oxidase inhibitor allopurinol (100 µmol/L, n = 5). However, the NAD(P)H oxidase inhibitor apocynin (100 µmol/L,
n = 5) had no effect on PDBu-induced vascular impairment in response to serotonin (C) and adenosine (D). * p < 0.05 vs. the
control, two-way repeated measures ANOVA with Tukey’s multiple comparison test.
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Figure 4. Detection of superoxide production in porcine coronary arterioles. Dihydroethidium (DHE)
imaging of superoxide production in coronary arterioles after incubation of the vessels with PDBu
(1 nmol/L, 60 min). PDBu markedly increased the superoxide level in the vascular wall, which was
significantly reduced by co-incubation with the superoxide scavenger Tempol (n = 3). The result of
the quantitative analysis of the DHE fluorescence signals is shown. Scale bar represents 100 µm. The
data represent three independent experiments. * p < 0.05 vs. the control, and # p < 0.05 vs. PDBu
treatment, Student’s t-test.

2.3. Expression of NOS and PKCβ2 in Coronary Arterioles

To investigate the vascular expressions of endothelial NOS (eNOS) and PKCβ2, im-
munohistochemical detection of these two proteins was performed in isolated porcine
coronary arterioles with a size comparable to that used for functional studies. The expres-
sion of PKCβ2 was found in both smooth muscle and endothelial cells and co-localized
with eNOS in the endothelial layer (Figure 5).

Figure 5. Immunohistochemical detection of endothelial NOS (eNOS) and PKCβ2 in porcine coronary arterioles. The
expression of PKCβ2 (red) was found in smooth muscle and endothelial cells and co-localized with eNOS (green) in the
endothelial layer (three independent experiments). Scale bar represents 50 µm.
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2.4. Role of JNK, p38 Kinase, and Rho Kinase in the Inhibitory Effect of PDBu

To investigate the involvement of JNK, p38 kinase, and Rho kinase in the adverse
effect of PDBu, the vasodilator responses were examined after treating the vessels with
PDBu (1 nmol/L) in the presence of the respective kinase inhibitor. The inhibitory effect
of PDBu on vasodilations induced by serotonin (Figure 6A) and adenosine (Figure 6B)
was prevented in the presence of the JNK inhibitor (SP600125, 5 µmol/L) or Rho kinase
inhibitor (Y-27632, 0.1 µmol/L). However, the p38 kinase inhibitor (SB203580, 0.1 µmol/L)
had no effect on the action of PDBu (Figure 6).

Figure 6. Role of kinases in the adverse effect of PKC activation. In the presence of the JNK inhibitor SP600125 (5 µmol/L,
n = 5) or Rho kinase inhibitor Y-27632 (0.1 µmol/L, n = 5), but not p38 kinase inhibitor SB203580 (0.1 µmol/L, n = 5), the
adverse effect of PDBu on vasodilations in response to serotonin (A) and adenosine (B) was prevented. * p < 0.05 vs. the
control, two-way repeated measures ANOVA with Tukey’s multiple comparison test.

3. Discussion

PKC plays a central role in signal transduction for vasoconstriction and tissue inflam-
mation and is thought to be involved in development of diabetes and atherosclerosis [1,31]
as well as other coronary diseases associated with endothelial dysfunction [32,33], which
may underlie coronary vasospasm [34]. In the present study, activation of PKC by a sub-
vasomotor concentration of PDBu elicits endothelial dysfunction by inhibiting endothelium-
dependent, NO-mediated vasodilations (adenosine and serotonin) via elevated oxidative
stress. The activation of xanthine oxidase by PKCβ2, linking to JNK and Rho kinase
signalings, contributes to overt superoxide production and vascular dysfunction.

Although PKC was first identified as a Ca2+-activated phospholipid-dependent pro-
tein kinase, various isoforms were subsequently discovered and categorized into three
subfamilies according to their structures and activators: conventional/classic (cPKCs),
novel (nPKCs), and atypical (aPKCs). Activation of four cPKCs isoforms (α, β1, β2, and γ)
requires Ca2+ and diacylglycerol (DAG), whereas the four nPKCs isoforms (δ, ε, η, and θ)
are activated by DAG alone [35]. The activation of aPKCs (ι/λ, and ζ) is dependent upon
phosphatidic acid and phosphatidylserine but not DAG or Ca2+ [36]. In cPKC signaling,
binding of Ca2+ increases the affinity of cPKCs for membrane phosphatidylserine and pro-
motes cPKCs binding to DAG at the cell membrane. Binding to DAG releases cPKC from
autoinhibition, exposing the active site of cPKC for target phosphorylation. The pharmaco-
logical DAG analog, PDBu, acts in a similar manner to DAG to evoke PKC activation. It has
been shown that micromolar concentrations of PDBu can cause vasoconstriction in various
tissues via PKC activation [7–11,26]. Interestingly, in the swine model of coronary balloon
injury, the PKC-mediated constrictions of coronary arteries to PDBu (1 nmol/kg with
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estimated maximal concentration of 0.1 µmol/L) or autacoids are significantly augmented
in a Ca2+-dependent manner, in which the responses are blocked by the non-selective PKC
inhibitor staurosporine [37]. This in vivo study suggests the involvement of cPKC activa-
tion in mediating the hyper-constriction, or vasospasm, of coronary arteries in the diseased
state. However, the signaling mechanisms underlying the abnormal vascular reactivity re-
main unclear. It is possible that the diminished counteraction from the endothelial-released
vasodilators due to balloon injury also contribute to or superimpose onto the enhanced
vasoconstriction during PKC activation. It is unclear whether PKC activation, without
evoking vasoconstriction, can cause endothelial dysfunction in healthy vessels.

In the present study, PDBu caused constriction of the coronary arterioles sensitive to
the broad-spectrum PKC inhibitor (Gö6983) toward cPKCs, but not to the selective PKCβ2
inhibitor CGP53353 or Rho kinase inhibitor Y-27632 (Figure 1). These results excluded
the involvement of PKCβ2 and Rho kinase in vasoconstriction to cPKC activation. In
many cases, PKC has contraction-promoting effects, such as phosphorylation of plasma
membrane channels/pumps to increase intracellular Ca2+ or phosphorylation of proteins
that regulate cross-bridge cycling or Ca2+ sensitivity of contractile filaments in smooth
muscle [26,38]. Similarly, Rho kinase can modulate vasomotor function by increasing Ca2+

sensitivity through inhibition of the myosin light chain phosphatase [26,38]. Interestingly, in
the study of aortic vasomotor activity, the contraction elicited by PKC activation is sensitive
to Rho kinase inhibitor, suggesting the interaction of these two signaling pathways [9,10].
The explanation for these inconsistent findings is unclear, but our results agree with
previous studies in the microvasculature that Rho kinase plays no role in PKC-induced
vasoconstriction [39]. It appears that the link of PKC activation to Rho kinase signaling
for vasomotor control is mainly in conduit blood vessels [9,10] in a manner consistent
with an in vivo study showing the activation of PKC-mediated Rho kinase signaling in
development of vasospasm in large coronary arteries under inflammatory insult [34]. On
the other hand, the constriction of small resistance arteries to PKC activation seems to
be independent of Rho kinase, suggesting the segmental disparity of vasculature in the
involvement of Rho kinase signaling downstream from PKC activation [39]. It is worth
noting that the concentrations of CGP53353 and Y-27638 used in the present study are
adequate to inhibit PKCβ2 [40–42] and Rho kinase [43–47], respectively, as reported in
various types of tissues.

The balance between smooth muscle tone and endothelial function in the microcir-
culation is essential for maintaining adequate tissue perfusion [25]. The endothelium
plays an important role in blood flow regulation by controlling smooth muscle activity
via released NO [30,48]. On the other hand, the increased smooth muscle tone can sup-
press endothelium-dependent NO-mediated dilation [49]. We have previously reported
that both serotonin [50] and adenosine [51] cause endothelium-dependent NO-mediated
dilation of porcine coronary arterioles through different signaling mechanisms. Interest-
ingly, treating coronary arterioles with a sub-vasomotor concentration of PDBu (1 nmol/L)
blunted vasodilations to both serotonin and adenosine (Figure 2). It appears that this
effect is specifically related to the reduction of NO availability from the endothelium rather
than the alteration of smooth muscle responsiveness to NO because inhibition of NOS
in these PDBu-treated vessels did not further reduce the vasodilations (Figure 2) and
the response of the vessels to the NO donor sodium nitroprusside remained unaltered
(Figure S1). Moreover, our data suggest that PKCβ2 is involved in the development of
endothelial dysfunction because application of its specific inhibitor prevented the adverse
effect of PDBu. This finding is consistent with a previous study showing that PKCβ2
activation links to the impairment of flow-induced vasodilation in a microvascular net-
work by suppression of NO release from the endothelium [52]. Interestingly, inhibition
of PKCβ2 preserves endothelium-dependent vasodilation [53] and reverses endothelial
barrier dysfunction [54] in experimental models with hyperglycemia and diabetes, which
are known to cause endothelial NO deficiency [14,23,52,55]. It should be noted that PKCβ2
is expressed abundantly in the coronary arteriolar wall, including endothelial cells, and is
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co-localized with eNOS (Figure 5). In this regard, the observed endothelial dysfunction
with compromised vasodilation in the present study is associated with activation of PKCβ2
without coupling to vasoconstriction. It appears that the induction of endothelial NO
deficiency, compared to the initiation of smooth muscle contraction, is more sensitive to
PKC activation in coronary arterioles.

Many cardiovascular diseases are associated with PKC activation [1,13–15], leading
to elevated superoxide [56–58] or hydrogen peroxide [59,60] production. In the present
study, the impaired NO-mediated vasodilation by a sub-vasomotor concentration of PDBu
was prevented by the membrane-permeable superoxide scavenger Tempol, but not by
the hydrogen peroxide scavenger PEG-catalase (Figure 3A,B), suggesting the specific
contribution of superoxide to the adverse effect of PKC activation. This context is supported
by the detection of an elevated superoxide level in the vascular wall after exposure to a
sub-vasomotor concentration of PDBu (Figure 4). Tempol did not alter the resting vascular
tone or vasodilator responses to serotonin, adenosine, and sodium nitroprusside [20] but
preserved the endothelium-dependent vasodilations (Figure 3A,B) and reduced superoxide
production in the PDBu-treated vascular wall (Figure 4). These data, in corroboration
with the assessment of vascular function discussed above, support the role of elevated
superoxide production in vascular dysfunction following PKC activation.

Activation of superoxide-producing enzymes, NAD(P)H oxidase and/or xanthine
oxidase, has been shown to link to PKC activation [11,14,56,58]. Our results showed that al-
lopurinol, but not apocynin, prevented the adverse effect of PDBu, indicating that xanthine
oxidase was responsible for the superoxide production following PKC activation in coro-
nary arterioles (Figure 3C,D). Interestingly, it has been reported that NAD(P)H oxidase is a
source of oxidative stress in cultured vascular cells subjected to PKC activation by phorbol
myristate acetate (PMA) or high glucose [61]. It is unclear whether the differences in the
experimental model (cell culture vs. intact vessel) or the use of different PKC activators
(PMA and high glucose vs. PDBu) between this and our study have contributed to the
inconsistent results. Nevertheless, it has been shown that, in contrast to PDBu, superoxide
production induced by PMA is not always associated with a change in cytosolic PKC
activity [62]. It also cannot be excluded that the high concentration of PMA (0.5 µM) used
in the above cell culture study might also have triggered other signaling pathways for
NAD(P)H oxidase activation. Our results are consistent with a previous study showing that
the PKC-dependent xanthine oxidase-mediated superoxide production contributes to coro-
nary endothelial dysfunction and NO deficiency in the heart perfused with inflammatory
vasoconstrictor endothelin-1 or angiotensin-II [63]. Xanthine oxidase is also a major source
of superoxide to compromise endothelial function and NO bioavailability in porcine [21]
and murine [64] coronary arterioles subjected to inflammatory insults and in hyperten-
sive/hypercholesterolemic patients exhibiting impaired coronary endothelium-dependent
vasodilation [65]. Therefore, the mechanisms behind the observed functional inhibition by
PDBu in the present study involved activation of PKCβ2 and generation of superoxide, a
direct NO scavenger, by xanthine oxidase.

Previous studies have shown that activation of various protein kinases, including Rho
kinase and stress-activated protein kinases (p38 MAPK and JNK), can contribute to vasocon-
strictor signaling [24,66] or oxidative stress-associated vasomotor dysfunction [20–22,67].
Although the nanomolar concentration of PDBu employed in the present study was not
sufficient to activate vasomotor activity, the responsible signaling kinase for PKC-induced
endothelial dysfunction remained to be determined. In the present study, application of
SP600125, but not SB203580, preserved vasodilations to serotonin and adenosine (Figure 6),
indicating the involvement of JNK, rather than p38 kinase, in PKCβ2-mediated endothelial
dysfunction. Interestingly, the impaired endothelium-dependent vasodilation by oxidative
stress in coronary [22] and retinal [43] arterioles after C-reactive protein exposure is medi-
ated by the activation of p38 kinase-dependent NAD(P)H oxidase. However, the role of
PKC was not investigated in previous C-reactive protein studies. It appears that different
stress environment triggers different signaling pathways, leading to vascular dysfunction.
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Nevertheless, our current study agrees with the study showing activation of JNK signaling
and subsequent production of superoxide via xanthine oxidase under TNFα-mediated
inflammatory insult [21]. It is worth noting that TNFα can activate PKCβ2 and promotes
oxidative stress in cultured human vascular endothelial cells [68], although the role of
JNK in this in vitro study is unclear. Our present studies suggest that activation of PKCβ2,
without confounding influence from the vasoconstrictor activity, can elicit oxidative stress
via JNK-dependent xanthine oxidase activation and consequently compromise endothelial
function in coronary arterioles.

Rho kinase activation has been shown to promote superoxide production and en-
dothelial dysfunction in the porcine retinal [43,45] and coronary arterioles [24]. Inhibition
of Rho kinase increases vascular NO production [69,70] and improves endothelial func-
tion in various vascular diseases, in which augmented vasoconstriction is commonly
observed [24,65,70,71]. In the present study, we found that a Rho kinase inhibitor pre-
served coronary arteriolar dilations to serotonin and adenosine (Figure 6) but failed to block
vasoconstriction in response to PKC activation (Figure 1B). These results indicate that Rho
kinase is not involved in the vasoconstriction evoked by PKC but mediates the signaling to
oxidative stress and endothelial dysfunction. The activation of PKCβ2, as suggested by the
present study, appears to promote vascular superoxide production from xanthine oxidase
through Rho kinase and JNK activations (Figure 7). It is noted that both Rho kinase and
JNK inhibitors exhibited the same efficacy in preserving vasomotor function (Figure 6),
suggesting their action on the same signaling pathway. Although the signaling sequence
between Rho kinase and JNK in the present study remains unclear, it has been shown
that JNK activity can be regulated by Rho kinase in various cell types, including vascular
cells [72,73]. Recently, the activation of JNK by Rho kinase has been suggested to mediate
enhanced venular constriction to endothelin-1 in diabetic animals [66]. The sequential
activation of Rho kinase and JNK for endothelial dysfunction following PKCβ2 activation
deserves further investigation.

Figure 7. The diagram summarizes the pathways involved in endothelial dysfunction elicited
by PDBu. Both serotonin and adenosine activate their G-protein coupled receptors and elicit
endothelium-dependent nitric oxide (NO)-mediated vasodilation via endothelial NO synthase
(eNOS). Activation of PKC by a nanomolar concentration of PDBu has a minimal effect on vas-
cular tone but compromises NO-mediated vasodilations in response to adenosine and serotonin
due to increased superoxide production. The signaling events through Rho kinase and JNK act in
concert following PKCβ2 activation to promote superoxide production from xanthine oxidase and
consequently lead to NO deficiency. The inhibitors used in the present study to probe the involved
signaling molecules are indicated.
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In summary, the present study demonstrated that activation of PKC by PDBu elicits
at least two different pathways, one leads to Rho kinase-independent vasoconstriction,
and the other leads to Rho kinase-dependent superoxide production and impairment
of endothelium-dependent NO-mediated dilation in porcine coronary arterioles. Selec-
tive activation of PKCβ2, by a sub-vasomotor concentration of PDBu, appears to trigger
JNK-dependent activation of xanthine oxidase for superoxide production via Rho kinase
signaling (Figure 7). It appears that elevated basal production of superoxide without
activation of smooth muscle contractile machinery is sufficient to evoke endothelial dys-
function. Because PKC is an important regulator for vascular smooth muscle function
and a pathological target in vascular disorders [74], understanding the direct role of PKC
activation in the intact vessel could advance the design of therapeutic tools for disease
prevention and treatment.

4. Materials and Methods
4.1. Materials

The animal procedures and protocols were carried out under the guidance of the
Animal Care and Use Committee (ID: 2007-008-R approved on February 16, 2010) at the
Texas A&M University Health Science Center and Baylor Scott & White Health (Temple,
TX, USA). Pigs (8–12 weeks old, either sex) were purchased from Real Farms (San Antonio,
TX, USA) and sedated with Telazol (4–8 mg/kg, intramuscularly), anesthetized with
2–5% isoflurane (Baxter Healthcare Co., Deerfield, IL, USA), heparinized with heparin
(1000 U/kg, intravenously via marginal ear vein; Cardinal Health, Dublin, OH, USA), and
intubated. A left lateral thoracotomy was performed, and the heart was swiftly removed
and immersed in cold (5 ◦C) saline solution as previously described [75,76].

4.2. Isolation and Cannulation of Coronary Microvessels

To eliminate the confounding influences from hemodynamic, neurohumoral, and
myocardial metabolic changes, coronary arterioles were isolated and studied ex vivo [77].
Subepicardial coronary arterioles (40–80 µm internal diameter in situ) were carefully
dissected out and cannulated with a pair of glass micropipettes in a vessel chamber
containing physiological salt solution (PSS) and 1% bovine serum albumin (Thermo Fisher
Scientific, Bridgewater, NJ, USA) [49]. The isolated vessels were pressurized to 60 cmH2O
intraluminal pressure, based on the reported level of pressure distribution in vivo [78], by
two independent reservoirs [77]. The vessels developed a basal tone within 40 min at a
37 ◦C bath temperature. The internal diameters of the arterioles were recorded throughout
the experiment using videomicroscopic techniques [49].

4.3. Effect of PDBu on Vasodilator Function of Isolated Coronary Arterioles

After development of a stable resting diameter (i.e., basal tone), the concentration-
dependent vasoconstriction of coronary arterioles to PDBu was constructed and the
involvements of PKC subtypes and Rho kinase were assessed with inhibitor Gö6983
(1 µmol/L) [79] against a broad-spectrum of PKC (PKCα, PKCβ, PKCγ, PKCδ and PKCζ),
CGP53353 (0.3 µmol/L) against PKCβ2 [42,80], and Y27632 (0.1 µmol/L; Calbiochem, San
Diego, CA, USA) against Rho kinase [20]. In another series of experiments, coronary arteri-
oles were exposed to a sub-vasomotor level of PDBu (1 nmol/L) for 60 min and the vessels
were challenged with the endothelium-dependent, NO-mediated vasodilators serotonin
(0.1 nmol/L to 0.1 µmol/L) and adenosine (0.1 nmol/L to 10 µmol/L) and the endothelium-
independent vasodilator sodium nitroprusside (0.1 nmol/L to 10 µmol/L). To examine the
contribution of superoxide and hydrogen peroxide to the sub-vasomotor effect of PDBu, the
vasodilations to serotonin and adenosine were assessed before and after co-incubation of
PDBu with superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol,
1 mmol/L) [55] and hydrogen peroxide scavenger PEG-catalase (500 U/mL) [81], respec-
tively. The roles of NAD(P)H oxidase and xanthine oxidase were determined in the presence
of their respective inhibitors apocynin (100 µmol/L) and allopurinol (10 µmol/L) [20]. In
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another series of studies, the involved PKC subtypes, NO, and stress-activated protein
kinases were examined by co-treating the vessels with a sub-vasomotor concentration of
PDBu and inhibitors of pan-PKC (Gö6983, 1 µmol/L), PKCβ2 (CGP53353, 0.3 µmol/L),
NOS (L-NAME, 10 µmol/L), JNK (SP600125, 5 µmol/L; Calbiochem), p38 kinase (SB203580,
0.1 µmol/L; Calbiochem), or Rho kinase (Y27632, 0.1 µmol/L). The concentrations of in-
hibitors used in the present study have been shown to be effective in microvessel prepa-
rations [20,22,55,79,81,82]. In each pharmacological intervention, 4 to 6 arterioles were
used. All drugs, unless otherwise stated, were obtained from Sigma-Aldrich (St. Louis,
MO, USA).

4.4. Immunohistochemical Detection of eNOS and PKCβ2

Coronary arterioles were embedded in OCT compound (Tissue-Tek; Electron Mi-
croscopy Sciences, Hatfield, PA, USA) and frozen sections (10 µm thickness) were fixed in
4% paraformaldehyde for immunohistochemical analysis as described previously [83,84].
Immunolabelling was performed using a mouse monoclonal antibody against eNOS
(610297, 1:100 dilution; BD Biosciences, Franklin Lakes, NJ, USA) and a rabbit polyclonal
antibody against PKCβ2 (sc-210, 1:100 dilution; Santa Cruz Biotechnology, Dallas, TX,
USA). The slides were then incubated with rhodamine red-labeled (Jackson Laboratories,
West Grove, PA, USA) and FITC-labeled (Jackson Laboratories) secondary antibodies. Stain-
ing control tissues were exposed for the same duration to non-immune serum (Jackson
Laboratories) in place of primary antibody. Slides were observed for red (rhodamine red
for PKCβ2) and green (FITC for eNOS) images under a fluorescence microscope (Axiovert
200, Zeiss, Jena, Germany) and analyzed using ImageJ software (National Institutes of
Health, Bethesda, MD, USA) as described previously [20].

4.5. Detection of Vascular Superoxide

Superoxide production in isolated coronary arterioles was evaluated with the flu-
orescent dye dihydroethidium (DHE; Polysciences, Warrington, PA, USA) as described
previously [20]. Isolated coronary arterioles, 40 to 100 µm in diameter and 1.5 mm in
length, were incubated with a vehicle solution, PDBu (1 nmol/L), or PDBu plus Tempol
(1 mmol/L), and then stained with DHE (4 µmol/L) for 30 min. After being washed, arteri-
oles were embedded in OCT compound (Tissue-Tek) for frozen section (10 µm thickness).
The DHE fluorescence image was taken at excitation/emission wavelength of 360/460 nm
with a fluorescence microscope (Axiovert 200, Zeiss). Control and experimental tissues
were set on the same slide and processed and analyzed under the same conditions.

4.6. Data Analysis

Vasoconstriction to PDBu was normalized to the resting vessel diameter following
development of vascular tone [20]. Arteriolar responses to vasodilators were normalized
to the maximal diameter obtained in the Ca2+-free solution containing 0.1 mmol/L sodium
nitroprusside and are expressed as a percentage of the maximal dilation [51]. Data are
reported as the mean ± SEM, and “n” represents the number of vessels (1–2 vessels per
pig). The changes in resting tone by PDBu and pharmacological inhibitors were analyzed
with one-way analysis of variance (ANOVA) followed by a Dunnett’s multiple comparison
test. The fluorescence images from DHE staining were quantified using ImageJ software as
previously described [22] and then analyzed with a Student’s t-test. The significance of
the experimental interventions on vasomotor responses to serotonin and adenosine was
analyzed with a two-way ANOVA followed by Tukey’s multiple comparison test. A value
of p < 0.05 was considered statistically significant.
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