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Abstract: Fragment-Based Drug Discovery (FBDD) has become, in recent years, a consolidated
approach in the drug discovery process, leading to several drug candidates under investigation in
clinical trials and some approved drugs. Among these successful applications of the FBDD approach,
kinases represent a class of targets where this strategy has demonstrated its real potential with the
approved kinase inhibitor Vemurafenib. In the Kinase family, protein kinase CK1 isoform δ (CK1δ)
has become a promising target in the treatment of different neurodegenerative diseases such as
Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. In the present work, we
set up and applied a computational workflow for the identification of putative fragment binders
in large virtual databases. To validate the method, the selected compounds were tested in vitro to
assess the CK1δ inhibition.

Keywords: fragment-based drug discovery; molecular docking; molecular dynamics; supervised
molecular dynamics; protein kinase CK1δ

1. Introduction
1.1. Protein Kinase CK1δ

Protein kinase CK1δ belongs to the family of CK1 Kinases (Casein Kinase 1), which in
turn belongs to the class of Ser-Thr Kinases; seven isoforms of this family were identified
in mammals: α, β, γ1, γ2, γ3, δ, ε. All the isoforms of CK1 are constitutionally active and
they exhibit activity in monomeric form, They present a highly conserved catalytic domain
(unlike in N and terminal C domains), they utilize ATP as a phosphate group donator and
they are generally independent of the presence of a cofactor [1].

CK1δ and the other isoforms of the family of CK1 can phosphorylate Ser or Thr
residues in sequences such as (P)Ser/Thr-X1-2-Ser/Thr, where (P)Ser/Thr indicates a Ser
or Thr pre-phosphorylated residue [2]; CK1, therefore, needs the substrate to bealready
phosphorylated. Nevertheless, it has been demonstrated that a set of amino acids with
acidic character in the direction of the N-terminal withrespect to Ser/Thr target residue
or an acidic residue in position 3 (preferably Asp) can provide for the lack of the pre-
phosphorylated amino acid [3,4]. This allows CK1 to act also as a Priming Kinase activating
the substrate towards a second enzyme by phosphorylation. Currently, about 140 substrates
(in vitro or in vivo) recognized by CK1 have been described [1].

The activity of CK1 isoforms is regulated in different ways. Phosphorylation is the
principal strategy adopted for the activity regulation of this family of kinases. CK1δis
phosphorylated by kinases such as Akt, PKA, PKCα, CLK2, and Chk1. Moreover, CK1δ
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can also be subjected to auto-phosphorylation [1,5,6]. Another fundamental aspect in the
CK1δ activity regulation is the subcellular compartmentalization, operated through the
binding to intracellular structures and other proteins [7,8]. One last mechanism reported in
the literature for the CK1δ regulation is the formation of homodimers [9,10].

CK1δ, together with other CK1 isoforms, has been correlated to several neurode-
generative processes [11]; in particular, CK1 seems implied in tauopathies, among which
Alzheimer’s disease (AD) is the most representative one.

AD is associated with several cellular processes. The first mechanism described
is correlated to Tau protein, which after phosphorylation tends to come off from the
microtubules forming aggregates at a cytoplasmatic level, leading to cellular damage. A
second mechanism implies instead production and accumulation, with consequent cellular
death, of the β-amyloid peptide. This is produced by the cut of its precursor APP (Amyloid
Precursor Protein) by β-secretase 1 and γ-secretase enzymes. The implications of CK1
isoforms in pathogenetic processes at the root of Alzheimer’s disease are many. In general,
CK1δ proves to be overexpressed in brain tissue, up to 30 times in patients affected by
Alzheimer’s disease [12,13].

Concerning Tau protein, initially, it was observed how CK1 turns out to be associated
with fibrillar masses of hyperphosphorylated Tau protein (Paired Helical filaments) [14];
in particular, CK1δ seems to be accumulated within these fibrillar masses [15]. Later it
was demonstrated how CK1δ can phosphorylate Tau protein causing its separation from
microtubules; the residues of Tau phosphorylated by CK1δ are Ser202, Thr205, Ser396, and
Thr404 [11,16]. As regards β-amyloid peptide, it was described how this can stimulate the
activity of CK1 and CK2 (employing casein as a substrate) [17]. Likewise, there is evidence
that CK1 activity would be proportionally correlated to β-amyloid peptide production,
since in presence of constitutionally active CK1 forms the amount of thispeptide increases,
whereas it decreases in presence of CK1 inhibitors. CK1 interference seems to take place
along with the γ-secretase enzyme [18], but it is more likely correlated to CK1ε isoform,
than to CK1δ [19].

As regards Parkinson’s Disease, it has been observed how CK1 isoforms phosphory-
lated Ser129 of α-synuclein [11,20].

Amyotrophic lateral sclerosis (ALS) is another neurodegenerative disease where CK1δ
plays a role. Indeed, CK1δ phosphorylated TDP-43 (TransActivate Response DNA Binding
Protein 43) at many different residues. TDP-43 is the principal component of the protein
aggregates observed in the pathogenesis of ALS [21,22].

1.2. Fragment-Based Drug Discovery (FBDD) Principles

FBDD is a strategy used in drug discovery that has gained popularity both in the
industrial and academic contexts. In a typical FBDD process a library of polar low molecular
weight compounds is screened against a specific target. Usually, the screening is performed
by biophysical methods including X-ray crystallography, nuclear magnetic resonance
(NMR), thermal shift assay, and surface plasmon resonance (SPR). One of the key factors in
the FBDD success is the smaller size of the fragment-like chemical space compared to the
size of the drug-like one. The size of the drug-like chemical space has been estimated at
around 1060 compounds, many orders of magnitude greater than that of the fragment-like
compounds’ chemical space [23]. This means that, through the screening of fragments, the
portion of chemical space sampled is larger than the one sampled with the screening of
drug-like molecules. This will promisingly also allow the attainment ofinnovative scaffolds
for drug candidates.

Despite the hit fragments having typically a low affinity, they could be turned into a
lead compound that efficiently binds the target. Fragments, having a low molecular weight,
establish few interactions with the target; however, the combination of multiple fragments
by linking and merging or by decorating them with adequate functional groups (fragment
growing) allows thedevelopment of specific and more affine compounds.
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1.3. Fragment-Based Drug Discovery and Kinase Inhibitors

Concerning the identification of kinase inhibitors through an FBDD approach, X-ray
crystallography has also been largely employed because kinases represent a class of protein
that provides good results with this technique.

The most outstanding example of kinase inhibitors derived from an FBDD approach is
Vemurafenib (inhibitor of BRAF) which is an approved drug for the treatment of metastatic
melanoma [24]. The discovery of vemurafenib started with an enzymatic assay screening of
a fragment library. The hit compounds identified were analyzed through X-ray crystallogra-
phy, using the structural information so obtained one fragment was chosen for optimization
leading at the end to Vemurafenib [25]. Another notable example is Asciminib an allosteric
inhibitor of BCR-ABL1 tyrosine kinase, now in phase III clinical trial for resistant chronic
myeloid leukemia. This compound was identified from an NMR-based fragment screening;
the fragment hits identified were then optimized using In Silico methodologies, X-ray
crystallography, and NMR [26,27].

Many other Kinase inhibitors derived from FBDD approaches are in clinical trials; for
a comprehensive review of FBDD derived drugs that have been approved or which are in
clinical trials see [28].

An interesting observation is that the fragments identified often bind at the hinge
region of the kinase and maintain this binding mode also in the mature compound. For
this reason, the library of compounds tested in the present work has been focalized, using
in silico methodologies described in the next sections, to be composed of putative hinge-
binding fragments.

1.4. Computational Methods in FBDD

Since the dawn of FBDD, computational chemistry has playeda major role in both
fragments’ hit identification and in the process of fragment optimization. The MCSS
(multiple copy simultaneous search) algorithm [29] was a pioneering method for the study
of fragment binding modes in a protein site. Another method for fragment posing based
on grand canonical Monte Carlo (GCMC) has been reported [30].

Over the years many in silico methods have been proposed non only for fragment
placement prediction but also to aid the fragment optimization process. Software like
LUDI [31], HOOK [32], CAVEAT [33], RECORE [34], and many others have been developed
for this purpose. Additionally, Schrodinger [35] and CCG [36] implement in their software
suites many tools to aid the fragment optimization process.

Molecular dynamics (MD)-based tools represent the most advanced in silico tech-
niques used in FBDD. The first application of MD to FBDD was the refinement of docking
poses, a method note as post-docking [37]. More advanced protocols have also been
developed. Nonequilibrium candidate Monte Carlo (NCMC) is an algorithm that has
been applied to enhance the sampling of fragment binding modes [38]; this method has
been successfully applied to FBDD [39]. Another promising approach is the application
of Markov state models to MD simulations, which has proved its potential to FBDD [40].
Recently, Supervised Molecular Dynamics (SuMD) [41] has been applied as a fragment
screening tool [42].

Molecular docking has also become a routinely used tool in FBDD. While the confor-
mational sampling performs by docking protocols is generally effective in reproducing the
correct pose for a ligand, the scoring functions frequently fail in valuating this pose [43],
this is especially true for Fragment-like compounds for which many doubts have been
raised about the docking applicability [44]. This said, to make the docking results more
reliable a consensusdocking approach was used [45], and instead of the scoring function,
the poses were evaluated using a pharmacophore model. A post-docking refinement of the
poses wasthen performed. A detailed explanation of the computational workflow adopted
in the present work is reported in Sections 4.1–4.3.
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2. Results
2.1. Computational Results

A library of around 272,000 commercially available fragment compounds was screened
in silico using an integrated structure-based approach based on different techniques such
as molecular docking, molecular dynamics (MD), and pharmacophore filter. The workflow
adopted is reported in Figure 1.

1 

 

 
Figure 1. Schematic representation of the workflow adopted in the present work. First the fragments are retrieved from
several vendors libraries. After proper preparation, the database is docked using three different docking protocols. the
resulting poses have been filtered using a pharmacophore model and only the molecule that fit the model for each protocol
have been retained. The poses of these molecules were further refined using MD to assess the stability of the binding mode.
the molecules that appear to be stable were finally selected trough visual inspection.

At first, three independent docking-based virtual screenings were performed in par-
allel exploiting three different protocols: PLANTS-ChemPLP, GOLD-ChemScore, and
Glide-SP. PLANTS exploits an Ant-Colony Optimization (ACO) algorithm, GOLD a genetic
one while Glide performs an exhaustive search. The choice of these three protocols was
made to evaluate the virtual library with three orthogonal search algorithms, to minimize
the false-positive rate to which traditional docking-based virtual screenings are prone. At
the end of each virtual screening, a total of about 13.6 M poses (50 per ligand) was obtained
for each protocol. The choice to generate such a great number of poses for each ligand was
taken in order not to rely on the scoring function ability to prioritize the best binding mode
for each compound, since fragments can have multiple binding modes that are similar
from an energetic and qualitative point of view and are therefore difficult to distinguish for
scoring functions that are trained upon mature, lead-like, compounds.

To filter this huge amount of ligand conformations and retain only the most interesting
compounds, we decided to exploit the structural knowledge provided by the 23 Ck1d
protein–ligand complexes deposited in the Protein Data Bank and create a pharmacophore
filter. This pharmacophore model was built to retain those features which are vital for the
interaction with the hinge region of the kinase since these features are the most commonly
found across the structures (See Figure 2 for a representation of the Pharmacophore model).
The pharmacophore included three features, two of them to guarantee the interaction with
Leu85 (a hydrogen bond donor and a hydrogen bond acceptor) and the presence of and a
feature for an aromatic ring also in the proximity of the hinge region.

The pharmacophore filter was then applied independently on each pose database
generated by the three different docking protocols. Exploiting an approach known as
consensus docking, the three libraries containing those ligand conformations that fit the
pharmacophore model were merged, retaining only those found within each dataset. After
this consensus filtering, only 840 docking poses were left.

To further filter out those poses characterized by unstable binding modes, a post-
docking molecular dynamics refinement was performed (three replicates, 10 ns each).
The average Root Mean Squared Fluctuation of atomic positions (RMSF) across the three
replicates was used as a cutoff to eliminate those poses characterized by conformational
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instability over time. After filtering out those ligand conformations with RMSF > 2Å,
650 stable poses were maintained.
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Figure 2. Representation of the pharmacophore model used in the present work. Some representative
crystallographic ligands are displayed (not all for clarity). The Pharmacophore model is formed by
an aromatic ring (the three orange spheres define the position and its orientation) and two hydrogen
bonds with the backbone of Leu85 (an acceptor and one donor).

With the intent of prioritizing the most interesting compound for in vitro assays, each
pose was carefully manually examined. After this visual inspection [46] step, 66 fragments
were finally selected to be purchased and tested. The structure of all the 66 fragment
compounds tested are reported in supplementary Table S1, while the pose of each of them
resulted from the VS pipeline is reported in Video S1.

2.2. Enzymatic Assay Results

Fragments were tested against CK1δ using a luminescent-based assay. Compounds
were evaluated at a fixed concentration of 100 µM (see Figure 3) and those that showed a
kinase residual activity lower than 40% were tested also at a fixed concentration of 40 µM
(see Figure 4).
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Figure 4. CK1δ Residual activity at a concentration of 40 µM of the ligands that showed a residual activity of less than 40%
at 100 µM.

IC50 values were calculated for compounds with a residual kinase activity lower
than 40%. Compounds 37, 38, 52, 59,62 and 63 showed IC50 values in the micromolar
range of 12.71 µM (9.57–16.80), 20.49 µM (17.46–24.08), 13.50 µM (12.47–14.62), 13.92 µM
(11.89–16.29), 18.15 µM (16.78–19.64) and 24.86 µM (21.46–28.92), respectively. Remarkably,
compound 28 shows a half-maximal inhibitory concentration of 3.31 µM (2.67–4.12). The
IC50 curves for the sevenhits are reported on SI. The value of IC50 is based on the average
of three independent measurements.

2.3. Molecular Recognition Studies of the Most Promising Fragment

To shed light on the possible recognition mechanism of the most effective inhibitor,
compound 28 (IC50 = 3.31 µM) was investigated by mean of Supervised Molecular Dynam-
ics simulations (SuMD). The primary scope was to assess if the hypothesized bound state
obtained by our computational protocol was also accessible by simulating the fragment
association from the unbound state without any information about the ligand conformation.
Since in our VS-pipeline the pharmacophoric filter plays a primary goal in defining the
bound geometries, its validation by using a more articulated technique based on MD and
in which the water molecules need to be displaced by the fragment to reach the hinge
region would provide the reliability of the binding mode.

A complete recognition pathway of the length of 15 ns is reported in VideoS2 (SI). Com-
pound 28 showed three steps during the recognition, with two stable states (Figure 5A).

A pivotal role in the first phases (around 1 ns time mark) of the ligand recruitment
within the binding site is played by Asp149, which acts as an electrostatic recruiter for the
amino-thiophene moiety of the ligand. By contrast, the vicinal residue Lys38 hampers the
ligand entrance into the core portion of the binding site due to the electrostatic repulsion
between the charged amino group of the amino acid side chain and the non-charged amino
group of the ligand. The balance in attraction and repulsion between the flexible side
chains of these two amino acids located at the boundary of the binding site is depicted
also by the large energetic funnel shown in Figure 5A at around 10 Å with regard to the
distance between the centers of mass of the binding site and the ligand (dcmL-R).
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SuMD trajectory (orange).

Afterwards, the binding pathway is characterized by two stable ligand conformations
within the binding site. The first state (S1) occurred at a dcmL-R distance of 4.5 Å, with the
ligand interacting with the backbone of Leu85 through its amino-thiophene moiety and the
morpholine moiety oriented towards the external part of the binding site (solvent-exposed),
while the second one (S2) at a dcmL-R distance of 1.5 Å is characterized by a bivalent
hydrogen bond with Leu85 and the morpholine moiety of the ligand buried within the
hydrophobic selectivity pocket defined by Met80, Met82, Ile23 and the alkyl portion of
the Lys38 side chain. Although these two states are characterized by similar interaction
energy values (according to the AMBER forcefield), their energetic funnels have different
shapes: the final state (S2) shows a narrower profile than the S1 state, suggesting that the
pharmacophore binding mode (S2) has a higher stability than S1. Furthermore, the final
bound state nicely retraced the pose obtained with the VS pipeline, validating both the
pharmacophore model used in this work and the binding mode proposed by molecular
docking for this compound (Figure 5B).

3. Discussion

The seven fragments that were characterized by calculating the IC50 showed a notice-
able chemical diversity including scaffolds spanning from one to three nitrogen-containing
fused rings. The poses of the seven hits as obtained in the VS are reported in Figure 6.
All the fragments logically share the common interaction pattern required by the phar-
macophore filter. Interestingly, compounds 28, 37, 38, 52, 62, and 63 showed a similar
interaction scheme in which an aromatic amine moiety was able to establish a hydrogen
bond with the carbonyl oxygen of the Leu85 backbone while a further hydrogen bond
between the Leu85 backbone amide is guaranteed by aromatic nitrogen in ortho to the
amine group. Compounds 37, 52, and 59 share a conserved pyrimidine ring that is part
of different fused systems. Compound 59 also has the pyrimidine ring in a different ori-
entation: it restores the hydrogen bond donor by its fused pyridone ring. Compounds
38 and 63 present the same scaffold. To assess the novelty of the identified fragments, a
substructure search was performed against ChEMBL using the main ring recognized by the
pharmacophore as a query; except for compounds 38 e 52, which resulted in 34 and 20 al-
ready known CK1δ inhibitors, for all the remaining hits none known inhibitors werefound
sharing the principal ring. The 3-amino-indazole scaffold of compound 38 was found
in a multikinase inhibitor (CHEMBL1999931) witha Kiof 316.23 nM [47]. For compound
52 a couple of ligands with low uM activity were found; in particular CHEMBL2000114
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with a Ki of 1 uM arose from the same kinome scan from Abbott Labs [47]. Additionally,
compound GSK1838705A showed the same scaffold of 52, in this case the Ki reported is
3.5 uM but it is a residual activity since the compound is a potent inhibitor of ALK kinase
(IC50 = 0.5 nM) [48].
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recognized by the pharmacophore as a query; except for compounds 38 e 52, which re-
sulted in 34 and 20 already known CK1δ inhibitors, for all the remaining hits none known 
inhibitors werefound sharing the principal ring. The 3-amino-indazole scaffold of com-
pound 38 was found in a multikinase inhibitor (CHEMBL1999931) witha Kiof 316.23 
nM[47]. For compound 52 a couple of ligands with low uM activity were found; in par-
ticular CHEMBL2000114 with a Ki of 1 uM arose from the same kinome scan from Abbott 
Labs [47]. Additionally, compound GSK1838705A showed the same scaffold of 52, in this 
case the Ki reported is 3.5 uM but it is a residual activity since the compound is a potent 
inhibitor of ALK kinase (IC50 = 0.5 nM)[48]. 

 
Figure 6. The structure and binding mode for the seven compounds for which the IC50 value is reported. The value of IC50
is based on the average of three independent measurements.

4. Materials and Methods
4.1. Molecular Modelling and Docking

The virtual library used in this work was obtained through the merging of different
libraries of commercially available compounds designed for FBDD. The vendors are Asinex
(www.asinex.com, accessed on 25 July 2021) (Winston-Salem, NC, USA), Chembridge
(www.chembridge.com, accessed on 25 July 2021) (San Diego, CA, USA), Enamine (www.
enamine.net, accessed on 25 July 2021) (Kiev, Ukraine), Life Chemicals (www.lifechemicals.
com, accessed on 25 July 2021) (Burlington, ON, Canada), Maybridge (www.thermofisher.
com/it/en/home/chemicals/maybridge, accessed on 25 July 2021) (Worthing, UK), Otava

www.asinex.com
www.chembridge.com
www.enamine.net
www.enamine.net
www.lifechemicals.com
www.lifechemicals.com
www.thermofisher.com/it/en/home/chemicals/maybridge
www.thermofisher.com/it/en/home/chemicals/maybridge
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(www.otavachemicals.com, accessed on 25 July 2021) (Ann Arbor, MI, USA), Timtec
(www.timtec.net, accessed on 25 July 2021) (Newark, DE, USA), Vitas (www.vitasmlab.biz,
accessed on 25 July 2021) (Miami, Fl, USA). The total number of fragments in the merged
library is about 272,000 virtual compounds.

The merged library was prepared to be suitable for the Docking-Based Virtual Screen-
ing. This preparation consists of the following steps: the tautomeric state enumeration for
each compound and determination of the most probable tautomer (for each molecule the
three most tautomeric states was retained), the most probable ionization state at pH 7.4
calculation, the atomic partial charge calculation (using MMFF94 force field), the 3D co-
ordinates generation. All these steps were performed using QUACPAC of theOpeneye
suite [49] except for the 3D coordinated generation for which Corina Classic was used [50].

The protein used both for Docking and for MD simulation was prepared using MOE.
The preparation consists ofthe removal of the crystallographic water molecules and other
solvent molecules together with ions and the ligand. The correct protonation state for each
residue at pH 7.4 was calculated with the Protonate3D tool of MOE.

For the Consensus Docking strategy, three different Molecular Docking protocols
were used. To make the results more robust, the three docking protocols chosen rely on
search algorithms of different types. The Molecular Docking Protocols are PLANTS [51–53]
which is based on an Ant Colony Optimization algorithm, GOLD [54,55] which employs
a genetic algorithm, and Glide [56,57] which use a systematic searching approach. The
Scoring Functions adopted are CHEMPLP for PLANTS, ChemScore for GOLD, and Glide
SP for Glide. For each fragment 50 poses were generated using each Docking Protocol even
if the termination criteria and the nature of the algorithms did not always provide 50 poses,
in particular for Glide SP.

Similarity and substructure searches were performed with MOE using the ChEMBL29
database.

4.2. Pharmacophore Modeling

Each ensemble of poses (one for each docking protocol) wasthen filtered using a
pharmacophore model. This pharmacophore model was calculated using MOE: all the holo
crystal structures available on the PDB for human CK1δwere superposed and the common
features of each ligand were analyzed. The list of complexes included 23 complexes with
PDB ID: 3UYT, 3UZP, 4HGT, 4HNF, 4KB8, 4KBA, 4KBC, 4KBK, 4TN6, 4TW9, 4TWC, 5IH5,
5IH6, 5MQV, 5OKT, 5W4W, 6F1W, 6F26, 6GZM, 6HMP, 6HMR, 6RCG, 6RCH.

Since the ligands present in the crystal structures are drug-like molecules, it is difficult
that a fragment can comply with all the common features observed in the crystal structures.
For this reason (and because as stated above the first fragment identified in an FBDD
process of a kinase inhibitor is a hinge binding fragment) the pharmacophore model was
built using only the features involved in the interaction with the hinge region of the kinase.
The model included three features: one hydrogen bond donor and one hydrogen bond
acceptor to guarantee the interaction with the backbone of Leu85 (Figure 2). The last feature
represents an aromatic ring also in the proximity of the hinge region. Only the molecule
that has passed the Pharmacophore filtering for each protocol hwas retained (consensus).

4.3. Molecular Dynamics

The molecules retained after the consensus filtering were subjected to a post-docking
refinement. The docking pose used in this step is the one obtained from Glide. All the
simulations were carried out using ACEMD3 [58] with ff14SB as force field [59], the system
preparation wasconductedwith MOE concerning protein preparation and with the use of
AmberTools14 for the simulation box preparation.

For each complex, a simulation box was prepared: the protein was immersed in an
explicit TIP3P [60] solvent box, with an ionic strength of 0.154M obtained using Na+/Cl−.
The protein is 15Å away from the border of the box.

www.otavachemicals.com
www.timtec.net
www.vitasmlab.biz
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Using the conjugate gradient method, the system energy was minimized for 500 steps;
after this minimization the system was equilibrated in two stages. The first equilibration
consists of 1ns of NVT simulation with harmonic positional constraints of 1 kcal mol−1Å−2

on the protein. In the second equilibration step, which consists in this case of 1ns of NPT
simulation, the constraints of 1 kcal mol−1Å−2 were applied only on the α carbons of the
protein. After the equilibration for each protein–pose complex, three NVT trajectories of
10 ns were produced. The average RMSF of the ligand during these three replicas was
calculated and if this value wasgreater than 2Å the molecule was discarded.

A Supervised Molecular Dynamics [41,61] simulation was performed to gainsome
insights into the binding process of the most potent fragment (Compound 28). SuMD is an
MD-based method developed to investigate molecular binding events without energetic
biases. The algorithm is based on the supervision of the ligand–protein binding site
center of mass distance during a classical short MD simulation. At the end of each small
simulation (SuMD step), this distance is measured: if it hasshortened during the SuMD
step, the simulation continues with another SuMD step, otherwise, it is stopped, and the
simulation restarts from the previous set of coordinates. The fragment was placed 30 Å
away from the protein. Each SuMD step was set to 300 ps.

4.4. Enzymatic Assay

Compounds were evaluated towards CK1δ (aa 1-294, Merck Millipore, Frankfurter
Strasse 250, Darmstadt, 64293, Germany) with the KinaseGlo® luminescence assay (Promega
Corporation, 2800 Woods Hollow Road Madison, WI 53711, USA) following procedures
reported in the literature [22]. In detail, luminescent assays were performed in white
96-well plates, using the following buffer: 50 mM HEPES (pH 7.5),1 mM EDTA, 1 mM
EGTA, and 15 mM MgCl2. Compound PF-670462 (IC50 = 14 nM) was used as a positive
control for CK1δ [62] and DMSO/buffer solution was used as a negative control. In a
typical assay, 10 µL of inhibitor solution (dissolved in DMSO at 10 mM concentration and
diluted in assay buffer to the desired concentration) and 10 µL (16 ng) of enzyme solution
were added to each well, followed by 20 µL of assay buffer containing 0.1% casein substrate
and 4 µM ATP. The final DMSO concentration in the reaction mixture did not exceed 1%.

After 60 min of incubation at 30 ◦C, the enzymatic reactions were stopped with 40 µL
of KinaseGlo® reagent (Promega). The luminescence signal (relative light unit, RLU) was
recorded after 10 min at 25 ◦C using Tecan Infinite M100. Fixed-dose experiments were
performed at 100 µM and for more potent compounds also at 40 µM. Two independent
experiments were performed in duplicate and the corresponding residual activity of CK1δ
was obtained. Data were analyzed using Excel and reported as the mean of the two
experiments with standard deviation. For IC50 determination ten different inhibitor concen-
trations ranging from 100 to0.026 µM were used and each point was assessedin duplicate.
IC50 values are the mean of three independent experiments and 95% confidence limits were
also reported. Data were analyzed using GraphPad Prism software (version 8.0).

5. Conclusions

In the present work to find new potential CK1δ inhibitors, we elaborated a computa-
tional workflow for the identification of candidate hinge binding fragments. This workflow
consists of the generation of a large number of poses for each compound of a virtual library
of commercially available fragments using three different Docking protocols. These poses
were filtered using a pharmacophore model and only the fragment for which each docking
protocol was able to produce a pose that fits the model was retained (consensus docking). In
the next, step each protein-fragment complex that passed the previous filter wassubjected
to an MD-driven post-docking refinement to inspect the geometric stability of the pose.
Finally, some fragments were manually selected among the group that demonstrated a
good performance in the post-docking refinement; to validate the method these fragments
were tested using an enzymatic assay test to assess the CK1δ residual activity, and for
the most promising candidates, the IC50 value was determined, with a value in the low



Int. J. Mol. Sci. 2021, 22, 9741 11 of 13

micromolar range. Five of seven fragments showed novel scaffolds for CK1δ, confirming
that the proposed pipeline could be particularly useful to identify novel structures.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22189741/s1.
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