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Abstract: Because of their low cost and easy production, silica nanoparticles (SiNPs) are widely
used in multiple manufacturing applications as anti-caking, densifying and hydrophobic agents.
However, this has increased the exposure levels of the general population and has raised concerns
about the toxicity of this nanomaterial. SiNPs affect the function of the airway epithelium, but the
biochemical pathways targeted by these particles remain largely unknown. Here we investigated the
effects of SiNPs on the responses of 16HBE14o- cultured human bronchial epithelial (16HBE) cells
to the damage-associated molecular pattern ATP, using fluorometric measurements of intracellular
Ca2+ concentration. Upon stimulation with extracellular ATP, these cells displayed a concentration-
dependent increase in intracellular Ca2+, which was mediated by release from intracellular stores.
SiNPs inhibited the Ca2+ responses to ATP within minutes of application and at low micromolar
concentrations, which are significantly faster and more potent than those previously reported for
the induction of cellular toxicity and pro-inflammatory responses. SiNPs-induced inhibition is
independent from the increase in intracellular Ca2+ they produce, is largely irreversible and occurs
via a non-competitive mechanism. These findings suggest that SiNPs reduce the ability of airway
epithelial cells to mount ATP-dependent protective responses.
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1. Introduction

Nanoparticles (NPs) designate small-sized natural or engineered particulate matter
with dimensions of less than 100 nm in at least one dimension and physical and chemical
properties that differ from those of the bulk material. They are composed of a wide
range of materials, such as metals, inorganic carbon, and organic compounds. In the last
decades, NPs have gained popularity in many industries, as their unique properties make
them suitable for use in cosmetics, biotechnology, food, pharmaceutical and chemical
industries [1–7].

Human exposure to NPs has increased considerably since the nano-technological
revolution. Their small dimensions and unique physico-chemical properties facilitate
the ability of nanoparticles to cross different barriers and to reach distal organs [8–12].
They can penetrate the plasma membrane and deposit into subcellular structures such
as mitochondria, endoplasmic reticulum and lysosomes, thereby posing potential health
threats [13–17]. This, together with their extensive use in consumer products, has raised
concerns about the safety of NPs [8,18]. A growing body of evidence points towards the
deleterious effects of NPs [19–22]. However, not all NPs are harmful, and some of them are
engineered to be used in medicine as drug nanocarriers due to their specific interaction
with target organs [6,23]. NPs can enter our bodies by inhalation, ingestion, injection or
through the skin, but the main entry route is the airway epithelium [8,24].

Besides its role in gas exchange, the airway epithelium protects the body from foreign
substances. The cells lining the respiratory tract have key roles in mucociliary clearance
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and contribute to the initiation of airway inflammation [25–28]. In the airways, NPs may
interact with epithelial cells and alter their exocrine and paracrine functions, and with
sensory neurons, which initiate the cough reflex and neurogenic inflammation [29]. It has
been shown that upon inhalation, NPs impair the normal functioning of the airways by
inducing inflammation, increasing the secretion of mucus and inhibiting the ciliary beat
frequency [30–34].

Silica particles (SiNPs), the subject of this study, are among the most produced syn-
thetic nanomaterials worldwide due to their tunable physico-chemical properties, stability,
low cost and easy production [7,35,36]. SiNPs have been shown to induce lung inflam-
mation, cytotoxic responses such as apoptosis, DNA damage and endoplasmic reticulum
stress; they increase the reactive oxygen species (ROS) production by altering Ca2+ home-
ostasis, disrupt the plasma membrane upon uptake and alter membrane fluidity and
integrity [7,10,15,20,21,37,38]. Previous studies indicate that the effects induced by SiNPs
are size- and concentration-dependent and differ across cell types. More pronounced
toxic effects have been reported for smaller particles, increased doses and prolonged ex-
posure times [7,15,39]. Very recent studies using three-dimensional model airway and
lung preparations have shown that SiNPs induce genotoxicity [40], asymmetric changes in
pro-inflammatory cytokine and chemokine expression across the airway barrier and the
increase in adhesion molecules in the apical compartment [41].

Despite the extensive research on the toxicity of SiNPs, the mechanisms underlying
their deleterious effects are poorly understood. For instance, most of the studies related
to SiNPs are focused on chronic effects for in vitro exposure times ranging from several
hours up to days [42]. On the other hand, recent research has illustrated the importance
of studying also the acute interaction of SiNPs with specific cellular structures and sig-
naling pathways. For instance, SiNP-induced modulation in the time scales of seconds
and minutes have been reported for cation-permeable channels that play crucial roles in
cell signaling [30,37,39,43,44]. In this sense, ATP-mediated signaling is considered to be
involved in inflammatory responses to SiNPs in multiple cell types [45–50].

ATP receptors are ligand-gated cation channels (P2X, ionotropic) or G protein-coupled
receptors (P2Y, metabotropic) [51–54]. Activation of P2X receptors leads to extracellular
Ca2+ influx, resulting in plasma membrane depolarization and direct increase in intra-
cellular [Ca2+]. In contrast, activation of P2Y receptors activates inositol triphosphate
(IP3)-mediated signaling, which opens IP3 receptor Ca2+ channels in the membrane of en-
doplasmic reticulum (ER), leading to Ca2+ release from these stores [52,55]. In the airways,
extracellular ATP signals tissue damage induced by particulates or pathogens, and is there-
fore considered as a damage-associated molecular pattern (DAMP) [56]. ATP receptors
are expressed along the respiratory tract in epithelial cells and in sensory nerves in upper
(trigeminal ganglia) and lower airways (nodose and dorsal root ganglia) [57–59]. It has
been reported that these types of cells express P2X, as well as P2Y receptors. However,
airway injury induced by particulate matter inhalation has been predominantly associated
with P2Y-mediated signaling in epithelial cells leading to enhanced mucociliary clearance.
On the other hand, P2X receptors have a prominent role in sensory nerves, as their activa-
tion triggers defensive responses such as cough [56,60–65]. Most of the studies addressing
ATP-mediated signaling are related to ATP release upon cell damage [66].

The purpose of this study was to determine whether SiNPs affect the responses
of airway epithelial cells to ATP. Using cultured human bronchial epithelial (16HBE)
cells as a model, we found that acute extracellular application of commercially available
SINPs potently reduces the responses to ATP in a concentration-dependent manner. Our
results unveil the ATP signaling pathway as a direct cellular target of SiNPs. In the broad
context, this suggests that SiNPs affect the ability of airway epithelial cells to respond to
environmental and endogenous stimuli that require ATP-mediated signaling.
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2. Results

2.1. Intracellular Ca2+ Response of 16HBE Cells to Extracellular ATP

We first characterized the response of 16HBE cells to extracellular application of ATP,
under constant perfusion of standard Krebs solution (containing 1.5 mM Ca2+, see Ma-
terials and Methods). We determined the amplitude of the increase in intracellular Ca2+

concentrations induced by three consecutive applications of ATP, at various concentrations
(from 0.3 to 100 µM; Figure 1a–c). The responses very commonly showed a sharp initial
upstroke phase, followed by a slow decrease in [Ca2+], typical of the activation of ATP re-
ceptors [67]. As expected, the response in intracellular [Ca2+] was concentration-dependent
(Figure 1d).
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to determine if SiNPs affect the responses to ATP, by comparing the amplitudes of the 
responses to ATP in the absence and in the presence of SiNPs in the same cells. 
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Figure 1. Extracellular ATP induces concentration-dependent responses in 16HBE cells. (a–c) Ex-
amples of intracellular [Ca2+] traces showing the responses to extracellular ATP applied at 1 µM
(a), 10 µM (b) or 100 µM (c), using a standard Krebs solution. (d) Concentration dependence of the
amplitude of the responses to the 1st (black), 2nd (blue) and 3rd (purple) applications of ATP. The
data are represented as mean ± s.e.m. (n = 179, 59, 75, 96, 278 and 128, for ATP 0.3, 1, 3, 10, 30 and
100 µM, respectively).

This type of stimulation protocol allowed us to evoke consecutive responses to ATP in
a reliable manner, with no desensitization. Thus, we could use a variant of this protocol
to determine if SiNPs affect the responses to ATP, by comparing the amplitudes of the
responses to ATP in the absence and in the presence of SiNPs in the same cells.

2.2. The Ca2+ Responses to ATP Are Mediated by Release from Intracellular Stores

The intracellular Ca2+ responses to ATP may be mediated by metabotropic (P2Y)
and/or by ionotropic (P2X) receptors. To determine the origin of the Ca2+ increase upon
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ATP application in our experimental conditions, we performed measurements in the
absence of extracellular Ca2+. For this, cells were allowed to stabilize in the standard
Krebs solution before the experiments and then perfused with a Ca2+-free extracellular
solution (see Materials and Methods). In the latter condition, a first application of 10 µM
ATP elicited sizeable intracellular Ca2+ responses, whose amplitudes were not significantly
different from the amplitudes of the responses recorded in the presence of extracellular
Ca2+ (Figure 2a,b, columns ATP 1st). In contrast, the second ATP application induced a
transient increase in intracellular [Ca2+] only in a very limited number of cells (Figure 2a,b,
columns ATP 2nd), and a third application failed to trigger any response (Figure 2a,b,
columns ATP 3rd).
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Figure 2. ATP mobilizes Ca2+ from intracellular stores. (a) Examples of traces of [Ca2+] recorded in
16HBE cells showing the effects of repetitive extracellular application of 10 µM ATP in the absence of
extracellular Ca2+. (b) Amplitude of the responses to the 1st, 2nd and 3rd ATP applications in the
presence and in the absence of extracellular Ca2+. The data are represented as mean ± s.e.m. (n = 207,
482, 97, 249, 97 and 247 for the columns from left to right). The asterisks (**) denote statistically
significant difference of the data obtained in the Ca2+-free condition (−Ca2+) with respect to the
corresponding control data (+Ca2+) (p < 0.01; Kolmogorov-Smirnov test).

These results show that 16HBE cells can support full-sized responses at least to a
first application of ATP in the absence of extracellular Ca2+. This demonstrates that the
responses are mediated by release from intracellular stores.

2.3. Concentration-Dependent Inhibition of Responses to ATP by SiNPs

To determine if SiNPs alter the responses to ATP, we used the same protocol described
for Figure 1, but applying SiNPs 7 min prior and during the second stimulation with
10 µM ATP, all during perfusion of the standard Krebs solution (Figure 3a–c). Notably,
SiNPs increased the baseline [Ca2+] prior to the second ATP application, in accordance
with our previous study [30]. This increase in [Ca2+] appeared not to be reversible after
washout of the nanoparticles for at least the next 9 min of duration of the experiment
(Figure 3a–c). The 7 min pre-application of SiNPs was required to assess the effects of ATP
without interfering with the increase in intracellular [Ca2+] elicited by the particles. SiNPs
were applied at several concentrations (1, 3, 10, or 100 µg/mL). To quantify the effects of
SiNPs, we determined the ratio between the amplitudes of the responses to the second or
third application of ATP and the amplitude of the responses to the first application of ATP.
SiNPs reduced the amplitude of responses to ATP in a concentration-dependent manner.
The amplitude of the second response to ATP was not significantly affected during the
application of 1 µg/mL SiNPs (Figure 3a,d), but was reduced at higher concentrations
(Figure 3b–d). The inhibitory effect of SiNPs was more pronounced on the third ATP
application, after the removal of the particles from the extracellular solution (Figure 3d).
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Figure 3. SiNPs induce a concentration-dependent inhibition of the response to ATP. (a–c) Examples
of intracellular [Ca2+] traces showing the effects of SiNPs when applied at 1 µg/mL (a), 3 µg/mL
(b) or 10 µg/mL (c), before and during the 2nd application of 10 µM ATP. The arrows point to
the increase in intracellular [Ca2+] induced by the application of the SiNPs. (d) Ratio between the
amplitudes of the responses to the 2nd and 3rd applications of ATP and the amplitude of the response
to the 1st application of ATP, as a function of the concentration of SiNPs. The data are represented
as mean ± s.e.m. (n = 135, 135, 52 and 92 for SiNPs at 1, 3, 10 and 100 µg/mL, respectively. The
asterisks (**) denote statistically significant difference with respect to the corresponding control data
[SiNPs] = 0 µg/mL (p < 0.01; Kolmogorov-Smirnov test).

Viability tests using fluorescence activated cell sorting with propidium iodide as a
marker of dead cells showed only a marginal increase in the number of non-viable cells
after 10 min exposure to 100 µg/mL SiNPs (3.2% above the control level; Figure S1).

2.4. Prolonged Inhibitory Effects of SiNPs on the Responses to ATP

The above results show that SiNPs not only inhibit the response to ATP when they
are applied simultaneously, but also affect the response to a subsequent ATP application
9 min apart. To determine if the reduction in ATP response caused by SiNPs persists after
a longer time, we modified the previous protocol by delaying the third ATP application
by 30 min. We found that the responses to a third application of ATP after almost 1 h of
keeping the cells in Krebs solution were largely preserved (Figure 4a,c).
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This allowed us to confidently assess the effect of SiNPs on a delayed exposure to 
ATP. Using this protocol, we observed that SiNPs application resulted in an increase in 

Figure 4. Persistent inhibitory action of SiNPs on responses to ATP. (a) Examples of intracellular
[Ca2+] traces showing the effects of extracellular ATP applied at 10 µM. (b) Examples of intracellular
[Ca2+] traces showing the effects of SiNPs when applied at 100 µg/mL, before and during a second
application of 10 µM ATP. (c) Amplitude of the responses to three consecutive applications of ATP
for the control series of experiments (black bars, n = 164) and for a series of experiments in which
100 µg/mL SiNPs was applied 9 min before and during the second application of ATP (white bars,
n = 140). The data are represented as mean ± s.e.m. The asterisks (**) denote statistically significant
difference of the data obtained in SiNPs with respect to the corresponding control data in the absence
of SiNPs (p < 0.01; Kolmogorov-Smirnov test). The # symbol denotes statistically significant difference
between ATP2nd + SiNPs and ATP3rd after SiNPs (p < 0.01; Kolmogorov-Smirnov test).

This allowed us to confidently assess the effect of SiNPs on a delayed exposure to
ATP. Using this protocol, we observed that SiNPs application resulted in an increase in the



Int. J. Mol. Sci. 2021, 22, 10173 7 of 17

intracellular [Ca2+] throughout the remaining measurements, i.e., long after SiNPs washout
(Figure 4b). However, more critically to the current study, we found that the responses to
ATP did not recover after 35 min of washout of the SiNPs (Figure 4b,c).

2.5. Effects of Intracellular Ca2+ Overload on the Responses to ATP

SiNPs on their own induce an increase in [Ca2+] that, hypothetically, might lead to
inhibition of the response to ATP. As a way to assess this possibility, we tested whether
the inhibition of the response to ATP correlated with the increase in intracellular [Ca2+]
induced by the previous application of 100 µg/mL SiNPs. For this, we used the data
corresponding to the point 100 µg/mL SiNPs presented in Figure 3d. We found that the
ratio of the amplitudes of the responses to the second and first applications of ATP, which
is a direct measure of the effect of the SiNPs, did not correlate with either the maximal
increase or the average increase induced by the application of SiNPs previous to the second
ATP application (Figure 5a,b). The lack of correlation was even more obvious between the
effects of the SiNPs on the third ATP application and the previous intracellular Ca2+ levels,
i.e., maximal or mean values (Figure 5c,d).
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Figure 5. Lack of correlation between the reduction in the response to ATP and the increase in
intracellular [Ca2+] induced by SiNPs. (a,b) Plots of the ratio of the amplitudes of the responses to
the 2nd and 1st applications of 10 µM ATP versus the maximal increase (a) and mean increase (b) in
intracellular [Ca2+] induced by 100 µg/mL SiNPs. (c,d) Equivalent plots to those shown in panels
(a,b), but using the ratio of the amplitudes of the responses to the 3rd and 1st applications of 10 µM
ATP. The lines represent the corresponding linear fits, with R2 values of 0.04, 0.04, 0.002 and 0.004, for
panels (a–d), respectively.
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We further probed for a relation between an increase in the intracellular [Ca2+] and
the amplitude of the response to ATP by testing whether an increase in [Ca2+] induced by
a mechanism distinct from that of the SiNPs has a similar inhibitory effect on the responses
to ATP. We did this by perfusing the cells with the standard Krebs solution and testing
the effects of adding the Ca2+ ionophore ionomycin (1 µM). A series of parallel control
experiments showed that consecutive ATP applications triggered sizeable intracellular
Ca2+ responses (Figure 6a,c; black bars).
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Figure 6. Response to ATP in 16HBE cells overloaded with Ca2+. (a) Example of control [Ca2+] traces
recorded in 16HBE cells showing the responses to repetitive extracellular application of 10 µM ATP.
(b) Examples of traces showing the effects of 1 µM ionomycin when applied before and during the
second application of 10 µM ATP. (c) Amplitude of the responses to three consecutive applications
of ATP for the control series of experiments (black bars, n = 36) and for a series of experiments in
which 1 µM ionomycin was applied 2 min before and during the second application of ATP (white
bars, n = 42). The data are represented as mean ± s.e.m. The asterisks denote statistically significant
difference between ATP 3rd and ATP 3rd after ionomycin (p < 0.01; Kolmogorov-Smirnov test).
(d) Comparison of the amplitude of the [Ca2+] responses induced by 100 µg/mL SiNPs and by 1 µM
ionomycin (n = 92 and 42, respectively). The data are represented as mean ± s.e.m. The asterisks (**)
denote statistically significant difference between the two bars (p < 0.01; Kolmogorov-Smirnov test).

As expected, ionomycin induced a fast and robust increase in [Ca2+], which was in
fact much larger than that induced by SiNPs (Figure 6b,d). In contrast to the increase
observed with the SiNPs, application of ATP during the perfusion of ionomycin did elicit
an additional increase in [Ca2+] (Figure 6b). The amplitudes of these responses were not
significantly different from the amplitudes observed in the control experiments (Figure 6c).
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We did observe, however, that the responses to ATP developed more slowly in the presence
of ionomycin than in control condition (Figure 6b). This effect was not further characterized.
The response to the third application of ATP appeared to be affected by the prior treatment
with ionomycin (Figure 6b,c), but nevertheless this effect was smaller than that caused by
100 µg/mL SiNPs (see data for ATP 10 µM in Figure 2b).

2.6. Effects of SiNPs on the Concentration Dependence of the Response to ATP

In order to gain further insight into the mechanism of action of SiNPs, we determined
how they alter the concentration dependency of the response to ATP. For this, we used
the same ATP application protocol described above (Figure 1), but perfusing 100 µg/mL
SiNPs 7 min prior and during the second stimulation with ATP (in the standard Krebs
solution). We used SiNPs at this concentration because the effects were most robust both
for the increase in intracellular [Ca2+] and for the inhibition of the responses to ATP, which
was expected to result in less data variance. We confirmed the responses to ATP to be
significantly inhibited in the presence of SiNPs (Figure 7a–d), and that the response to
the third application of ATP was also inhibited, further demonstrating that SiNPs had an
inhibitory effect even after they were removed from the extracellular solution (Figure 7a–d).
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Figure 7. Effects of SiNPs on the concentration dependency of the response to ATP. (a–c) Examples of
intracellular [Ca2+] traces showing the effects of 100 µg/mL SiNPs on the responses to extracellular
ATP applied at 1 µM (a), 10 µM (b) or 100 µM (c). (d) Concentration dependence of the amplitude of
the responses to ATP, for the 1st (control), 2nd (in the presence of SiNPs) and 3rd (after washout of
SiNPs) applications. The data are represented as mean ± s.e.m. (n = 213, 68, 130, 109, 169 and 146 for
ATP 0.3, 1, 3, 10, 30 and 100 µM, respectively).
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By comparing the data shown in Figure 7d with those in Figure 1d, it can be noticed
that, apart from the obvious differences in maximal values, the shapes of the concentration
dependencies determined in the absence and in the presence of 100 µg/mL SiNPs appeared
to be similar. To test whether this was indeed the case, we replotted the data by normalizing
each curve to the respective value obtained at ATP 100 µM (Figure 8a,b).
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Figure 8. Non-competitive inhibitory effect of SiNPs on the response to ATP. (a,b) Normalized
concentration dependence of the amplitude of the responses to ATP, for the 2nd application (control
and in the presence of SiNPs) and for the 3rd application (control and after washout of SiNPs). The
normalization was performed by dividing the data sets of Figures 1d and 5d by the corresponding
values obtained for 100 µM ATP. (c,d) Lineweaver–Burk plots of the data shown in Figures 1d and 5d.
The lines represent fits with linear functions. The data are represented as mean ± s.e.m. The n
numbers are the same as in the original figures.

The comparison of the normalized curves revealed a large overlap of the data ob-
tained in the presence and during washout of the SiNPs with the respective normalized
control curves. Finally, we represented these data as Lineweaver–Burk plots (1/∆[Ca2+]
vs. 1/[ATP]) and fitted them with linear functions (Figure 8c,d). The fits yielded linear
functions with slopes that were different between control (2.45 ± 0.11 and 2.08 ± 0.24 for
second and third ATP applications, respectively) and SiNPs (9.92 ± 0.9 and 12.9 ± 3.3
for second and third ATP applications, respectively). In contrast, the resulting intercepts
with the 1/[ATP] axis, which relate to the inverse of the apparent equilibrium constant
(−1/KM), were nearly identical for control and SiNPs conditions (second ATP applica-
tion: −0.44 ± 0.08 µM−1 and −0.47 ± 0.17 µM−1, respectively, and third ATP application:
−0.52 ± 0.08 µM−1 and −0.52 ± 0.21 µM−1, respectively). The corresponding KM values
for the second ATP application were therefore 2.27 ± 0.4 µM and 2.2 ± 0.8 µM for control
and SiNPs, respectively, and for the third ATP application, 1.9 ± 0.3 µM and 1.9 ± 0.8 µM
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for control and SiNPs, respectively. This analysis shows that the SiNPs only decreased the
maximal response (efficacy) and not the sensitivity to ATP, suggesting that they have a
non-competitive inhibitory action.

3. Discussion

Extracellular ATP is a key signaling molecule for the physiology of the airway epithe-
lium, as it mediates responses such as the increase in ciliary beat frequency and mucus
production and triggers the cough reflex. Moreover, ATP is a key messenger of cellular
damage, and its detection plays a key role in activating protective mechanisms in neigh-
boring healthy cells. Therefore, an insufficient ability to trigger a full response to ATP
is expected to lead to reduced protective responses. Previous studies have established
the implication of ATP-mediated signaling upon exposure to nanomaterials, including
silica. However, these have mainly reported the induction of ATP release upon long-term
exposure, from 30–40 min [47–49] to several hours [46,68,69]. In contrast, the acute effects
of the nanoparticles on ATP-mediated signaling, that is, on the response to ATP itself,
remained to be investigated. To cover this information gap, in this study we assessed the
acute effects of 10 nm SiNPs on the responses of cultured human airway epithelial cells
to ATP.

We used the 16HBE cell line, which has been referred to as an excellent model for
studying ATP-induced intracellular Ca2+ transients in human airway epithelial cells [70].
Accordingly, we found these cells to respond consistently to extracellular application of
ATP in the range between 0.3 and 100 µM. These responses had amplitudes that increased
with the ATP concentration and displayed the typical morphology, with a fast upstroke
phase followed by a biphasic decay [70]. We further found that cells responded to a first
application of ATP with Ca2+ transients of normal amplitude in free extracellular Ca2+

solutions. This shows that in our experimental conditions, 16HBE cells respond to ATP
via activation of P2Y receptors, leading to IP3-induced Ca2+ release from intracellular
stores via type 3 IP3 receptors, as previously reported [70,71]. Interestingly, the second
and third applications of ATP in Ca2+-free solution failed to evoke responses, which may
have been due to a strong depletion of the intracellular stores induced by the first ATP
application. In turn, this indicates the crucial importance of the replenishing mechanisms
for the maintenance of responsiveness to repetitive stimulation with ATP in physiological
conditions (in the presence of extracellular Ca2+). We indeed found that in the latter
condition, consecutive applications of ATP several minutes apart induced reproducible
responses. This allowed us to assess the effects of SiNPs by comparing the amplitudes of
the responses to ATP in the absence and in the presence of SiNPs in the same cells.

Using this experimental paradigm, we found that SiNPs reduce the response to ATP
in a concentration-dependent manner. This inhibitory effect was not only observed in the
presence of the SiNPs, but also found to persist and to be actually stronger up to 35 min
after the removal of SiNPs from the extracellular solution (Figures 3, 4 and 6). Future
experiments may serve to determine whether the inhibition of the responses to ATP is
reversible over longer periods of time. Nevertheless, the prolonged irreversibility of the
inhibitory action of SiNPs demonstrates that the primary underlying mechanism is not
mediated by SiNPs acting from the extracellular side of the membrane. Importantly, the
viability tests showed only a very small increase in the number of non-viable cells following
exposure to the highest SiNPs concentration tested (100 µg/mL). This result agrees with
the stability of the intracellular [Ca2+] recordings in all series of experiments, indicating
that no major changes in cell functionality leading to compromised plasma membrane
integrity underlie the observed acute inhibitory effect of SiNPs on ATP response.

Another hypothesis to consider regarding the mechanism of action of the SiNPs is
that, because of their negative surface charge, the nanoparticles might chelate intracellular
cations and thereby decrease the intracellular Ca2+ signals detected with Fura2. However,
this mechanism can be discarded, as it is expected to operate for all intracellular Ca2+
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signals, and we have previously demonstrated that the SiNPs actually enhance the response
of TRPV1 to the agonist capsaicin [30].

Alternatively, it could be envisaged that SiNPs inhibit the Ca2+ response by directly
targeting components of the ATP signaling pathway. For instance, SiNPs may alter the
mechanical properties of cellular membranes [38], and this could affect the function of ATP
receptors. Furthermore, previous TEM studies have shown that SiNPs can be internalized
via endocytosis through plasma membrane vesicles containing several nanoparticles and
that this uptake process is accompanied by plasma membrane consumption and disrup-
tion [15]. This may lead to a decrease in the number of ATP receptors and to the formation
of Ca2+-permeable pores in the plasma membrane, which in turn may explain the reduction
of the responses to ATP and the SiNPs-induced increase in intracellular Ca2+], respectively.

However, the hypothesis considering that SiNPs directly target components of the ATP
signaling pathway has a limitation. The cellular concentration of SiNPs and thereby any
putative direct effect on a signaling component would be expected to decay, not to increase,
upon washout. Thus, it remains difficult to explain why the concentration dependencies
of the SiNPs action show a more potent effect on the ATP responses during washout than
during the application of the particles.

A more plausible explanation is that the SiNPs trigger an inhibitory mechanism that
outlives and is further enhanced after the ceasing of the accumulation of the nanoparticles
in the cellular compartments. In this direction, the increase in intracellular Ca2+ emerged
as a candidate factor to be involved, as we observed that SiNPs induced such effect in a
rather irreversible manner, in agreement with our previous report [30]. However, we found
that the inhibitory effects of the SiNPs on the ATP responses were not correlated to the
increase in [Ca2+] induced by the particles. Furthermore, the experiments in which we
used ionomycin revealed that cells undergoing intracellular Ca2+ overload were able to
respond, albeit more slowly, to a first application of ATP. Taken together, our data strongly
indicate that the increase in Ca2+ induced by the SiNPs is not the primary factor underlying
the decrease in the responses to ATP.

Although our present experiments did not allow pinpointing a precise target of SiNPs
action, they did let us conclude that SiNPs act via a non-competitive inhibitory mechanism.
Thus, these particles may affect any of the elements of ATP signaling cascade that determine
the maximal intracellular Ca2+ response, but do not act on any factors determining the
sensitivity to ATP. For instance, SiNPs may decrease the number of ATP receptors available
for activation at the plasma membrane and/or their maximal level of activation, but do not
decrease their affinity for ATP. The latter is informative, as it indicates that SiNPs do not
interfere with the binding and unbinding of ATP to and from P2Y receptors. Furthermore,
because we assessed the responses to ATP from the amplitude of the Ca2+ increase, none
of the events that determine the sensitivity to ATP may be affected. Future experiments,
complemented by mathematical modeling, may help in discerning what elements of the
pathway may be affected or not by the SiNPs.

Another curious result was that the inhibitory effect of SiNPs appeared to reach a
plateau at concentrations above around 10 µg/mL, indicating that they are unable to
inhibit the responses to ATP completely when applied at concentrations up to 100 µg/mL.
Interestingly, we previously found a qualitatively similar effect for the inhibition of TRPV4
in 16HBE cells, but the plateau for maximal inhibition was reached at concentrations higher
than around 300 µg/mL [30]. The difference in the concentrations for reaching the plateau
phase of the two effects suggests that a concentration-dependent change in properties of
the SiNPs is not the cause of this phenomenon. Alternatively, SiNPs might affect differently
distinct pools of ATP receptors or other elements of this signaling pathway, or the particles
might not have the ability to fully abrogate their maximal activation.

The effects of SiNPs must be undoubtedly linked to their physical and chemical
properties. The specific contributions of each of these properties to the cellular actions of
the particles could be studied by comparing the effects of particles differing only in one
property—for instance, particles having exactly the same size, texture, etc., but different
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zeta potential. However, we do not have such particles at our disposal, and at this point
we cannot make any inference on how specific particle properties determine their actions
on the responses to ATP.

A key aspect of our findings is that the SiNPs concentrations required for the inhibi-
tion of the responses to ATP (1–3 µg/mL) are much lower than those needed to induce
cytotoxicity or to observe cytokine release in vitro (25–6000 µg/mL) [72–74]. Furthermore,
the time scale for the effects we reported here was between 3- to 150-fold shorter than those
required for other reported SiNPs effects. This suggests that the ATP signaling pathway is
a primary and very sensitive target of SiNPs. Finally, it should be noted that the inhibitory
actions of SiNPs we reported here and previously on TRPV4 were specific, as the same
particles enhanced the activation of the capsaicin receptor TRPV1 [30].

Our results demonstrate that SiNPs induce an acute non-competitive inhibition of the
P2Y-mediated intracellular Ca2+ responses of cultured human airway epithelial cells to ATP.
This effect occurs significantly faster and at concentrations lower than those previously
reported for the induction of cellular toxicity and pro-inflammatory responses. Future
research should be conducted to determine the molecular mechanisms of these actions,
to test whether SiNPs are general inhibitors of purinergic signaling pathways in other
cell types, and to determine whether SiNPs reduce the ability of airway epithelial cells to
mount protective responses via the ATP signaling pathway, i.e., the increase in mucociliary
clearance.

4. Materials and Methods

4.1. Ludox® SiNPs

SiNPs used in this study were purchased from Sigma-Aldrich (Bornem, Belgium)
as the commercial source of 30% wt suspension in water. Their basic properties were
characterized in previous studies by our group [30] and can be found in Table 1.

Table 1. Properties of SiNPs.

Property Value

Size 10.2 nm (P10 = 8.1 nm and P90 = 11.8 nm)
Shape Spherical

Solid structure Amorphous
Zeta potential −20 ± 3 mV

Dispersion Monodispersed
Endotoxin content <0.05 EU/mL

For the experiments, the nanoparticle suspension was diluted to the desired concen-
trations in Krebs or Ca2+-free Krebs solutions (see below Reagents and Solutions).

4.2. Cell Culture

Human bronchial epithelial cells (16HBE) were grown in Dulbecco’s modified Eagle’s
medium: nutrient mixture F-12 (DMEM/F-12) containing 5% (v/v) fetal calf serum (FCS),
2 mM L-glutamine, 2 U/mL penicillin and 2 mg/mL streptomycin at 37 ◦C in a humidity-
controlled incubator with 5% CO2 and were seeded on 18 mm cover slips coated with
0.1 mg/mL poly-L-lysine.

4.3. Ratiometric Intracellular Ca2+ Imaging

Ca2+-imaging experiments were conducted with the ratiometric fluorescent dye Fura-
2 AM ester (Biotium, Hayward, CA, USA) as an indicator for free intracellular calcium.
Cells were incubated with 2 µL Fura-2 for 30 min at 37 ◦C. Solutions were applied using
a multi-barrel perfusion system. The intracellular [Ca2+] was calculated from the ratio of
fluorescence measured upon alternating illumination at 340 and 380 nm. Experiments were
performed using an inverted microscope with MT-10 illumination system and the xCellence
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Pro software of the microscope (Olympus, Planegg, Germany). All measurements were
performed at 35 ◦C. Fluorescence intensities were corrected for background signal, and
intracellular Ca2+ concentrations were calculated as described previously [75]. Data were
analyzed and displayed using Origin (OriginLab Corporation, Northampton, MA, USA).

4.4. Data and Statistical Analysis

To determine the amplitude of the response induced by the compounds of interest, we
subtracted the baseline [Ca2+] prior to the application from the peak value reached during
challenging (value denoted by ∆[Ca2+]). The baseline was calculated by determining the
mean [Ca2+] during the last 20 s before the application of the compound. Data are given as
± standard error of the mean.

4.5. Reagents and Solutions

All chemicals were purchased from Sigma-Aldrich (Bornem, Belgium). The solutions
containing ATP were prepared by adding the appropriate amounts of a 50 mM Na2ATP
stock solution to the corresponding extracellular solution (standard Krebs or Ca2+-free
Krebs). Ionomycin, an ionophore that triggers Ca2+ influx, was used to show that the effect
observed during the application of SiNPs is not calcium-mediated and thus is a result of
the interaction of SiNPs with subcellular structures. Ionomycin at 1 µM concentration was
obtained by dilution of 2 mM stock in Krebs. Solutions used in measurements performed in
the absence of extracellular Ca2+ were prepared with Krebs titrated to pH 7.4 with NaOH
(Table 2).

Table 2. Composition of the solutions used in the experiments.

Krebs

150 mM NaCl
6 mM KCl

1.5 mM CaCl2 × 2H2O
1 mM MgCl × 6H2O

10 mM glucose
10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)

Ca2+-Free Krebs

150 mM NaCl
6 mM KCl

1 mM MgCl × 6H2O
10 mM glucose
10 mM HEPES

10 mM ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic
acid (EGTA)
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