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Abstract: Biomarkers are valuable tools in clinical practice. In 2001, the National Institutes of Health
(NIH) standardized the definition of a biomarker as a characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological
responses to a therapeutic intervention. A biomarker has clinical relevance when it presents precision,
standardization and reproducibility, suitability to the patient, straightforward interpretation by
clinicians, and high sensitivity and/or specificity by the parameter it proposes to identify. Thus,
serum biomarkers should have advantages related to the simplicity of the procedures and to the fact
that venous blood collection is commonplace in clinical practice. We described the potentiality of
cfDNA as a general clinical biomarker and focused on endothelial dysfunction. Circulating cell-free
DNA (cfDNA) refers to extracellular DNA present in body fluid that may be derived from both
normal and diseased cells. An increasing number of studies demonstrate the potential use of cfDNA
as a noninvasive biomarker to determine physiologic and pathologic conditions. However, although
still scarce, increasing evidence has been reported regarding using cfDNA in cardiovascular diseases.
Here, we have reviewed the history of cfDNA, its source, molecular features, and release mechanism.
We also show recent studies that have investigated cfDNA as a possible marker of endothelial damage
in clinical settings. In the cardiovascular system, the studies are quite new, and although interesting,
stronger evidence is still needed. However, some drawbacks in cfDNA methodologies should be
overcome before its recommendation as a biomarker in the clinical setting.

Keywords: cfDNA; biomarker; endothelial dysfunction; vascular damage; circulating nucleotide

1. cfDNA—Historical Perspective

Circulating cell-free DNA (cfDNA) are extracellular fragments of DNA present in body
fluid that may be derived from both normal and diseased cells [1]. cfDNA molecules were
discovered in the human circulatory system in 1948 by Mandel and Metais [2]. Seventeen
years later, in 1965, Bendich et al. [3] hypothesized that cancer-derived cfDNA was a
determining factor in oncogenesis, specifically favoring the metastatic spread of cancer.
Certainly, due to a lack of knowledge regarding its composition, function, and biological
and evolutionary origins, cfDNA did not receive significant attention for the next 55 years
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after its discovery. In 1966, the link to disease state was first noted when Tan et al. [4]
identified high levels of cfDNA in the blood of systemic lupus erythematosus.

Ten years later, Leon et al. [5] demonstrated, through radio-immunochemistry assay,
that cancer patients featured a higher level of cfDNA than normal subjects. Furthermore,
cfDNA levels decreased with the anticancer therapy success. However, because of tech-
nological limitations, only 12 years later, in 1989, Stroun et al. [6] demonstrated the first
experimental evidence that identified the origin of cfDNA in cancer patients. The authors
observed the double-strand instability specific to the tumor DNA in the cfDNA, and thus,
it became also to be called ctDNA (circulating-tumoral DNA).

The progress of molecular biology techniques in the 1990s associated with the human
genome project development allowed a more direct demonstration of this tumor origin. In
1994, Vasioukhin et al. [7] and Sorenson et al. [8] showed tumor-specific (N-RAS) mutations
in the plasma samples of patients with pancreatic adenocarcinoma and acute myelogenous
leukemia. In parallel, other specific analyses of cfDNA had become of interest in a clinical
domain. In 1997, Lo et al. [9] identified fetal cfDNA in maternal plasma and serum. These
observations opened a range of opportunities suggesting maternal plasma/serum DNA as
a useful source for noninvasive prenatal diagnosis of genetic disorders in obstetrics.

In the following years, new studies showed evidence of cfDNA methylation as an
epigenetic biomarker. Simultaneously, in 1999, two groups performed for the first time the
cfDNA methylation evaluation in humans. Esteller et al. [10] detected aberrant promoter
hypermethylation of tumor suppressor genes in cfDNA from non-small cell lung cancer
patients, and Wong et al. [11] detected aberrant methylation of the p16 gene in the cfDNA
of hepatocellular carcinoma patients. Both showed for the first time that the presence of
aberrant promoter methylation could be detected in the peripheral circulation of cancer
patients with hepatocellular carcinoma.

Although previous studies have shown that tumor-specific DNA and fetal DNA are
present in plasma and serum from patients with cancer and pregnant women, the first
evidence of mitochondrial cfDNA (mt-cfDNA) in plasma and serum was shown in 2000
by Zhong et al. [12]. At this moment, the nomenclature of cfDNA was used both for
nuclear cfDNA (n-cfDNA) and mt-cfDNA, and each type of cfDNA showing different
structures and functions. In Zhong’s study, mt-cfDNA was detectable in plasma and
serum samples from healthy subjects and patients with diabetes. Moreover, the authors
also detected a mitochondrial mutation commonly found in patients with maternally
inherited diabetes in both samples of patients with diabetes. Please see the recent review
by Bronkhorst et al. [13] for more details about the different nomenclature.

Lately, a growing number of publications show the scientific interest of cfDNA in
clinical applications. Quantification of cfDNA concentration as a tool for noninvasive
diagnosis and monitoring was performed in several acute and chronic disorders and
different conditions like tissue damage, cell death, and turnover [14–19]. Figure 1 provides
a timeline of the main discoveries concerning cfDNA.
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cfDNA can be found in many body fluids, both in physiological conditions as well as 

in pathological disorders. Different mechanisms allow the release of DNA fragments from 
the intracellular to the extracellular compartment. In healthy and diseased (benign and 
malignant) individuals, the release processes of DNA into the human blood circulation 
can originate from: (1) necrosis, (2) apoptosis, (3) active DNA release, and (4) exogenous 
sources (Figure 2). 
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cells involved with pathologic processes, including cell death. cfDNA: circulating cell-free DNA. 

Necrosis is the premature death of cells caused by an injury. Noxious stimuli due to 
external factors, such as infections (bacteria, viruses, fungi, parasites), toxins, hypoxia, and 
extreme environmental conditions (heat, radiation, or ultraviolet irradiation), lead to irre-
versible injury of the tissue and cell death by necrosis. When cells die by necrosis, they 
exhibit nuclear chromatin clumping and nonspecific digestion patterns, organelle and cell 
swelling, plasma membrane disintegration, and other cellular components release [20,21]. 
Jahr et al. [22] proposed that longer cfDNA fragments (i.e., >10 kb) are often observed in 

Figure 1. Chronological summary of cfDNA. The timeline shows the main cfDNA discoveries, from the first report in 1948
until the first correlation of cfDNA with vascular dysfunction in 2015. cfDNA: circulating cell-free DNA.

2. cfDNA—Source and Mechanism of Release

cfDNA can be found in many body fluids, both in physiological conditions as well as
in pathological disorders. Different mechanisms allow the release of DNA fragments from
the intracellular to the extracellular compartment. In healthy and diseased (benign and
malignant) individuals, the release processes of DNA into the human blood circulation
can originate from: (1) necrosis, (2) apoptosis, (3) active DNA release, and (4) exogenous
sources (Figure 2).
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Figure 2. cfDNA sources. cfDNA is released into the human blood circulation by normal cells and
cells involved with pathologic processes, including cell death. cfDNA: circulating cell-free DNA.

Necrosis is the premature death of cells caused by an injury. Noxious stimuli due
to external factors, such as infections (bacteria, viruses, fungi, parasites), toxins, hypoxia,
and extreme environmental conditions (heat, radiation, or ultraviolet irradiation), lead to
irreversible injury of the tissue and cell death by necrosis. When cells die by necrosis, they
exhibit nuclear chromatin clumping and nonspecific digestion patterns, organelle and cell
swelling, plasma membrane disintegration, and other cellular components release [20,21].
Jahr et al. [22] proposed that longer cfDNA fragments (i.e., >10 kb) are often observed
in cancer patients, indicating an origin from necrosis. Many studies, had reported that
fragments released from necrotic cells are often much larger than apoptotic DNA fragments
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because, despite necrosis occurs more rapidly than apoptosis, the removal of necrotic cells
is slower [23–25]. In vitro assays, performed by Choi et al. [26], showed that the release of
necrotic DNA fragments is phagocytic clearance dependent.

On the other hand, apoptosis is programmed cell death. There are a wide variety of
stimuli and conditions, both physiological and pathological, that can trigger apoptosis.
The mechanisms of apoptosis are complex involving an energy-dependent cascade of
molecular events. The apoptotic cells exhibit cellular shrinkage and pyknosis followed
by fragmentation of the nucleus. The cells are smaller in size, the cytoplasm is dense,
and the organelles are more tightly packed. Every organelle integrity is still maintained,
and all of this is enclosed within an intact plasma membrane [18,19,25]. Many studies
suggest that the bulk of cfDNA found in healthy and diseased individuals is released
during apoptosis [24]. A hallmark of apoptosis is chromosomal DNA degradation, in large
fragments (50–300 kb) and subsequently into multiples of nucleosome units (180–200 bp)
via caspase-activated DNase (CAD) [22,27,28]. This evidence was founded through a
ladder pattern in electrophoresis assay. The separation of extracted cfDNA displays
fragment ladders that ranged from ~160 to 1000 bp. The size of these fragments is due
to multiple DNA lengths in nucleosomes and predominantly corresponds to mono- and
oligonucleosomes. This feature is characteristic of caspase-dependent cleavage by the
apoptosis pathway [22,29,30]. The presence of apoptotic cells is short-lived due to highly
efficient phagocytic clearance mechanisms orchestrated by a series of intercellular events
coordinated by a complex signaling network [22,25].

In addition to necrotic or apoptotic cell death, the active DNA release is described as
another cfDNA release mechanism. Recent in vitro cell culture studies have demonstrated
the presence of cfDNA in culture medium at levels that, which do not correlate with the
processes of apoptosis, necrosis, or DNA replication. Wang et al. [31] assessed the release
pattern of cfDNA from breast cancer cell lines. Interestingly, they showed the cfDNA
concentration did not correlate with the amount of apoptotic and necrotic cells. However,
if more cells were in the G1 phase, more cfDNA was detected. Aucamp et al. [32] evaluated
characteristics of the cfDNA released by eight different cell lines and concluded its active
release levels correlate cell line’s growth rate and cancer status of the cell line through its
dependence on glycolytic activity. Chen et al. [33] reported increases in the concentration
of cfDNA derived from cancer cells cultured in vitro during cell proliferation, indicating
that a significant fraction of cfDNA is derived from active cellular secretions. The authors
assume that the release of this cfDNA into the blood could transfect and transform adjacent
or distant normal cells. While the exact mechanisms involved in the active release of cfDNA
remain unclear, cfDNA may be released because of genomic instability.

Genomic instability plays an essential role in DNA replication mechanisms, as demon-
strated by Diamond et al. The authors identified that tumor-derived exosomes transfer
DNA to dendritic cells and activate them [34]. This release occurred after DNA accu-
mulation in the cytosol and was regulated by the expression of the three prime repair
exonuclease 1 (TREX1) in the parent cells [35]. In this context, it is important to high-
light the cytosolic compartment is virtually devoid of DNA in physiological conditions.
However, several situations can increase levels of single and/or double-stranded DNA
molecules as, for example, due to cell death pathways activation involving mtDNA release
into the cytosol [36], mitotic defects [37], and genomic instability by exposure to DNA-
damaging agents [35]. Furthermore, cytosolic DNA accumulation may happen by genetic
defects affecting the expression or catalytic activity of nucleases involved in this cellular
pathway [38]. In keeping with this, mutations in TREX1, RNASEH2A, RNASEH2A, and
RNASEH2C can source cytosolic DNA accumulation [39].

In contrast to various forms of cell death, active DNA release occurs in viable cells.
Currently, active DNA release may include NETs (neutrophil extracellular trap), exosomes,
and erythroblast enucleation. NETs are networks of extracellular DNA associated with
histones, elastase, myeloperoxidase, antimicrobial peptides, and granule proteins that
are involved in the direct attack and killing of pathogens [40,41]. NETs are an important
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defense mechanism against bacterial, viral, fungal, and parasitic infections [42]. However,
recent evidence has suggested that NETs may have a role in noninfectious diseases, includ-
ing systemic lupus erythematosus [43], atherosclerosis [44,45], endothelial cell damage [46],
vasculitis [47], trauma [48], thrombosis [49], cancer [50], sepsis [51,52], and in the inflam-
matory response [40,53,54]. These situations are especially ones in which high levels of
cfDNA have been reported. Other studies also observed high levels of NETs after intense
physical exercise and, consequently, high levels of cfDNA in the bloodstream [55,56].

NETs are formed via a novel type of active cell death called as NETosis (pathogen-
induced cell death, including the release of NETs). NETosis is a dynamic process that
results in the release of DNA from neutrophils in two forms: suicidal and vital NETosis.
Although the “osis” term indicates the cell death after NETs release, in some cases, NETosis
can induce a rapid and vital form to release NETs, in which the neutrophils can still perform
their phagocytic functions [57,58].

The suicidal NETosis is a cell death program that occurs when pathogen agents
activate neutrophils. This process leads to chromatin decondensation, cell and nuclear
membranes lysis, and finally, the release of NETs [41,42]. Of note, suicidal NETosis can take
hours, even with high levels of antigen stimulation. On the other hand, the vital NETosis
allows NET release through the blebbing of the nucleus, resulting in a DNA-filled vesicle
that is exocytosed, leaving the plasma membrane intact without neutrophil death. Vital
NETosis involves vesicular trafficking of DNA from within the nucleus to the extracellular
space, contributing to cfDNA in circulation [59]. These anuclear cytoplasts formed that is
capable of tracking and engulfing living bacteria. Its rapid formation and release can be
completed in a matter of minutes [58].

Although NETosis was first described in neutrophils, similar processes have been
described in other immune cells, including eosinophils, monocytes, and B cells, mast cells,
basophils, and macrophages [54], which are collectively referred to as “ETosis”.

Another form of active release of cfDNA includes DNA fragments associated with
extracellular vesicles, such as exosomes and microvesicles [1]. Although the release of
apoptotic bodies during apoptosis has been long known [60], the fact that also perfectly
healthy cells shed vesicles from their plasma membrane has only recently become appreci-
ated [61,62].

Exosomes are intraluminal microvesicles that fusion with the plasma membrane and
can be secreted by cells. Recently, Raposo et al. [63] reviewed exosome biogenesis. This
cellular process begins with the invagination of the cellular plasma membrane, creating an
early endosome. Then the Invagination of the plasma membrane of the early endosome
produces a multivesicular body with cytosolic cellular components. The exosome is rep-
resented by small vesicles of different sizes into the multivesicular body and is released
occurs by fusion multivesicular endosome with the plasma membrane. Another multivesic-
ular endosome may fuse with lysosomes. The point of divergence between these types
of multivesicular endosomes is drawn at early endosomes, but the existence of distinct
early endosomes feeding into these two pathways cannot be excluded. The mechanism
for intercellular communication involves the intercellular transfer of extracellular vesicles.
Deficiencies in our knowledge of the molecular mechanisms for extracellular vesicle forma-
tion and lack of methods to interfere with the packaging of cargo or with vesicle release,
however, still hamper identification of their physiological relevance in vivo.

The exosomes can be composed of proteins, lipids, mRNA, microRNA, or cfDNA [64–66].
The cfDNA are carried both on the surface and in the lumen [67] of the microvesicles measur-
ing 30–100 nm [65,68]. Zocco et al. [69] and Lázaro-Ibáñez et al. [70] identified that most of
the DNA associated with extracellular vesicles was located on the outside or surface of these
extracellular vesicles. The content of the DNA of extracellular vesicles is quite diverse and
heterogeneous, which would demonstrate vesicle subpopulations with different origins [70].
Recently, it has been demonstrated that microvesicles have functional and biological properties
related to cellular communication, lateral transfer of material, immune system modulation,
and cellular homeostasis maintenance [64,71,72].
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An additional mechanism of active DNA release includes the nuclei expulsion from
erythroblasts. Mature erythrocytes do not contain nuclei to optimize the unique function
of ensuring proper oxygen delivery to the tissues [73]. Erythroblast enucleation is a stage
of complex erythrocytes maturation process to produce a highly functional specialized
cell [74]. At the end of erythroid precursors differentiation, among the changes occurring
in this stage, cell cycle arrest, chromatin condensation, and nuclear polarization are essen-
tial for enucleation [75–77]. Then, erythroblasts lose all their organelles and expel their
nuclei due to a process dependent on adhesion protein reorganization across the plasma
membrane and macrophage interactions [78,79]. Kawane et al. [80] proposed that DNase
II from macrophage lysosomes is responsible for DNA digestion and nuclei expulsion of
precursor erythroid cells. Therefore, erythroblast enucleation serves primarily as a source
of cfDNA in the bloodstream. LAM et al. [81] demonstrated that hematopoietic cells could
contribute significantly to cfDNA origin. This cfDNA release has been directly associated
with the increased erythropoietic activity of the bone marrow.

Additionally, cfDNA can also be released by exogenous sources. There is evidence that
beyond the endogenous sources, foreign cfDNA from exogenous sources can be released
into the bloodstream [82–88]. While endogenous cfDNAs originate from the cells of the
organism of itself, exogenous cfDNAs are generally come from the host–microbiome [89],
from different infectious agents (bacterial and viral) [90,91] and infestations (parasites) [85],
as well as from the ingested food of the host organism [84]. Moreover, fetal cfDNA released
into the maternal circulation [92] and cfDNA from organ transplantation [93] should also
be considered.

3. cfDNA—Molecular Features

The pathophysiological importance of cfDNA is also related to its molecular char-
acteristics. The cfDNA integrity (size) and its genetic and epigenetic profile and plasma
concentration depend on its release mechanisms [29,94,95]. Furthermore, cfDNA includes
n-cfDNA (nuclear) or mt-cfDNA (mitochondrial), with both types exhibiting different
structural characteristics that potentially reveal different forms of biological stability [96].
The n-cfDNA are fragments of coding or non-coding genomic DNA. Among the cod-
ing and non-coding, n-cfDNA investigated, the housekeeping genes and tissue-specific
genes have been used to study coding n-cfDNA. Repetitive sequences such as ALU (a
short-interspersed nucleic element) and long-interspersed nucleotide elements (LINE1)
have been used to explore the non-coding n-cfDNA. Both ALU and LINE1 sequences are
distributed throughout the genome. In recent years, both n-cfDNA and mt-cfDNA have
been used to examine mutations, methylation, copy-number variations (CNVs), cfDNA
composition, and cfDNA fragmentation [97–101].

Some molecular biology techniques have been used to analyze cfDNA from plasma
samples, including fluorescence [15], polymerase chain reaction (PCR) [9,14], quantita-
tive real-time PCR (RT-qPCR) [16,102–110], droplet digital PCR (ddPCR) [87,111–116],
array [111,117] and sequencing [86,105–107,113,117–127]. cfDNA also can be converted by
bisulfite or digested with methylation-sensitive restriction enzyme (MSRE) for methylation
analysis. The choice of the method depends on the different purposes of cfDNA detection
and what molecular features will be analyzed. Fluorescence and conventional PCR are
outdated techniques for analyzing cfDNA. Current PCR-based approaches have a lower
cost, are easier to perform. However, there are a limited number of genes to be analyzed
at a time. These need to be predetermined and eventually have less sensitivity. The array
methodology allows the representation of the methylation status of cfDNA, identification
of single nucleotide polymorphism (SNP) or CNVs, and search specific regions of interest.
Sequencing-based approaches are more flexible, can be used for wide genomic analysis,
and detect unknown mutations in specific genes. Despite the high cost, sequencing-based
approaches are becoming a more available option [128–132]. Altogether, all of these cfDNA
analysis leads to a final problem: a lack of an absolute and precise quantity of cfDNA that
could be widely used as a reference value for routine clinical diagnosis. Although most of
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the studies report different amounts of cfDNA between the disease situation versus the
control condition, there is still a huge variability among laboratories. The authors refer
the reader to previous publications for information about pre-analytical recommendations
towards an international guideline for cfDNA analyses [133,134]. The several molecular
features of cfDNA will be addressed below.

3.1. cfDNA Integrity

cfDNA integrity can be evaluated by its fragmentation level. High- and low-weight
cfDNA molecules can be detected in different fluids. The differences in cfDNA fragments
size can indicate their origin or their pathophysiological conditions on the body. Apoptotic
cells produce DNA fragments of 180–200 base pairs (bp), whereas necrotic cells release
higher molecular-weight DNA fragments of over 10 kbp in size [22,25,135].

The most common size of cfDNA found is ~166 bp and consists of a histone-complexed
DNA, called nucleosome [136,137]. This is the main cfDNA size found in plasma from all
kinds of health or disease subjects [29,138–140]. In healthy individuals, the cfDNA size
has been described to vary mainly between 70 to 200 bp [141–143]. Evaluating the fetal
cfDNA size, Chan et al. [144] identified that only 20% of plasma samples had fetal cfDNA
fragments larger than 193 bp, while none fragments were above 313 bp. These fragments
are shorter than maternal cfDNA, which has a maximum value of 798 bp. Mouliere et al.
have shown that tumor-derived cfDNA is highly fragmented and mainly composed of
fragments < 145 bp [145].

3.2. Genetic and Epigenetic Profile

cfDNA released on biological fluids contains the same genetic and epigenetic varia-
tions as nuclear and mitochondrial DNA from viable cells. These changes may be include
copy-number variations (CNVs) [146,147], mutations [146,148], cfDNA composition [89]
and methylation changes [149]. Thus, through the analyses of cfDNA is also possible to
study the genetic profile of a patient.

3.3. Copy-Number Variations (CNVs)

CNVs are an important class of mutation contributing significantly to genome in-
stability in several pathologies [150–152]. Large-scale genome studies have identified
cfDNA CNVs across various types of cancer and demonstrated their potential as cancer
biomarkers [153]. Li et al. demonstrated that CNVs might provide a measurable classifier
for assessing clinical outcomes in advanced colorectal cancer patients [154]. Xia et al.
performed whole-genome sequencing of urine in prostate cancer patients [155]. CNVs
analysis detected genomic abnormalities, including AR amplification, TMPRSS2-ERG fu-
sion, PTEN gene deletion, NOTCH1 locus amplification along with genomic amplifications
in specific regions of the chromosomes 8, 9, 11, and 14, and deletions in specific regions
of the chromosomes 4, 5, 7, 12, and 16. In addition, the study demonstrated the potential
clinical utility of urine cfDNAs in predicting treatment response and monitoring disease
progression. Kutilin et al. analyzed CNVs for 30 genes in patients with lung cancer [156].
CNVs were detected for genes responsible for apoptosis regulation (BAX, P53, and CASP3),
proliferation (SOX2), DNA reparation (XRCC1), oxidative phosphorylation (HV2), EGFR
signaling pathway (GRB2, SOS1, MAPK1, STAT1, and BRAF), and for mir3678. These data
made it possible to detect new molecular genetic markers for predicting metastases in the
lung and greater knowledge for tumor resistance to target therapy.

3.4. Mutations

Mutation is a permanent alteration of the nucleotide sequence that makes up a gene.
Mutations range in size and can affect anywhere from a single DNA base pair to a large
segment of a chromosome that includes multiple genes. The mutation analysis of cfDNA in
specifics genes as KRAS, TP53, BRAF, epidermal growth factor receptor (EGFR), and ade-
nomatous polyposis coli (APC) has been demonstrated great clinical relevance [157–162].
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Once the mutation is detected in cfDNA, it enables noninvasive tumor diagnosis, suggested
that blood cfDNA may be a promising tool in cancer screening with higher sensitivity and
specificity [22,163,164]. Min et al. confirmed that the KRAS mutation identified from the
colorectal cancer tumor tissue samples was consistently detected in the plasma cfDNA [165].
In addition, as several therapeutic agents in clinical trials target specific pathways, the
identification of the mutation can provide the status of the patient’s tumor to predict
response to treatment.

3.5. cfDNA Composition

Changes in the physiological state of the organism can also be identified throughout
the nucleic acid composition of the cfDNA. Natalya Veiko’s group [166,167] showed that
diseases could cause either GC-enrichment of the cfDNA pool or its oxidation. Their data
showed cfDNA was GC-enriched in cases of atherosclerosis, heart attack, and rheumatic arthri-
tis [168–170], while in cancer, the cfDNA was both GC-enriched and oxidized [167,171,172].
One of the main reasons for apoptotic cell death in oxidative stress is reflected by an increase
in the oxidative modification of cellular DNA. When the DNA is released into circulation, it
continues to bear these marks of oxidative stress, particularly increased levels of 8-oxo-dG, an
oxidation marker [167].

Sergeeva et al. [95] demonstrated the effect of a GC-rich cfDNA or oxidized cfDNA as
a stress signal for the cell signaling pathways. cfDNA GC-rich simultaneously activated
NRF2/KEAP1 and NF-kB signaling pathways and increased gene expression of MAP3K1,
MAP4K4, NF-kB1A, REL, IKBKB, RelA, NRFKB, NF-KB1, and NF-kB2.

Increased content of CG in cfDNA is recognized by cells. Ermakov et al. demonstrated
that cfDNA GC-rich is a potent stimulatory effect on human peripheral blood lympho-
cytes [173]. Kostyuk et al. reported the activation of the signaling pathway depends on
TLR9 and consequently causes the positive regulation of TLR9 and MyD88 expression [174].
Thus, the composition of cfDNA can significantly influence cellular functional activity.

3.6. Epigenetic

Changes in cfDNA epigenetic modifications may also suggest a disbalance on the
body. Epigenetic modifications are heritable molecular events that affect gene expression
without changing DNA sequences, including DNA methylation and histone modification.
DNA methylation refers to the addition of methyl group to cytosine residues in DNA
sequence, and it is the best-studied epigenetic event [175,176]. DNA methylation is essential
for normal cellular development and plays an important role in epigenetic control of
gene activity.

Simultaneously, two groups performed for the first time cfDNA methylation evalua-
tion in humans. On one side, Esteller et al. detected aberrant promoter hypermethylation
of tumor suppressor genes in cfDNA from non-small cell lung cancer patients, while Wong
et al. detected aberrant methylation of the p16 gene in the plasma and serum of hepatocel-
lular carcinoma patients [10,11]. Both showed for the first time that cfDNA with aberrant
promoter methylation could be detected in peripheral circulation cancer patients.

Different methylation patterns at CpG sites can be used to identify the cfDNA origin
tissue. One limitation of total cfDNA quantifications is in non-identification of the tissue
origin. Assays with appropriate target genes and their epigenetic signature have been one
of the main factors to achieving relevant and accurate clinical effects [144,177].

Moss et al. developed an approach for unbiased determination of the tissue origins
of cfDNA using a reference methylation atlas of 25 human tissues and cell types [177].
The authors identified that plasma cfDNA from healthy subjects originates mainly from
hematopoietic cells (32%), erythrocyte progenitor cells (30%), lymphocytes (12%), monocytes
(11%), vascular endothelial cells (9%), and hepatocytes (1%). Taken together, Moss et al.
provided a detailed description of the composition of cfDNA in healthy people and proposed
a new platform easily adapted to study the cellular contributors to cfDNA in many settings in
healthy and pathologic human tissue dynamics.
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3.7. cfDNA Concentration

The elevated level of cfDNA can reflect a physiological process, e.g., physical exer-
cise [178–180] and pregnant women [181] or pathological processes, such as inflammation,
diabetes, tissue trauma, sepsis, myocardial infarction, and patients that received transplan-
tations [14,87,143,181–186].

The total cfDNA level in cancer patients has a significant increase with a wide range
(hundreds to thousands ng/mL in the blood) compared with the healthy controls (a relative
level of 30 ng/mL and ranging between 0 and 100 ng/mL) [136,143]. Leng et al. reported
the concentration of cfDNA in patients with non-small cell lung cancer was higher than
in healthy controls [187]. Zill et al. performed analyses of cfDNA sequencing data of
patients with late-stage cancers across >50 cancer types. They showed a marked variation
in blood ctDNA levels among patients with different tumor types [188]. Bettegowda et al.
described lower amounts of cfDNA in patients with benign lesions or with early-stage
cancer compared to patients with advanced or metastatic tumors [105]. This finding
suggested that level of ctDNA can be changed according to the stages of the disease.
Prakash et al. have been reported significant differences in the concentration of cfDNA
during a perioperative process in donors and recipients undergoing living donor liver
transplantation [189].

Finally, the concentration of cfDNA has been reporting as a potential predictor for
clinical outcome in patients with ovarian and lung cancer [190,191]. Therefore, patients
with high baseline cfDNA concentration had a significantly worse disease and overall
survival than those with lower concentrations.

3.8. mt-cfDNA

mt-cfDNA has been found in healthy subjects and patients with breast cancer and
acute ischemic stroke [192,193]. Mt-cfDNA can also be released into blood circulation by
mechanisms of apoptosis, necrosis, and active cellular secretion, as discussed above. Mt-
cfDNA has been shown to be more fragmented than n-cfDNA, typically ranging between
30 and 80 bp with peaks in 42–60 bp [192,194]. This smaller size can be ascribed to the
absence of nucleosome-associated histone proteins, which render mt-cfDNA exposed to
enzymatic cleavage [194,195].

Although the first evidence of cfDNA in the bloodstream was identified in 1948,
only 52 years later, Zhong et al. [12] reported the presence of mt-cfDNA in plasma and
serum samples. In their study, mt-cfDNA was detectable in healthy and diabetic patients.
Moreover, the authors also describe a mitochondrial mutation commonly found in patients
with maternally inherited diabetes. Jiang et al. showed elevated amounts of mt-cfDNA
in hepatocellular carcinoma patients [29]. Mehra et al. demonstrated that mt-cfDNA
levels do not always correlate with n-cfDNA levels [94]. The averages quantification of
mt-cfDNA was higher than n-cfDNA levels, providing potentially distinct information
with different sensitivity levels. Furthermore, Pinti et al. reported the copies number
of mt-cfDNA increase significantly after the fifth decade of life, reaching its maximum
value in the ninth decade [96]. This increase has been associated with the elevation of
several proinflammatory cytokines, such as TNF-α, IL-6, RANTES, and IL-1ra. Due to
its unique characteristics, such as small size, simple characterization by sequencing, and
greater abundance, the mt-cfDNA can be used as a more sensitive diagnostic tool than
n-cfDNA [87,196]. Moreover, Ingelsson et al. and Itagaki et al. reported other functions
for mt-cfDNA. Lymphocytes, monocytes, and neutrophils can rapidly eject mtDNA, as
network filament structures perform an important role in antimicrobial defense [197,198].

4. Clinical Findings

In the last years, cfDNA both in plasma or serum has been studied as a potential
biomarker and noninvasive screening tool for many diseases, especially solid tumors and
fetal genetic abnormalities.
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In 1965, Bendidch and colleagues [3] showed that cfDNA derived from neoplastic
cells could be involved in metastases. Almost ten years later, it was demonstrated by the
radioimmunoassay technique that half of the cancer patients had significantly higher levels
of cfDNA compared to controls [5]. In addition, in the early 1970s, cfDNA was described
in patients with autoimmune disease [4]. As previously mentioned, all these observations
have highlighted the interest in its potential as a noninvasive prognostic and diagnostic
biomarker for various diseases.

The development of new molecular techniques allowed the reproducible detection
and identification of low levels of cfDNA from a background mixture signal, permitting
the detection in other physiological conditions, most successfully the fetal-derived cfDNA
during pregnancy [118], myocardial infarction [15], stroke severity [16] and also as a
minimally invasive screening tool for many diseases, especially solid tumors and fetal
genetic abnormalities.

One of the most significant discoveries for applying cfDNA was identifying fetal
cfDNA in maternal blood [9], which enabled developing genetic tests in prenatal care. The
origin of the fetal cfDNA found in maternal blood has been described from the placenta,
fetal hematopoietic cells, and the fetus [102,103].

A multicenter study in the USA for prenatal screening for fetal aneuploidy tests us-
ing cfDNA had a lower false-positive rate in detecting trisomy 21 and 18, compared to
the standard procedure [105]. Currently, the use of cfDNA is well established for fetal
sex assessment, paternity testing, and detection of aneuploidies and trisomies [118–120],
diagnosis of monogenic diseases [111,121], fetal sex determination for sex-linked disor-
ders [117], and fetal RhD status [104]. The proportion of fetal cfDNA represents only a
minor fraction of the total amount of cfDNA (3–25%) [122], and this concentration increase
with gestational age, with a potential association with body mass index [87] and being
better detected around the ten weeks of pregnancy [123].

Advances in eliminating the maternal background DNA and increasing the sensibility
to detect small concentrations of fetal cfDNA were achieved in techniques related to DNA
isolation, single-molecule amplification, and high-throughput sequencing, improving
the accuracy and robustness of noninvasive prenatal testing for fetal cfDNA. Nowadays,
fetal cfDNA is already used for clinical screening in fetal genetic abnormalities in high-
risk pregnancies. Since 2011, cfDNA noninvasive prenatal tests have been commercially
available to determine paternity, fetal sex and to identify abnormalities in chromosomes,
especially for detecting the most prevalent chromosomal aneuploidies, such as Down
syndrome [199,200].

Another area of huge interest is studying cfDNA in oncology, with many findings
reporting an association between cfDNA and cancer. In 1977, Leon et al. reported a
significantly elevated serum DNA level in cancer, demonstrating that the serum of cancer
patients contains higher concentrations of cfDNA than those of healthy individuals [5].
However, the importance of cfDNA in clinical cancer research was recognized in 1994,
when point mutations of the N-RAS gene were identified in cfDNA of patients with acute
myelogenous leukemia and myelodysplastic syndrome [7]. The U.S. Food and Drug
Administration (FDA) approved in 2016 the first liquid biopsy test for commercial use.
This diagnostic test detects deletions in exon 19 and substitution mutations of exon 21 in
the epidermal growth factor receptor (EGFR) gene to identify patients with metastatic non-
small cell lung cancer (NSCLC) who would be eligible for treatment with erlotinib [201].
In 2020 FDA approved the first liquid biopsy NGS diagnostic tests for commercial use.
These diagnostic tests identify mutations in different genes in patients eligible for specific
treatments, including patients with breast cancer, NSCLC, and prostate cancer. The full
list of approved nucleic acid tests, including cfDNA tests, can be viewed on the FDA
website [202].

The fragment size and/or variations in the genetic abnormalities from circulating
cfDNA can be identified and differentiated from normal cells, representing up to 1% of the
total cfDNA [203]. Notably, cfDNA can also be detected in other biological materials, such



Int. J. Mol. Sci. 2021, 22, 9110 11 of 24

as stool, urine, saliva, pleural fluid, and cerebrospinal fluid [204]. Several studies [203–206]
described that liquid biopsy is cheaper and less invasive to the patient, establishing this
test as a method to detect a tumor before the onset of clinical symptoms and identify drug
resistance through the quantification of cfDNA.

Today, the potential of cfDNA is validated by many clinical studies [204,205,207], and
recent publications have pointed technical advances in analyses and sequencing that have
led to dramatic improvements to differentiation of cfDNA targets, such as mutations in
tumor-suppressor genes, activated oncogenes, hypermethylation, or chromosomal disor-
ders [208], thereby increasing the clinical utility of cfDNA as an oncogenic marker. This
provides deeper insights into tumor development and response to different treatments in
the face of cancer evolution.

The levels of cfDNA in the circulation of cancer patients have been related to disease
stage, varying the percentage in localized tumors to metastatic tumors [105], to tumor
burden, and to the aggressiveness potential of the disease [106]. Of interest, in clinical
screening and follow-up, cfDNA was detected in early-stage cancers (breast, colorectal,
lung, and ovarian) associated with disease progression and survival of cancer patients [107].

Recent publications describe the release of cfDNA in different types of cancer. In
ovarian cancer, for example, there are considerably increased levels of cfDNA in diagnosed
patients than in healthy individuals or in patients with benign ovarian diseases, with
significantly decreased after surgery [209]. The same happens in breast cancer, prostate
cancer, stomach cancer, lung cancer, and others [207]; in all, high cfDNA levels were
significantly associated with a higher tumor stage, which was correlated with worse
survival. Besides the cfDNA concentration in plasma or serum, researchers also studied
the methylation status of cfDNA in patients with hepatocellular carcinoma that may be
involved in the inactivation of tumor suppressor genes [124]. It is clear to conclude that
cfDNA has the potential to be considered as a biomarker of diagnosis and prognosis in
cancer diagnosis, evidencing the potential to detect mutation and cellular abnormalities.

Since the discovery of donor-derived cfDNA (ddcfDNA) in organ recipients, by
detecting Y-chromosome genes in the blood of sex-mismatched transplant recipients, the
potential of ddcfDNA has been discussed as a cost-effective marker of rejection or as an
indication of the health of the graft [14,108,109,112].

Interestingly, since ddcfDNA is a nonspecific organ or disease biomarker, it could be
considered as a universal marker applicable for clinical monitoring of tissue injury in heart,
lung, liver, and kidney allografts [14].

Publications reported [86,113], in heart transplantation, a percentage of ddcfDNA less
than 1 % at stable patients and increased up to 5 % during a rejection episode. The same was
observed in lung and renal transplantation [86,114]. In liver transplantation, a reduction of
ddcfDNA was observed rapidly after ten days post-transplant, which remained stable in
the absence of rejection. The level of ddcfDNA has been detached as a general biomarker of
organ integrity, the severity of rejection [110,125], and as an early marker of rejection. The
increased levels of ddcfDNA are associated with cellular rejection, as already seen in heart
transplant [113], liver transplant [112], renal transplant [109], and lung transplant [86],
while your rapid reduction post-transplant is considered a good prognostic indicator in
grafts [208]. In the context of a bone marrow transplant, few studies report the relation of
release ddcfDNA with cancer relapses and graft versus host disease [126].

Recently, Schütz et al. [115] studies showed that the ddcfDNA in blood samples
increased on the first day of the transplant, associated with an ischemia and reperfusion
injury, gradually decreasing to a relatively stable level, moreover, was observed relation
between ddcfDNA and liver function, showing that ddcfDNA can have the same sensitivity
to reflect graft damage. In renal transplant, the increased ddcfDNA in blood samples could
discriminate active rejection from non-rejection, validating using ddcfDNA in the blood as
an accurate marker of kidney injury/rejection [127]. Interestingly, ddcfDNA was found to
be elevated up to 5 months before the biopsy-proven rejection event, suggesting a potential
role in a heart transplant [125].
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Another application of ddcfDNA has been the monitoring of drug immunosuppres-
sion dose effective to avoid toxicity and dose adjustment. In one study, the lower blood
concentrations of ddcfDNA levels from liver transplant patients were associated with
higher tacrolimus concentrations [116]. Kanzow et al. observed that the adjustment of
tacrolimus dose from subtherapeutic to therapeutic levels was associated with a significant
decrease in serum ddcfDNA fractions [210].

CfDNA has already had a huge impact on prenatal medicine and could become, soon,
an excellent tool in oncology, transplant medicine and also in conditions like cardiovascular
diseases and sepsis. It is known that further studies should be conducted to understand
the real role of cfDNA (Figure 3).
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5. cfDNA as a Biomarker for Endothelial Dysfunction

Blood vessels are structurally divided into three layers from the most internal to the
most external: intimate tunica, medium tunica, and tunica adventitia. The intimate tunica,
also called endothelial layer (or endothelium), is basically composed of (i) endothelial cells,
which are in direct contact with the blood, and (ii) the basement membrane, the layer that
supports the endothelial cells [211].

Initially, the endothelium was considered as a passive barrier between blood and the
other vascular layers. Far beyond this concept, it has been described that the endothelium
also plays a fundamental role in body homeostasis, being recognized as an important
autocrine, paracrine, and endocrine organ [212,213]. Thus, endothelial injury is the bridge
between risk factors and their consequences, such as infarction and stroke. Therefore, the
search for biomarkers of endothelial dysfunction is extremely important (Figure 4).



Int. J. Mol. Sci. 2021, 22, 9110 13 of 24

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 13 of 24 
 

 

between risk factors and their consequences, such as infarction and stroke. Therefore, the 
search for biomarkers of endothelial dysfunction is extremely important (Figure 4). 

 

 

Figure 4. Circulating biomarkers proposed for endothelial dysfunction. Endothelial injury may be due to many conditions, 
including hypertension, diabetes mellitus, smoking, physical inactivity, aging, among others several clinical complica-
tions. Biomarkers are a valuable tool in clinical research and medical practice to identify an endothelial injury. ICAM-1: 
intercellular adhesion molecule 1; VCAM-1: vascular cell adhesion molecule 1; EMP: endothelial microparticles; VWF: von 
Willebrand factor; cfDNA: circulating cell-free DNA. 

Biomarkers of endothelial injury are valuable tools in clinical practice. Circulating 
biomarkers of endothelial injury have the advantage related to the simplicity of the pro-
cedures and to the fact that venous blood collection is commonplace in clinical practice. 
Endothelial dysfunction biomarkers have already been reviewed elsewhere [214]. Adhe-
sion molecules, such as E-selectin, intercellular adhesion molecule 1 (ICAM-1), and vas-
cular cell adhesion molecule 1 (VCAM-1), as well as other molecules involved in the co-
agulation pathway, such as von Willebrand factor (vWF) and soluble thrombomodulin 
(sCD141), are among the most studied [215]. 

The first study linking cfDNA and vascular dysfunction dates from 2015 [17]. McCar-
thy et al. hypothesized that the mt-cfDNA was elevated in hypertension, activating Toll-
like receptor-9 (TLR9) and leading to endothelial dysfunction. Using spontaneous hyper-
tensive rats (SHR), the authors first showed elevated levels of mt-cfDNA in male SHR, but 
not in female animals. Wistar Kyoto normotensive rats had increased systolic blood pres-
sure within three days of i.p. injection of mt-cfDNA, but not with n-cfDNA. No changes 
in body mass, total heart mass, left ventricular mass, right ventricular mass, or spleen 
mass was reported. Regarding vascular dysfunction, mesenteric resistance arteries from 
mt-cfDNA-treated rats were less sensitive to acetylcholine (an endothelium-dependent 
vasodilator), but no difference was observed in the relaxation with the endothelium-inde-
pendent vasodilator (the nitric oxide-donor, sodium nitroprusside). These effects were re-
versed by blocking the TLR9, thus demonstrating the involvement of the mt-cfDNA and 
the innate immune system pattern recognition receptor TLR9 in the pathogenesis of hy-
pertension and endothelial dysfunction. 

Coscas et al. in 2017 [216] studied the role of cfDNA in the initiation of vascular cal-
cification. DNA structure is an important source of phosphates, and the poly-anionic na-
ture of cfDNA may cause it to strongly interact with cationic calcium phosphate. Using 
human aorta samples that displayed early stages of atheroma, the authors identified 
cfDNA as a potential bed for calcium phosphate precipitation and hydroxyapatite crys-
tallization through colocalization of cfDNA with sites of calcification. In addition, using 

Figure 4. Circulating biomarkers proposed for endothelial dysfunction. Endothelial injury may be due to many conditions,
including hypertension, diabetes mellitus, smoking, physical inactivity, aging, among others several clinical complications.
Biomarkers are a valuable tool in clinical research and medical practice to identify an endothelial injury. ICAM-1: intercellular
adhesion molecule 1; VCAM-1: vascular cell adhesion molecule 1; EMP: endothelial microparticles; VWF: von Willebrand
factor; cfDNA: circulating cell-free DNA.

Biomarkers of endothelial injury are valuable tools in clinical practice. Circulating
biomarkers of endothelial injury have the advantage related to the simplicity of the pro-
cedures and to the fact that venous blood collection is commonplace in clinical practice.
Endothelial dysfunction biomarkers have already been reviewed elsewhere [214]. Ad-
hesion molecules, such as E-selectin, intercellular adhesion molecule 1 (ICAM-1), and
vascular cell adhesion molecule 1 (VCAM-1), as well as other molecules involved in the
coagulation pathway, such as von Willebrand factor (vWF) and soluble thrombomodulin
(sCD141), are among the most studied [215].

The first study linking cfDNA and vascular dysfunction dates from 2015 [17]. Mc-
Carthy et al. hypothesized that the mt-cfDNA was elevated in hypertension, activating
Toll-like receptor-9 (TLR9) and leading to endothelial dysfunction. Using spontaneous
hypertensive rats (SHR), the authors first showed elevated levels of mt-cfDNA in male SHR,
but not in female animals. Wistar Kyoto normotensive rats had increased systolic blood
pressure within three days of i.p. injection of mt-cfDNA, but not with n-cfDNA. No changes
in body mass, total heart mass, left ventricular mass, right ventricular mass, or spleen
mass was reported. Regarding vascular dysfunction, mesenteric resistance arteries from
mt-cfDNA-treated rats were less sensitive to acetylcholine (an endothelium-dependent
vasodilator), but no difference was observed in the relaxation with the endothelium-
independent vasodilator (the nitric oxide-donor, sodium nitroprusside). These effects were
reversed by blocking the TLR9, thus demonstrating the involvement of the mt-cfDNA
and the innate immune system pattern recognition receptor TLR9 in the pathogenesis of
hypertension and endothelial dysfunction.

Coscas et al. in 2017 [216] studied the role of cfDNA in the initiation of vascular
calcification. DNA structure is an important source of phosphates, and the poly-anionic
nature of cfDNA may cause it to strongly interact with cationic calcium phosphate. Using
human aorta samples that displayed early stages of atheroma, the authors identified cfDNA
as a potential bed for calcium phosphate precipitation and hydroxyapatite crystallization
through colocalization of cfDNA with sites of calcification. In addition, using the rat
model of vascular calcification (intra-aortic infusions of cfDNA and elastase), the author
observed that cfDNA was able to penetrate into the arterial wall and induce vascular wall
calcification. The authors conclude that cfDNA could represent one type of mechanism
able to initiate calcium phosphate precipitation and calcium phosphate apatite crystal
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formation. However, this mechanism does not exclude other possible processes, such as
those involving microvesicle formation by injured cells [217].

Also, in 2017, Paunel-Gorgulu et al. [218] studied the role of cfDNA as an endothelial
damage marker in patients after cardiac surgery with cardiopulmonary bypass (CPB).
cfDNA levels were measured in the patient’s plasma at the time of admission and after
surgery. Plasma cfDNA levels strongly increased after surgery in patients undergoing car-
diac surgery both with short-time CPB (<100 min) or long-time CPB (>100 min). Although
this initial increase was similar between groups, cfDNA levels remained significantly ele-
vated until day 5 only in the long-time CPB (>100 min) patients. In addition, real-time PCR
analyses revealed that mtDNA levels were significantly increased only in patients with
long-time CPB (>100 min), indicating a more severe disease and more prone to systemic
inflammation. In this study, the authors also measured sCD141 (soluble thrombomodulin)
and ICAM-1 as molecular markers of endothelial cell injury. Both sCD141 and ICAM-1
levels were higher in patients with long-time CPB (>100 min). However, only sCD141
levels positively correlated with cfDNA levels.

The authors concluded that cfDNA represents an early biomarker for CPB-induced
inflammation and a potential mediator of endothelial damage after cardiac surgery with pro-
longed bypass duration. The study also supported that cfDNA may potentialize inflammation,
amplifying NETosis by an independent mechanism of endosomal TLR9 and ROS.

Recently, Yang et al. [219] proposed a blood test based on cfDNA that can predict
the likelihood of a diabetes patient developing a microvascular complication. The author
investigated the hydroxymethylation profile on cfDNA from patients with developed vas-
cular complications versus those who did not yet manifest signs of vascular complications.
cfDNA from 62 patients were sequenced, and for each gene, the extent of hydroxymethy-
lation between patients with vascular complications and patients without was matched.
This comparison showed almost 135 genes implicated in insulin resistance or inflammation
with significantly different patterns of hydroxymethylation between groups. Among these
genes, a specific selection of a 16-gene detection model showed superiority over commonly
used clinical variables, including diabetic duration, body mass index, and endothelial
growth factor receptor (eGFR). Similarly, a 13-gene detection model outperformed those
clinical variables in terms of detection accuracy for distinguishing patients with single
complications from those with multiple ones.

In conclusion, the authors showed that the hydroxymethylation profile of cfDNA
might be in the future proven as a convenient and noninvasive marker for diabetes-induced
vascular complications, with the potential to complement other conventional clinical
variables or risk factors for disease monitoring. Although promising, the study lacks a
cause-and-effect relationship between the epigenetics changes the vascular complications.

6. Conclusions

In this review, we approached the origin of cfDNA until its clinical use with a deeper
focus as a biomarker for endothelial injury. We showed that cfDNA is already at an
advanced stage for clinical use in prenatal tests, organ transplant rejection, and cancer,
where it also received a more specific abbreviation, t-cfDNA. In the cardiovascular system,
the studies are quite new, and although interesting, stronger evidence is still needed.
Among all the characteristics of the cfDNA, there is evidence indicating that the methylation
pattern of cfDNA is the most promising tool for this molecule to advance as a biomarker of
tissue-specific injury, as in the case of endothelial injury.

However, some drawbacks in cfDNA methodologies should be overcome before
its recommendation as a biomarker in the clinical setting. Due to its low abundance in
circulation, some pre-analytical steps, such as plasma extraction, should be standardized.
Some of the studies mentioned in this review have used homemade protocols, while others
may have used extraction by magnetic beads, spin columns, vacuum columns, or even so
any combinations from these methods. cfDNA is also rapidly cleared from the blood (from
several minutes), leading to some negative data in the literature.
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Finally, and perhaps the most important, is the method to detect cfDNA. The most used
ones are using fluorescent probes (such as PicoGreen or SYBR Gold), RT–qPCR, and more
recently, next-generation sequence (NGS) and ddPCR. The fluorescent techniques have less
sensitivity and are unspecific, allowing to detection of any DNA molecule present in the
circulation without any discrimination. These methods usually lead to overestimation of
total cfDNA concentration. On the other hand, PCR is the most common. Although this
technique overcame the problem of specificity by using specific primers to detect specific
DNA sequences, is raised another problem that was the variability among the primers
used by different groups.

Altogether, all of these steps in the cfDNA analysis lead to a final problem: a lack of
an absolute and precise quantity of cfDNA that could be widely used as a reference value
for routine clinical diagnosis. Although most studies report different amounts of cfDNA
between the disease situation versus de control condition, there is still a huge variability
among laboratories.
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