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Abstract: This study investigated the possible anti-inflammatory and chondroprotective effects of a
combination of celecoxib and prescription-grade glucosamine sulfate (GS) in human osteoarthritic
(OA) chondrocytes and their possible mechanism of action. Chondrocytes were treated with celecoxib
(1.85 uM) and GS (9 uM), alone or in combination with IL-18 (10 ng/mL) and a specific nuclear
factor (NF)-kB inhibitor (BAY-11-7082, 1 uM). Gene expression and release of some pro-inflammatory
mediators, metalloproteinases (MMPs), and type II collagen (Col2al) were evaluated by qRT-PCR
and ELISA; apoptosis and mitochondrial superoxide anion production were assessed by cytometry;
B-cell lymphoma (BCL)2, antioxidant enzymes, and p50 and p65 NF-«B subunits were analyzed
by qRT-PCR. Celecoxib and GS alone or co-incubated with IL-18 significantly reduced expression
and release of cyclooxygenase (COX)-2, prostaglandin (PG)E2, IL-1B, IL-6, tumor necrosis factor
(TNF)-a, and MMPs, while it increased Col2al, compared to baseline or IL-1p. Both drugs reduced
apoptosis and superoxide production; reduced the expression of superoxide dismutase, catalase, and
nuclear factor erythroid; increased BCL2; and limited p50 and p65. Celecoxib and GS combination
demonstrated an increased inhibitory effect on IL-18 than that observed by each single treatment.
Drugs effects were potentiated by pre-incubation with BAY-11-7082. Our results demonstrated the
synergistic effect of celecoxib and GS on OA chondrocyte metabolism, apoptosis, and oxidative stress
through the modulation of the NF-kB pathway, supporting their combined use for the treatment
of OA.

Keywords: celecoxib; glucosamine sulfate; osteoarthritis; chondrocytes; inflammation; chondropro-
tection; oxidative stress; NF-kB

1. Introduction

Osteoarthritis (OA) is the most common degenerative musculoskeletal disorder that
affects the entire joint. Its main symptoms are chronic pain, functional limitation, instability,
and deformity, with a considerable reduction in quality of life; therefore, OA is considered
the leading cause of disability and impairment in middle-aged and older people worldwide
and represents a real burden to health care systems [1,2]. The pathogenesis of OA is
complex and remains largely unknown; however, it is assumed that multiple factors
including aging, gender, joint injury, obesity, and metabolic factors contribute to the onset
and the progression of the disease [1]. Furthermore, the risk of developing OA is increased
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by physical inactivity and by a low-fiber diet rich in sugar and saturated fats. All these
different factors are associated with an alteration of composition and function of the gut
microbiota, causative of low-grade inflammation, which is an important contributor to joint
damage in OA [3,4]. This microbial dysbiosis could represent the missing link between
the different conditions contributing to OA pathogenesis, suggesting microbiota as a new
pharmacological strategy for OA management [5,6].

Current strategies for the management of OA include a combination of pharmaco-
logical and/or non-pharmacological approaches. Among the pharmacological treatments,
the updated European Society for Clinical and Economic Aspects of Osteoporosis and
Osteoarthritis (ESCEO) algorithm recommends chronic symptomatic slow-acting drugs
for OA (SYSADOASs), such as prescription-grade glucosamine sulfate (GS) or chondroitin
sulfate (CS), as first-line long-term background treatment, and as-needed paracetamol as a
short-term step to rescue analgesia only [7]. Topical nonsteroidal anti-inflammatory drugs
(NSAIDs) may be added to the treatment regimen in step 1 if the patient is still symptomatic
after establishing appropriate background pharmacological therapy with SYSADOAs, and
rescue analgesia with paracetamol provides insufficient symptom relief. The use of oral
NSAIDs (selective or non-selective) is proposed as second step, and short-term therapy,
with selective COX-2 inhibitors (COXIBs) preferred in the case of increased gastro-intestinal
risk [7]. Despite this protocol being endorsed by several groups of experts from around
the world, the recommendation to use SYSADOAs as first-line background treatment
for knee OA is not endorsed by other respected scientific societies [8-12]. Recently, the
ESCEO working group reinforced the use of GS and CS as first-line long-term treatment
for their activity on gut microbiota. Indeed, they have limited intestinal absorption and
are predominantly utilized as substrates by the gut microbiota. They may have prebiotic
properties and exert their therapeutic effects through gut bacterial pathways [5,13,14].

Traditionally, COXIBs have been widely used for their well-established analgesic
and anti-inflammatory properties for the treatment of OA; in recent years, growing ev-
idence raised the question of whether COXIBs can be viewed as disease-modifying OA
drugs (DMOAD:s), able to reduce cartilage degradation and slow down OA disease pro-
gression [15-18]. Different in vivo and in vitro studies focused on the potential role of
celecoxib as DMOAD:s [15,19-22]. In particular, this drug showed the ability to decrease
the production of prostaglandin (PG)E2, interleukin (IL)-18, tumor necrosis factor (TNF)-«,
and nitric oxide (NO) release, and it increased the synthesis of proteoglycans and type II
collagen (Col2al) in human OA cartilage and chondrocytes [21-23]. Furthermore, celecoxib
reduced the synthesis of metalloproteinases (MMPs), apoptosis, and the activation of nu-
clear factor (NF)-«B and receptor activator of NF-kB ligand (RANKL) in OA chondrocytes,
fibroblast-like synoviocytes, and subchondral bone osteoblasts [21,24,25].

GS is an amino-monosaccharide and a natural constituent of long-chain glycosamino-
glycans present in human tissues, with the highest part in cartilage matrix. The high-quality
prescription-grade crystalline GS formulation is widely used for the treatment of OA due
to the demonstrated symptomatic effects as well as disease-modifying properties [26-31].
Furthermore, its specific role in cartilage and chondrocyte metabolism has been also demon-
strated [30,32]. Indeed, different studies showed the effects of GS in reducing expression of
COX-2, PGE2 production, and inhibiting activation of the NF-«B pathway in human OA
chondrocytes and synoviocytes [33-35]. Furthermore, GS promoted chondrocyte prolifera-
tion and proteoglycan production, while it decreased the expression of inducible form of
nitric oxide (iNOS), IL-6, and TNF-a and matrix degrading factors [35-38].

The aim of the present study was to investigate the possible anti-inflammatory and
chondroprotective effects of celecoxib and GS, tested alone or in combination, in human OA
chondrocytes in the presence of IL-18. In particular, matrix-degrading enzymes (MMP-1,
MMP-3, MMP-13), Col2al, and cytokines (COX-2, PGE2, IL-1B, IL-6, TNF-x) were analyzed
at their expression levels as well as at their release in the supernatant. Cell viability, the
ratio of apoptosis, and the mRNA levels of the anti-apoptotic mediator B-cell lymphoma
2 (BCL)2 were also assessed. Furthermore, the production of mitochondrial superoxide



Int. . Mol. Sci. 2021, 22, 8980

3 0f20

Relative COX-2 expression

Basal  Ced  GS  Celr ILIp
185pM 9pM GS 10ngmL

1
%
n

[nd
=

(24 hrs)
Fold increase Basal

- e

= n

Relative IL-1P expression
=
n

Basal  Cd  GS
1L85uM 9 M

1

R
n = in

(24 hrs)

Fold increase Basal

=
n =

Relative IL-6 expression

=
>

Basal  Cd  GS
185uM 9 pM

Q

3.0

1

25

Relative TNF-a expression
@4 hrs)
Fold increase Basal

Basal  Cel  GS
I L8SuM 9 M

anion and the gene levels of the main antioxidant enzymes—superoxide dismutase (SOD)-
2, catalase (CAT), glutathione peroxidase (GPx)4, and nuclear factor erythroid 2 like 2
(NRF2)—were evaluated. Finally, possible regulation of the NF-kB pathway was detected.

2. Results
2.1. Celecoxib and GS Attenuate Inflammation

Figures 1 and 2 show the effects of treatment with celecoxib (1.85 uM) and GS (9 uM),
for 24 h and 48 h, on gene expression and supernatant release of the main pro-inflammatory
mediators, in OA chondrocytes stimulated or not with IL-18.
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Figure 1. Celecoxib and GS reduce the expression of pro-inflammatory cytokines. Human osteoarthritic (OA) chondrocytes
were incubated for 24 and 48 h with celecoxib (1.85 uM) and prescription-grade glucosamine sulfate (GS) (9 uM) (2 h
of pre-treatment) in the presence of interleukin (IL)-18 (10 ng/mL). (A-L) Expression levels of cyclooxygenase (COX)-2,
prostaglandin (PG)E2, IL-18, IL-6, and tumor necrosis factor (TNF)-a analyzed by quantitative real-time PCR. The gene
expression was referenced to the ratio of the value of interest and the value of the basal condition, reported equal to 1. Data
were represented as mean + SD of triplicate values. * p < 0.05, ** p < 0.01, *** p < 0.001 versus basal condition. ° p < 0.05,

°° p <0.01 versus IL-1pB.
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Figure 2. Celecoxib and GS reduce the release of pro-inflammatory cytokines. Human osteoarthritic (OA) chondrocytes
were incubated for 24 and 48 h with celecoxib (1.85 M) and prescription-grade glucosamine sulfate (GS) (9 uM) (2 h of pre-
treatment) in the presence of interleukin (IL)-15 (10 ng/mL). (A-L) Total amount of cyclooxygenase (COX)-2, prostaglandin
(PG)E2, IL-1B, IL-6, and tumor necrosis factor (TNF)-a, released in the supernatant, analyzed by ELISA assay. The total
amount was referenced to the ratio of the value of interest and the value of the basal condition, reported equal to 1. Data
were represented as mean =+ SD of triplicate values. * p < 0.05, ** p < 0.01 versus basal condition. ° p < 0.05, °° p < 0.01
versus IL-18.

The treatment of OA chondrocytes with celecoxib, tested alone or in combination
with GS, significantly reduced COX-2, PGE2, IL-1, and IL-6 gene expression and release
in comparison to basal conditions (p < 0.05, p < 0.01), while no changes in TNF-a were
observed (Figure 1A-L, Figure 2A-L). The incubation with GS alone did not show any
detectable modification compared to baseline (Figure 1A-L, Figure 2A-L).

Stimulation of the cells with IL-18 caused a significant up-regulation of all analyzed
genes (p <0.05, p <0.01). Pre-treatment of the cells with celecoxib or GS significantly limited
the negative effect of IL-1p, in particular when the drugs were tested in combination, both
at24 and 48 h (p < 0.05, p < 0.01) (Figure 1A-L, Figure 2A-L).

2.2. Effects of Celecoxib and GS on Cellular Survival and Apoptosis

The incubation of chondrocytes with celecoxib or GS alone significantly increased
the percentage of survival cells, reduced the apoptotic rate, and up-regulated the gene
expression of the anti-apoptotic marker BCL2 (p < 0.05), in comparison to basal conditions,
at both analyzed time points (Figures S1 and S2, Figure 3A-F); this trend was maintained
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and enhanced when the compounds were tested in combination (p < 0.05, p < 0.01). On
the contrary, the stimulus with IL-1p significantly reduced viability (p < 0.01) and induced
apoptosis (p < 0.01), which were counteracted by the pre-incubation of the cells with
celecoxib and GS alone and, especially, in combination (p < 0.05, p < 0.01) (Figure 3A-F).
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Figure 3. Celecoxib and GS regulate viability and apoptosis. Human osteoarthritic (OA) chondrocytes were incubated
for 24 and 48 h with celecoxib (1.85 pM) and prescription-grade glucosamine sulfate (GS) (9 uM) (2 h of pre-treatment) in
the presence of interleukin (IL)-18 (10 ng/mL). (A,B) Evaluation of cell viability by MTT assay. (C,D) Apoptosis detection
performed by flow cytometry analysis and measured with Annexin Alexa fluor 488 assay. Data were expressed as the
percentage of positive cells for Annexin-V and propidium iodide (PI) staining. (E,F) Expression levels of B-cell lymphoma
(BCL2) analyzed by quantitative real-time PCR. The percentage of surviving cells, the ratio of apoptosis, and the gene
expression were referenced to the ratio of the value of interest and the value of the basal condition, reported equal to 100
or 1. Data were represented as mean + SD of triplicate values. * p < 0.05, ** p < 0.01 versus basal condition. ° p < 0.05,
°°p <0.01,°°° p <0.001 versus IL-1p.

2.3. Celecoxib and GS Modulate the Oxidant/Antioxidant System

The potential role of celecoxib and GS in the regulation of oxidant/antioxidant balance
in chondrocytes stimulated with IL-18 was reported in Figure S3 and Figure 4. Celecoxib
and GS, analyzed alone or in combination, significantly reduced the production of mi-
tochondrial superoxide anion and the gene expression of SOD-2, CAT, and NRF2, at
24 and 48 h, compared to baseline (p < 0.05, Figure 4A-H). Conversely, IL-18 stimulus
induced mitochondrial ROS production and mRNA levels of the antioxidant enzymes
(p < 0.05, p < 0.01); otherwise, pre-treatment with either celecoxib or GS limited the nega-
tive effect of IL-1 on redox balance, with an enhancement when the drugs were used in
combination, both at 24 and 48 h (p < 0.01, p < 0.001) (Figure 4A-H).
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Figure 4. Celecoxib and GS regulate oxidative stress balance. Human osteoarthritic (OA) chondrocytes were incubated
for 24 and 48 h with celecoxib (1.85 M) and prescription-grade glucosamine sulfate (GS) (9 uM) (2 h of pre-treatment) in
the presence of interleukin (IL)-18 (10 ng/mL). (A,B) Mitochondrial superoxide anion production evaluated by MitoSox
Red staining at flow cytometry. (C-H) Expression levels of superoxide dismutase (SOD)-2, catalase (CAT), and nuclear
factor erythroid 2 like 2 (NRF2) analyzed by quantitative real-time PCR. The production of superoxide anion and the gene
expression were referenced to the ratio of the value of interest and the value of basal condition, reported equal to 1. Data
were represented as mean =+ SD of triplicate values. * p < 0.05, ** p < 0.01 versus basal condition. ° p < 0.05, °° p < 0.01,
°°° p <0.001 versus IL-18.

2.4. Celecoxib and GS Regulate Cartilage Turnover

As reported in Figures 5 and 6, the gene expression and supernatant release of the
matrix-degrading enzymes—MMP-1, MMP-3, and MMP-13—did not show any significant
change in OA chondrocytes incubated, for 24 and 48 h, with celecoxib or GS alone in
comparison to basal conditions (Figure 5SA-F, Figure 6A-F). GS significantly increased the
expression and release of Col2al (p < 0.05, p < 0.01) when tested alone or in combination
with celecoxib (Figure 5G-H, Figure 6G-H).
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Figure 5. Celecoxib and GS regulate cartilage metabolism. Human osteoarthritic (OA) chondrocytes were incubated for
24 and 48 h with celecoxib (1.85 uM) and prescription-grade glucosamine sulfate (GS) (9 uM) (2 h of pre-treatment) in the
presence of interleukin (IL)-18 (10 ng/mL). (A-H) Expression levels of metalloproteinase (MMP)-1, -3, -13, and type II
collagen (Col2al), analyzed by quantitative real-time PCR. The gene expression was referenced to the ratio of the value
of interest and the value of basal condition, reported equal to 1. Data were represented as mean =+ SD of triplicate values.
*p <0.05 * p <0.01, *** p < 0.001 versus basal condition. ° p < 0.05, °° p < 0.01 versus IL-1p.
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Figure 6. Celecoxib and GS regulate cartilage metabolism. Human osteoarthritic (OA) chondrocytes were incubated for
24 and 48 h with celecoxib (1.85 uM) and prescription-grade glucosamine sulfate (GS) (9 uM) (2 h of pre-treatment) in the
presence of interleukin (IL)-18 (10 ng/mL). (A-H) Total amount of metalloproteinase (MMP)-1, -3, -13, and type II collagen
(Col2al) released in the supernatant, analyzed by ELISA assay. The total amount was referenced to the ratio of the value of
interest and the value of the basal condition, reported equal to 1. Data were represented as mean =+ SD of triplicate values.
*p <0.05,* p <0.01, ** p < 0.001 versus basal condition. ° p < 0.05, °° p < 0.01, °°° p < 0.001 versus IL-1p.

The statistically significant increase in MMP-1, MMP-3, and MMP-13 and the down-
regulation of Col2a1 induced by IL-18 stimulus (p < 0.05, p < 0.01, p < 0.001) were partially
inhibited by pre-treatment of the cells with celecoxib or GS. Co-incubation of OA chondro-
cytes with both drugs induced a more significant exacerbation by the combination of them,
both at 24 and 48 h (p < 0.05, p < 0.01, p < 0.001) (Figure 5A-H, Figure 6A-H).

2.5. Celecoxib and GS Reduce NF-xB Signaling Pathway Activation

Figure 7 shows the effects of celecoxib and GS on NF-«B signaling pathway regulation.
PCR real-time analysis reported no significant changes in OA chondrocytes incubated
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for 4 h with celecoxib or GS alone in comparison to baseline, except for the combination
of them, which induced a significant reduction in p65 and p50 subunits gene expression
(p <0.01, p < 0.05, Figure 7A,B). As expected, the significant up-regulation of p65 and p50
gene expression induced by IL-1 stimulus (p < 0.01, p < 0.05) was partially counteracted
by the pre-treatment of the cells with celecoxib or GS (p < 0.05) and, especially, when the
drugs were tested in combination (p < 0.01) (Figure 7A,B).
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Figure 7. Celecoxib and GS modulate the NF-«B signaling pathway. Human osteoarthritic (OA)
chondrocytes were incubated for 4 h with celecoxib (1.85 uM) and prescription-grade glucosamine
sulfate (GS) (9 uM) (2 h of pre-treatment) in the presence of interleukin (IL)-18 (10 ng/mL). (A,B)
Expression levels of p65 and p50 subunits were analyzed by quantitative real-time PCR. The gene
expression was referenced to the ratio of the value of interest and the value of basal condition,
reported equal to 1. Data were represented as mean + SD of triplicate values. * p < 0.05, ** p < 0.01
versus basal condition. ° p < 0.05, °° p < 0.01 versus IL-18.

2.6. NF-xB Inhibitor Enhances Celecoxib and GS-Induced Effects

To demonstrate the involvement of the NF-«B signaling pathway in mediating cele-
coxib and GS-induced effects on inflammatory, apoptotic, and oxidative stress media-
tors, OA chondrocytes were pre-incubated with a specific NF-«B inhibitor (BAY 11-7082,
IKK«/3) (Figures 8-10).

The transcriptional levels of COX-2, PGE2, IL-1B, IL-6, TNF-« (Figure 8), SOD-2, CAT,
NRF2 (Figure 9), MMP-1, MMP-3, and MMP-13 (Figure 10) were significantly reduced
(p <0.01, p < 0.001) in OA cells incubated with BAY 11-7082, while an up-regulation of
Col2a1 mRNA levels was observed (p < 0.05, Figure 10) in comparison to the basal condition
and IL-18.

The co-treatment of the cells with BAY 11-7082 and celecoxib or GS, alone or in com-
bination, did not show any significant difference in target gene expression with respect to
what was observed in OA chondrocytes incubated with BAY 11-7082 alone (Figures 8-10).

Furthermore, incubation of the NF-«B inhibitor with celecoxib and GS, in the presence
of IL-18 stimulus, significantly reduced the expression levels of the analyzed genes beyond
that caused by each treatment and, in particular, limited that induced by IL-18 (Figures 8-10).
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Figure 8. BAY 11-7082 influences celecoxib and GS effects on pro-inflammatory cytokines. Human osteoarthritic (OA)
chondrocytes were incubated for 24 h with celecoxib (1.85 uM) and prescription-grade glucosamine sulfate (GS) (9 uM)
(2 h of pre-treatment) in the presence of interleukin (IL)-1p (10 ng/mL) and BAY 11-7082 1 uM (NF-«B inhibitor, 2 h of
pre-treatment). (A-E) Expression levels of cyclooxygenase (COX)-2, prostaglandin (PG)E2, IL-18, IL-6, and tumor necrosis
factor (TNF)-a analyzed by quantitative real-time PCR. The gene expression was referenced to the ratio of the value of
interest and the value of basal condition, reported equal to 1. Data were represented as mean £ SD of triplicate values.
*p <0.05,** p <0.01, *** p < 0.001 versus basal condition. ® p < 0.05, °° p < 0.01 versus IL-1p. # p < 0.05, ## p < 0.01 versus

celecoxib or GS plus BAY.
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Figure 9. BAY 11-7082 influences celecoxib and GS effects on anti-oxidant enzymes expression.
Human osteoarthritic (OA) chondrocytes were incubated for 24 h with celecoxib (1.85 uM) and
prescription-grade glucosamine sulfate (GS) (9 uM) (2 h of pre-treatment) in the presence of inter-
leukin (IL)-1B (10 ng/mL) and BAY 11-7082 1 uM (NF-kB inhibitor, 2 h of pre-treatment). (A—C) Ex-
pression levels of superoxide dismutase (SOD)-2, catalase (CAT), and nuclear factor erythroid 2 like 2
(NRF2) analyzed by quantitative real-time PCR. The gene expression was referenced to the ratio of
the value of interest and the value of basal condition, reported equal to 1. Data were represented as
mean =+ SD of triplicate values. * p < 0.05, ** p < 0.01 versus basal condition. ° p < 0.05, °° p < 0.01,

°°° p < 0.001 versus IL-1B. # p < 0.05, ## p < 0.01 versus celecoxib or GS plus BAY.
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Figure 10. BAY 11-7082 enhances celecoxib and GS effects on cartilage metabolism. Human osteoarthritic (OA) chondrocytes
were incubated for 24 h with celecoxib (1.85 uM) and prescription-grade glucosamine sulfate (GS) (9 uM) (2 h of pre-
treatment) in the presence of interleukin (IL)-18 (10 ng/mL) and BAY 11-7082 1 uM (NF-«B inhibitor, 2 h of pre-treatment).
(A-E) Expression levels of metalloproteinase (MMP)-1, -3, -13, type II collagen (Col2a1), and B-cell lymphoma (BCL2)
analyzed by quantitative real-time PCR. The gene expression was referenced to the ratio of the value of interest and the
value of basal condition, reported equal to 1. Data were represented as mean =+ SD of triplicate values. * p < 0.05, ** p < 0.01
versus basal condition. ° p < 0.05, °° p < 0.01 versus IL-18. # p < 0.05, ## p < 0.01 versus celecoxib or GS plus BAY.

3. Discussion

The goal of the present research was to examine the possible anti-inflammatory and
chondroprotective effects of a combination of celecoxib and GS on inflammation, cartilage
turnover, apoptosis, and oxidative stress in human OA chondrocyte cultures, and the
potential mechanism of action underlying their favorable effects.

The concentrations of celecoxib and GS tested in the present study seem to be the
most appropriate to reflect the mean plasma concentration of drugs reaching the systemic
circulation, and they were chosen according to those used by other authors [39,40]. Fur-
thermore, our chondrocytes were grown in culture medium containing low concentrations
of glucose (DMEM with 25 mmol/L of glucose), to avoid any possible competition with GS
for glucose transporters, thus impeding adequate GS uptake into the cells [35,41]. Finally,
the cultures were stimulated with IL-15, a potent pro-inflammatory cytokine generally
used in in vitro models to mimic the circumstances driving to in vivo cartilage degradation
and inflammatory status [35,42].

Our first result confirmed the significant increase in gene expression and supernatant
release of the main pro-inflammatory cytokines, IL-18, IL-6, TNF-a, and PGE2, the latter
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probably related to the increase in COX-2, in OA chondrocytes stimulated with IL-15, as
previously reported [22,35]. The incubation of the cells with celecoxib or GS counteracted
the negative effects of IL-18 on these mediators, similarly to what was observed on OA
chondrocytes and OA canine models by other authors [19,22,23,33,35]. Furthermore, we
demonstrated, for the first time, a synergistic anti-inflammatory effect of celecoxib and GS,
when tested in combination, in IL-1B-treated chondrocytes, with an activity retention until
48 h of treatment.

The regulation of chondrocytes survival is important for the maintenance of a proper
cartilage structure and function. Indeed, morphological changes due to an increase in
apoptosis are typical features of OA damage [43]. The analysis of viability and apoptosis
carried out in the present study showed a reduction in survival and an increase in apop-
totic chondrocytes in the presence of IL-1p, which appeared in agreement with previous
research [22,44,45]. On the contrary, celecoxib and GS, tested alone or in combination,
increased viability and decreased apoptosis, with a concomitant up-regulation of the anti-
apoptotic marker BCL2; the anti-apoptotic effect of our drugs was also demonstrated in OA
cells stimulated with IL-18. These results are consistent with other authors who reported
the ability of both compounds to promote proliferation and reduce the apoptosis rate of OA
chondrocytes with or without the influence of the negative stimulus of IL-1 [21,22,38,46].
Furthermore, we firstly observed that the anti-apoptotic activity of celecoxib and GS was
increased when IL-1B-stimulated chondrocytes were simultaneously incubated with the
drugs, at both 24 and 48 h of treatment.

Accumulating evidence indicates ROS and reactive nitrogen species as important
mediators of cartilage damage that occurs in OA; the failure in oxidant/antioxidant balance
in OA chondrocytes induces an altered redox status, which promotes cartilage breakdown
and makes cells more susceptible to oxidant-mediated apoptosis [2]. In the current study,
the assessment of oxidative stress showed an increase in mitochondrial superoxide anion
production and antioxidant enzymes expression, SOD2, CAT, and of the transcriptional
factor NRF2, in OA chondrocytes exposed to IL-18, in agreement with our previous find-
ings [22]. Furthermore, we demonstrated the ability of celecoxib or GS to decrease ROS
release and antioxidant enzyme gene levels, and their effect was also maintained following
IL-18 stimulus, in line with the current literature. Indeed, some authors reported the
reduction of superoxide anion production and SOD2 activity, caused by celecoxib, in OA
chondrocytes stimulated with IL-18 [22,47]. Similarly, a decrease in superoxide anion and
inducible nitric oxide synthase (iNOS) expression, induced by IL-15, was found in human
OA chondrocytes treated with GS [48-50]. Interestingly, our results further demonstrated
that the activation of oxidative stress caused by IL-13 was strongly reversed by the si-
multaneous treatment of the cells with celecoxib and GS, indicating a more efficacious
anti-oxidant effect of the studied drugs when used in combination.

The activation of different matrix-degrading enzymes, such as MMP-1, MMP-3, and
MMP-13, and the consequent degradation of proteoglycans and Col2al represents one
of main characteristics of OA and has been amply demonstrated in human OA articular
cartilage and chondrocytes following IL-1f stimulus [9,17,18,41,45,46]. In agreement with
these data, in the present paper, we observed a significant increase in MMP-1, -3, and -13
and a reduction in Col2a1 gene expression and supernatant release in IL-13-stimulated OA
chondrocytes. The incubation of our cultures with celecoxib or GS alone did not modify
the studied MMPs and Col2al, according to other findings [47,48], while it was able to
counteract the negative effect of IL-15 on these factors, especially when the drugs were
co-incubated, until 48 h of treatment, suggesting a possible anti-catabolic effect of the
tested compounds. In a similar manner, other authors reported a reduction in MMP-1,
MMP-3, MMP-13, aggrecanases, and a production of proteoglycans and Col2al in IL-1p-
stimulated OA chondrocytes treated with celecoxib or GS [16,22,35,36,51-56], while no
data from the literature are available concerning the combination of celecoxib and GS on
cartilage turnover.
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Finally, our experience focused on a deeper investigation on the potential mechanism
of action underlying favorable effects of celecoxib and GS combination on chondrocytes
metabolism through analysis of the NF-«B signaling pathway.

It is known that NF-«B proteins constitute a family of ubiquitously expressed transcrip-
tion factors triggering the expression of inflammatory mediators and matrix-degrading
enzymes involved in detrimental processes occurring during OA [57].

A number of studies showed the protective role of GS on cartilage metabolism by
inhibiting activation of the NF-«kB signaling pathway, as well as its nuclear translocation, in
human OA chondrocytes stimulated with IL-18 [33]; this effect was also observed when
GS was used at a range of concentration similar to that found at plasma concentration, as
established by pharmacokinetics studies [37,40].

Growing evidence suggests that celecoxib exerts a direct effect on cartilage metabolism
by modulating pathways independent to COX-2 activity and PGE2 inhibition, probably
through the regulation of NF-kB signaling [15,47,58].

Our data are in line with the current literature demonstrating that the treatment of
OA chondrocytes with celecoxib or GS reduced NF-kB signal activation as well as p50 and
p65 subunits nuclear translocation induced by IL-18; this effect was strongly enhanced
when the drugs were tested in combination. We further demonstrated that the use of a
specific NF-«B inhibitor, BAY11-7082, reduced the effect of IL-18 on inflammation, oxidative
stress, apoptosis, and cartilage turnover, potentiating the activity of celecoxib and GS, as
previously reported [54]. This allows us to speculate the hypothesis that celecoxib and GS
could be effective in the regulation of chondrocyte metabolism through a direct inhibition
of NF-«B signaling.

Different findings pointed out that GS seems to exert its effect on NF-«B-dependent
transcription via an epigenetic mechanism, regulating the demethylation of specific CpG
sites of DNA in the IL13 promoter, responsible for the aberrant expression of MMPs,
ADAMTS, and IL-1§ in human articular chondrocytes [37,54]. On the other hand, it is
currently not completely defined how celecoxib mediates the activity of NF-kB, but it
is possible to assume that it follows the PI3K/AKT/IKK/NF-kB pathway regulation,
implicated in the regulation of apoptosis and cell proliferation, as demonstrated in different
studies on cancer cell lines [59,60].

4. Materials and Methods
4.1. Sample Collection and Cell Cultures

Human OA articular cartilage was collected from femoral heads of five non-obese
(body mass index ranging from 20 to 23 kg/m?) and non-diabetic patients (two men and
three women, age ranging from 65 to 75) with coxarthrosis according to ACR criteria [61],
undergoing hip replacement surgery.

OA grade ranged from moderate to severe, and cartilage showed typical disease
changes, as the presence of chondrocyte clusters, fibrillation, and loss of metachromasia
(Mankin degree 3-7) [62]. The femoral heads were supplied by the Orthopaedic Surgery,
University of Siena, Italy. The use of human articular samples was authorized by the
Ethic Committee of Azienda Ospedaliera Universitaria Senese/Siena University Hospital
(decision no. 13931/18) and the informed consent of the donor.

After surgery, cartilage fragments were aseptically dissected and processed by an
enzymatic digestion, as previously described [63]. For growth and expansion, cells were
cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Euroclone, Milan, Italy) with
phenol red and 4 mM L-glutamine, supplemented with 10% fetal bovine serum (FBS)
(Euroclone, Milan, Italy), 200 U/mL penicillin, and 200 pg/mL streptomycin (P/S) (Sigma-
Aldrich, Milan, Italy). The medium was changed twice a week, and the cell morphology
was examined daily with an inverted microscope (Olympus IMT-2, Tokyo, Japan). OA
primary chondrocytes at the first passage were employed for the experiments [64]. For
each single experiment a cell culture from a unique donor was used.
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4.2. Pharmacological Treatment

Human OA chondrocytes were plated in 6-well dishes at a starting density of
1 x 10° cells/well until 85% confluence. Prescription-grade crystalline GS (Dona®) and
celecoxib (Celebrex®) were supplied by Meda Pharma SpA (Viatris group). The powders
of the substances were dissolved in the culture medium in phosphate-buffered saline (PBS)
(Euroclone, Milan, Italy), according to the instructions, and directly diluted in the culture
medium for the treatment to achieve the final concentrations required.

The cells were cultured in DMEM enriched with 0.5% FBS and 2% P/S, and they
were treated for 24 and 48 h with celecoxib and GS, at the concentration of 1.85 uM and
9 uM, respectively, to better reproduce their therapeutic effect in vivo. The treatment
was performed in the presence of IL-18 (10 n g/mL) (Sigma-Aldrich, Italy), added after
2 h of pre-incubation with the drugs; the experiments were also assessed analyzing the
combination of both drugs at 24 and 48 h. Afterwards, the cells were recovered and
immediately processed to carry out flow cytometry and quantitative real-time PCR, while
the supernatant was collected and stored at —80 °C until ELISA assay.

Some cultures were pre-incubated for 2 h with BAY 11-7082 1 uM (NF-«B inhibitor,
IKKe/ 3, Sigma—Aldrich, Milan, Italy) and then treated for 24 h with celecoxib and GS.
Afterwards, the gene expression of the target genes (COX-2, IL-18, IL-6, TNF-a, MMP-1,
MMP-3, MMP-13, Col2al, BCL2, SOD-2, CAT, and NRF2) was evaluated.

4.3. Cell Viability

The viability of the cells after pharmacological treatment was evaluated by MTT (3-
[4,4-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazoliumbromide) (Sigma-Aldrich, Milan, Italy)
for each experimental condition, as previously described [65]. Timing of drug treatment
was selected according to the percentage of surviving cells (Figure S1). The percentage
of surviving cells was evaluated as (absorbance of considered sample)/(absorbance of
control) x 100. Data were reported as OD units per 10* adherent cells.

4.4. RNA Isolation and Quantitative Real-Time PCR

OA chondrocyte were grown and maintained in 6-well dishes at a starting density of
1 x 10° cells/well until they became 85% confluent in DMEM supplemented with 10% FBS,
before replacement with 0.5% FBS for the treatment. Then, cells were collected, and total
RNA was extracted using TriPure Isolation Reagent (Euroclone, Milan, Italy) according
to the manufacturer’s instructions. Five hundred nanograms of RNA of target genes was
reverse-transcribed by using the QuantiTect Reverse Transcription kit (Qiagen, Hilden,
Germany), according to the manufacturer’s instructions. Target genes were assessed by
real-time PCR using the QuantiFast SYBR Green PCR kit (Qiagen, Hilden, Germany).
Primers used for PCR reactions are listed in Table S1.

All gPCR reactions were achieved in glass capillaries by a LightCycler 1.0 (Roche
Molecular Biochemicals, Mannheim, Germany) with LightCycler Software Version 3.5. The
reaction procedure has been described in detail in our previous studies [63].

For the data analysis, the Ct values of each sample and the efficiency of the primer
set were calculated by LinReg Software and converted into relative quantities [66,67]. The
normalization was performed considering Actin Beta (ACTB) as a housekeeping gene for
the analyzed target genes [68].

4.5. ELISA Assay

After the pharmacological treatment, the supernatant was collected and stored at
—80 °C until analysis. PGE2 production, the release of COX-2, IL-1, IL-6, TNF-a, MMP-1,
MMP-3, MMP-13, and Col2al were detected using ELISA kits (Boster Biological Technology,
CA, USA).

IL-1pB limit of detection was 250 pg/mL. Inter-assay and intra-assay coefficients of
variation were 5.7-8.9%and 4.1-7.3%, respectively.
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IL-6 limit of detection was 300 pg/mL. Inter-assay and intra-assay coefficients of
variation were 7.2-8.6% and 6.2-7.4%, respectively.

TNF-a limit of detection was 1000 pg/mL. Inter-assay and intra-assay coefficients of
variation were 5.4-6.4% and 4.8-7.4%, respectively.

MMP-1 limit of detection was 10,000 pg/mL. Inter-assay and intra-assay coefficients
of variation were 7.6-8.3% and 5.8-6.5%, respectively.

MMP-3 limit of detection was 10000 pg/mL. Inter-assay and intra-assay coefficients
of variation were 6.2-6.9% and 6.4-6.9%, respectively.

MMP-13 limit of detection was 10,000 pg/mL. Inter-assay and intra-assay coefficients
of variation were 7.5-8.1% and 6.4-7.0%, respectively.

Col2al limit of detection was 20 ng/mL. Inter-assay and intra-assay coefficients of
variation were <10% and <8%, respectively.

4.6. Apoptosis Detection

Apoptotic cells were measured by using the Annexin V-FITC and propidium iodide
(PI) (ThermoFisher Scientific, Milan, Italy) kit. OA chondrocyte were seeded in 12-well
plates (8 x 10* cells/well) for 24 h in DMEM with 10% FBS, before replacement with
0.5% FBS used for the treatment. The apoptosis assay was performed as previously
described [69]. A total of 10,000 events (1 x 10* cells per assay) were measured by the
instrument. The results were examined with Cell Quest software (Version 4.0, Becton
Dickinson, San Jose, CA, USA). Cells simultaneously stained with Alexa Fluor 488 annexin-
V and PI were considered for the evaluation of apoptosis (total apoptosis) [22]. The results
were represented as percentage of positive cells to each dye.

4.7. Mitochondrial Superoxide Anion (eO,~) Production

OA chondrocyte were seeded in 12 well-plates (8 x 10* cells/well) for 24 h in DMEM
with 10% FCS, before replacement with 0.5% FBS for the treatment. The mitochondrial
superoxide anion detection has been performed by MitoSOX Red staining as previously
described [69]. A density of 1 x 10* cells per assay (a total of 10,000 events) was measured
by flow cytometry, and data were analyzed with CellQuest software (Version 4.0, Becton
Dickinson, San Jose, CA, USA). Results were collected as median of fluorescence (AU) and
represented the mean of three independent experiments.

4.8. Statistical Analysis

Three independent experiments were carried out, and the results were expressed as
the mean = standard deviation (SD) of triplicate values for each experiment. Data normal
distribution was evaluated by Shapiro-Wilk, D’ Agostino and Pearson, and Kolmogorov—-
Smirnov tests. Flow cytometry, ELISA, and Western blot results were assessed by ANOVA
with Bonferroni post hoc test. Quantitative real-time PCR was evaluated by one-way
ANOVA with a Tukey’s post hoc test using 2~22CT values for each sample. All analyses
were performed through the SAS System (SAS Institute Inc., Cary, NC, USA) and GraphPad
Prism 6.1. A p-value < 0.05 was considered as statistically significant.

5. Conclusions

In the present study we confirm the anti-inflammatory and anti-catabolic effects of the
therapeutic dose of prescription-grade GS on human OA chondrocyte metabolism.

Furthermore, our results demonstrate the chondroprotective role of celecoxib in OA
cells, reinforcing the evidence in favor of using this drug as potential DMOAD:s. In fact,
in vitro studies showed the direct effects of celecoxib on cartilage, bone, and synoviocytes
metabolism [15], raising the question of whether it is more than an anti-inflammatory and
analgesic drug and, thus, has additional disease modifying effects.

A number of clinical studies reported that the combination of celecoxib and GS
effectively modulate immune inflammatory response, oxidative stress damage, and joint
pain and function in patients with knee OA [70-72]. Our results demonstrate, for the first
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time, the synergistic effect of celecoxib and GS on human OA chondrocyte metabolism.
In particular, this combination treatment exerts a protective role on chondrocytes against
the detrimental activities induced by IL-18 stimulus, reducing inflammation, apoptosis,
oxidative stress, and regulating cartilage turnover, and this activity was effective through
direct regulation of NF-«B signaling pathway activation.

Taken together, our in vitro findings suggest that the simultaneous treatment of cele-
coxib and GS seems to be more effective overall than each single treatment alone, for all
the evaluated processes. This result may support the use of a combination therapy for
the treatment of OA in clinical practice, since attenuating multiple pathways leading to
inflammation and joint destruction can facilitate a safe and effective management of OA.

Our data provide indicative interesting results that deserve to be confirmed with
further investigations.

Some limitations need to be mentioned. The same analyses on healthy primary
chondrocytes are recommended, to better understand the effectiveness of celecoxib and
GS on chondrocyte homeostasis and, in particular, their relevance in OA damage. Then,
a deeper examination of the molecular mechanism responsible for the pharmacological
effects may contribute to find out the exact role of celecoxib and GS in OA.
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