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Abstract: Nitroaromatic compounds (NACs) are ubiquitous in the environment due to their extensive
industrial applications. The recalcitrance of NACs causes their arduous degradation, subsequently
bringing about potential threats to human health and environmental safety. The problem of how to
effectively predict the toxicity of NACs has drawn public concern over time. Quantitative structure–
activity relationship (QSAR) is introduced as a cost-effective tool to quantitatively predict the toxicity
of toxicants. Both OECD (Organization for Economic Co-operation and Development) and REACH
(Registration, Evaluation and Authorization of Chemicals) legislation have promoted the use of
QSAR as it can significantly reduce living animal testing. Although numerous QSAR studies have
been conducted to evaluate the toxicity of NACs, systematic reviews related to the QSAR modeling
of NACs toxicity are less reported. The purpose of this review is to provide a thorough summary
of recent QSAR studies on the toxic effects of NACs according to the corresponding classes of toxic
response endpoints.

Keywords: nitroaromatic compounds; in silico modeling; QSAR; animal testing; toxicity

1. Introduction

Nitroaromatic compounds (NACs) are a type of aromatic compound with at least
one nitro group (-NO2) located at the benzene ring. They comprehensively exist in the
atmospheric, aquatic, and terrestrial environment, as well as human foods. The nitro
group on benzene ring delocalizes π-electrons of the ring, satisfying the deficiency of its
own charge [1]. This unique structure enables NACs to exhibit various applications. For
example, most explosive materials manufactured in the last century were NACs, such as
2,4,6-trinitrotoluene (TNT), 1,3,5-trinitrobezene (TNB), tetryl nitramine, trinitrophenols,
hexanitrobezene, etc. [2,3]. In the dye industry and pharmaceutical factories, 2-nitrophenol
derivatives are widely used. 2,4-Dinitrotoluenes (DNTs) are used in organic synthesis
industries such as polyurethane, dyes, medicine, and rubber. Dinitrophenols (DNPs) have
been used in herbicides and pesticides [4]. Table 1 lists the names, sources, and applications
of NACs, and their toxic effects observed in different organisms. The main source of NACs
in the environment is artificial manufacture (industrial emission, automobile exhaust
and domestic sewage) due to the comprehensive application in industry. Apart from
anthropogenic activities, some NACs can be produced by certain microbes, parasites or
plants as secondary metabolites or pheromones [5]. The psychrotolerant, gram-negative
bacterium Salegentibacter sp. strain T436, found in the Arctic, can produce 21 monocyclic
NACs as secondary metabolites. The fermentation can be optimized to improve their
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antimicrobial and cytotoxic ability, of which 2-nitro-4-(2′-nitroethenyl)phenol is the most
potent one [6,7]. The electron-withdrawing nitro groups cause NACs to be recalcitrant for
degradation [8]. Furthermore, the degradation of NACs is not sustainable and efficacious
enough, directly leading to their persistent accumulation in the environment. Hence,
the contamination of NACs poses a serious threat to the ecological environment and
human health.

Table 1. Names, sources, applications, toxicity, and research objects of several representative nitroaromatic compounds.

Name Source or Application Toxicity Organism References

TNT explosive inhibition of cell growth and cell viability,
mutagenic, liver damage, cataract mammal [9,10]

DNT dye, medicine, rubber
central nervous system and respiratory
system depression, ataxia, reproductive

toxicity
rat [11]

DNP dye, pesticide,
herbicide

weight loss, lethal, cataract,
tumorigenicity human [12]

Nitrofuran antibiotics tumorigenicity, mutagenicity,
carcinogenicity human [13]

Mononitrophenol explosive, dye,
pharmaceutical, rubber, carcinogenicity human [14]

1-Nitropyrene diesel mutagenicity, carcinogenicity human, bacteria [15]

2-Nitronaphthalene vehicle fuel DNA damage human, bacteria [16]

NACs exhibit various toxic effects towards living organisms, such as mutagenicity, car-
cinogenicity, liver damage, jaundice, skin irritation, etc. It is reported that nitro polycyclic
aromatic hydrocarbons (NPAHs) can be assimilated by plants and accumulated in the food
chain, posing a potential danger to human [17]. Certain NACs like arylhydroxylamines,
arylamines, azo, and azoxy compounds even display higher toxicity than their parent
NACs [18]. The exhaust of diesel includes NPAHs such as 6-nitrochrysene, 1-nitropyrene,
1,6-dinitropyrene, etc., which are tested to be carcinogenic and mutagenic to mammals and
human beings [19]. US Environmental Protection Agency (EPA) already listed them as
priority pollutants [19,20]. In 2007, Germany identified more than 10 kinds of nitrophenols
and nitrobenzoic acids in ground water and leachate; adjacent residents were found to
show different symptoms like nausea, vomiting, headache, etc. [21]. Interestingly, a recent
study concluded that 3-trifluoromethyl-4-nitrophenol (TFM) destroyed the balance of ATP
supply and demand in trout [22]. TNT (including its metabolites) and DNT are manifested
to impair the reproduction of crickets and salamander as well [23,24].

In general, there are three paths (physical, chemical and biological methods) to remove
NACs in the environment. Physical methods involve absorption, adsorption, extraction,
ultrafiltration, photo-oxidation, and volatilization. Among them, adsorption is employed
most extensively [5]. Chemical methods include hydrolysis and advanced oxidation pro-
cesses (AOPs). AOPs utilize oxidants like Fenton reagent, H2O2, and metal as photocata-
lysts to oxidize NACs. In this case, the stability of the aromatic ring is destroyed by radicals
generated from oxidants, thus leading NACs to be decomposed into smaller molecules [25].
Biodegradation refers to using microorganisms to decompose NACs, typically including
aerobic or anaerobic approach. Even if particular NACs are inclined to aerobic degradation,
a number of them are recalcitrant to be oxidized. NACs with high electronegativity are
amenable to be reduced first. Besides, it is difficult to decompose NACs completely solely
by bacteria, and microbes differ in their ability to degrade NACs. Therefore, the selection
of appropriate microorganisms is of vital importance [26]. The major defect of physical
methods is that adsorbents usually adsorb organic compounds indiscriminately and such
pollutants require further treatment to detoxify. AOPs are costly and microorganisms are
inefficient in high concentration scale [5]. Consequently, physico-chemical and biological
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methods are integrated to remove NACs in modern industry. In this case, NACs may
be further detoxified to meet the environmental standard. However, the economic costs
are very high and non-negligible. To avoid these NACs with high toxicity entering the
environment, assessing various toxic effects of NACs in advance is necessary. As there is
a massive number of NACs, it is impossible to evaluate all the toxic response endpoints
through experiments in vitro or in vivo. Consequently, in silico predictive modeling tech-
niques are introduced to supplant these experiments since they can reduce the number of
animal testing, satisfy 3R rules (reduction, replacement, refinement), and rapidly predict
the toxicity [27].

QSAR means quantitative structure–activity relationship, which is a process that quan-
titatively bridges molecular descriptors and biological activities. Molecular descriptor is
the “fingerprint” of one molecule on the micro level, including theoretical and experimental
parameters such as atom numbers; chemical bonds numbers; MLI (molecular connectivity
index); ionization constant, pKa; electric dipole moment µ; MR (molecular molar refractive
index), logP (lipophilic parameter), etc. With the aid of integrated modeling softwares and
well-built mathematical models, the biological properties of specified functional groups
can be analyzed and further utilized for chemical design to enhance or decrease the cor-
responding response endpoints. Common mathematical modeling algorithms include:
Multiple Linear Regression (MLR), Genetic Algorithm (GA), Principal Component Analysis
(PCA), Partial Least-square method (PLS), Artificial Neural Network (ANN), and Support
Vector Machine (SVM). MLR, PCA, and PLS are favorable to process linear relationships,
while GA, ANN, and SVM deal with non-linear relationships better [28,29]. Typically, the
selection of molecular descriptors determines the quality of models. More descriptors are
not meant to be more precise, on the contrary, it may result in overfitting. Accordingly, the
selected molecular descriptors must be mutually independent or less correlated.

The results from QSAR are necessary to be verified and evaluated through statistical
approaches, which involve internal and external validation metrics. Internal validation
commonly employs leave-one-out cross validation (LOO), leave-more-out (LMO) and
Y-scrambling method (also called Y-randomization). R2 is the determination coefficient of
the model, which indicates its fitting ability. Q2 is the cross-validation coefficient of the
model, which indicates its robustness and stability. The classical formulations of R2 and Q2

are listed as Equations (1) and (2).

R2 = 1− ∑(yi − ŷi)
2

∑(yi − y)2 = 1− RSS
TSS

(1)

Yi is the observed values of the response; y is the average of all the observed values;
ŷi is the calculated value; RSS represents the residual sum of squares; and TSS represents
the total sum of squares.

Q2 = 1− ∑(yi − ŷi)
2

∑(yi − y)2 = 1− PRESS
TSS

(2)

Yi is the observed values of the response; y is the average of all the observed values;
ŷi is the calculated value for each object apart from the training set; and PRESS means the
predicted residual sum of squares.

The performance of one model is acceptable when it satisfies R2 > 0.6 (for training and
test sets) and Q2 > 0.5 (for training set) [30]. A good outcome of internal validation is the
prerequisite of external validation. In fact, the actual predictive capability of a QSAR model
can only be assessed by datasets that are never used in model development [31–33]. Test
set, collected outside modeling data, is applied to verify the predictive veracity of a QSAR
model. Generally, the ratio of a training set to test set is approximately set as 3:1. Notably,
in general, the number of descriptors in the model equation should be less than one fifth
of the compounds in the training set [34]. Extra external datasets will further validate
the predictive performance of a QSAR model. As of now, QSAR has been modified and
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ameliorated relentlessly with the development of deep learning and artificial intelligence,
which guarantees the predictive ability to keep pace with the modern scientific field.
Therefore, the pharmaceutical industry commonly uses QSAR methodology to design new
drugs, thereby avoiding the introduction of specified toxic substructures. According to
the results obtained from QSAR, the toxicity of new chemicals can be predicted, laying a
solid foundation on their toxicity classification and risk assessment. Further, compared
with traditional living animal testing or in vitro experiments, QSAR tremendously saves
cost, time, and human resources. According to Registration, Evaluation, Authorization
and Restriction of Chemicals (REACH) regulation in EU, QSAR has been promoted to
apply in multiple fields since 2006 [35]. In particular, the principles for QSAR validation
recommended by OECD (Organization for Economic Co-operation and Development) for
regulatory purpose include: (1) a defined endpoint; (2) an unambiguous algorithm; (3) a
defined domain of applicability; (4) appropriate measures of goodness-of fit, robustness,
and predictivity; and (5) a mechanistic interpretation, if possible [36]. The prevalence of
QSAR minimizes the use of living animals in the experiments of acute systemic toxicity
and toxicokinetics [37].

Till today, a number of studies related to the QSAR modeling or applications for NACs
toxicity have been reported. However, the information of QSAR studies on the toxic effects
of NACs have not been systematically documented, compared, and reviewed. It is of
vital importance to elucidate the toxic mechanism of NACs and perform the rapid toxicity
prediction for developing greener and safer chemicals. In this review, we aim to summarize
recent advances in QSAR studies of NACs according to the corresponding classes of toxic
response endpoints.

2. QSAR Studies on Toxic Effects of NACs
2.1. Aquatic Toxicity
2.1.1. QSAR Studies on Aquatic Crustaceans

QSAR studies have been performed to quantitatively evaluate the ecotoxicity of
pesticides to aquatic crustaceans, such as Daphnia magna. According to the mode of action
(MOA), most chemicals are classified as inert (baseline), polar, reactive, and specifically
acting compounds [38–40]. It was concluded that the toxicity of inert chemicals exhibits
a linear relationship with hydrophobicity, which usually measured by octanol/water
partition coefficient (LogKow). In the study performed by Wang et al., a total of 24 molecular
descriptors including both physico-chemical properties and quantum chemical parameters
were used to develop QSAR models [41]. The modeling dataset comprised 57 pesticides
(most of them are NACs, such as Fenitrothion, Parathion, etc.); the result rendered that
seven descriptors exhibited prominent correlation to the toxicity, namely, polar surface area
(PSA), fraction of ionization (F+), heat of formation (H f ), polarity (S), hydrogen bonding
basicity (B), molecular volume (V), and Cosmo volume (CV). The validation of all QSAR
models presented decent results with R2 > 0.8 and Q2 > 0.6. The increase of hydrophobicity
contributed to an increase of the toxicity to D. magna. Chemical ionization can enhance the
toxicity to D. magna as well because ionized compounds generally exhibit strong capability
of interacting with biological macromolecules. Other descriptors that represent chemical
stability and the strength of interaction with biological macromolecules also affect the
toxicity. Molecules with strong electronegative substructures like O or N atom may show
less toxicity by enhancing their overall polarity [41].

2.1.2. QSAR Studies on Algaes

Among early QSAR studies, Zhao et al., constructed QSAR models to predict the
NACs toxicity on Scenedesmus obliguus [42]. The toxicity of 26 NACs was demonstrated
in modeling, which solely adopted internal validation (without external validation) and
showed R2 = 0.86. As a corollary, descriptors such as halfwave reduction potential (E12),
bioconcentration factor (BCF), the highest occupied molecular orbital energy (EHOMO),
the lowest unoccupied molecular orbital energy (ELUMO), and octanol/water partition
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coefficient (KOW) were determined as algae toxicity indicators. In another study, QSAR
models established by Schmitt et al., exhibited reliable results in predicting the Scenedesmus
vacuolatus toxicity of NACs [43]. Sixteen quantum chemistry descriptors along with Kow
participated in modeling, yielding an excellent R2 = 0.9. Importantly, the prediction can be
further improved by adding another descriptor maximum net atomic charge at the nitro
nitrogen (qnitro-N). As a result, parameters such as EHUMO, ELUMO, KOW, and distribution
coefficient proved to be highly relevant to the algae toxicity of NACs.

In a QSAR study performed by Tugcu and co-workers, the toxicity of nitrophenols on
Chlorella vulgaris was predicted and strictly evaluated according to OECD principles for
QSAR validation [44]. The QSAR models were constructed by MLR and Ordinary Least
Square (OLS) method using QSARINS software developed by Gramatica et al., [34]. A
series of descriptors such as constitutional index, topological index, connectivity index,
ETA index, functional group counts, etc. were totally involved in the model calculation.
Individual chemical toxicity to algae is characterized by the average growth rate, which
can be expressed as the half maximal inhibitory concentration (IC50). The results showed
a sound validation both internally and externally. For training sets, R2 > 0.6, Q2

LOO > 0.6,
RMSE < 0.45; and for test sets, Q2

F1, Q2
F2 and Q2

F3 > 0.70, r2
m > 0.65 and concordance

correlation coefficient (CCC) > 0.85. Further, the predictive quality was assessed by mean
absolute error (MAE)-based criteria proposed by Roy et al. [45]; model quality derived
from Equation (3) was “good”. Considering the comprehensive performance, Equation (3)
was selected to be further validated using two true external sets. As a result, the observed
and predicted values of the true external chemicals were close to each other. Moreover,
more than 94% chemicals in these two true external sets fell within the applicability domain
(AD) of the model defined by Equation (3).

pToxicity = 0.20(±0.17)LogP− 2.75(±1.33)Hardness + 12.70(±6.18) (3)

According to previous studies, the octanol-water partition coefficient (LogP/KOW/logKOW)
is an indispensable factor in chemical toxicity [1,4,24,31,41,44,46–48]. In some cases, though,
the determinant factors of toxicity need to be replenished to account for specific phenomena
like ionization [49]. In sum, descriptors like hydrophobicity, harness, and electrophilicity
as key factors to algae toxicity are commonly identified from the mechanistic analysis of
QSAR models.

2.1.3. QSAR Studies on Aquatic Interspecies Toxicity

Interestingly, Tugcu et al., also developed Quantitatively Toxicity-Toxicity Relationship
(QTTR) models to predict interspecies toxicity [44,50]. The toxicity order for dinitrophenols
to C. Vulgaris is para-dinitrophenols > meta-dinitrophenols > ortho-dinitrophenols, which is
identical in T. pyriformis. Also, the relationship among fish, bacteria, algae, and Daphinia
toxicities had been proven in previous studies [51,52]. Ciliate–algae and algae–algae inter-
species toxicity correlation were calculated through QTTR modeling. The results showed
R2

train = 0.75, Q2
LOO = 0.72, RMSEtrain = 0.32, R2

test = 0.82, RMSEtest = 0.28; R2
train = 0.93,

Q2
LOO = 0.91, RMSEtr = 0.18, R2

test = 0.83, RMSEtest = 0.27, respectively. The high values of
R2

test indicated a strong toxicity interrelationship within aquatic species. These models may
give us insight to predict aquatic toxicity to various species through limited data [44,49].

2.2. Acute Toxicity
2.2.1. QSAR Studies on Fish and Algae

QSAR studies on Carp acute toxicity (LC50) were established using six descriptors,
namely, the first order valence molecular connectivity index (Xv), the molecular shape
index (Kα), the sum of substituent constant (Σσ−), ELUMO, logP, and indicator variable
(I) [53]. Nineteen NACs were involved in modeling and the best prediction was obtained
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according to Equation (4), inferring a close relationship in electrophilicity and toxicity of
dinitro compounds as I (indicator variable) were considered as electron descriptors.

− LogLC50 = 3.522 + 0.926Σσ−+0.173I (N = 19, R = 0.907, S = 0.271) (4)

In Yan and co-workers’ study, three descriptors KOW, ELUMO, and QNO2 were employed
to establish the QSAR models of acute toxicity (EC50) of algae (Scenedesmus obliguus) [54].
Twenty five NACs were divided into two groups: mononitro and dinitro aromatic com-
pounds. For mononitro aromatic compounds, the authors presented a good prediction
generated from KOW, which showed R = 0.904, indicating a strong connection between
hydrophobicity and toxicity. For dinitro aromatic compounds, however, the conclusion was
different due to their high electrophilic nature. Thus, the authors selected ELUMO and QNO2

to predict dinitro aromatic compounds toxicity and showed a reasonable result: R = 0.926,
SE = 0.206. Different toxic mechanisms result in different key parameters in QSAR models,
thus presenting inevitable challenges to researchers. The toxicity of mononitro aromatic
compounds commonly can be expressed as the narcotic toxicity, which concentrates on the
penetration of the cell membrane.

2.2.2. QSAR Studies on Rodents

For rodent acute toxicity, lots of QSAR models have been constructed by using rat
or mouse as experimental objects [47,48,55–58]. QSAR models based on the simple rep-
resentation of molecular structure (SiRMS) method were constructed by Kuz’min et al.,
to predict the rat oral acute toxicity (LD50) of 28 NACs [59]. In this study, both 1D and
2D descriptors-based models generated decent prediction: R2 = 0.96~0.98; Q2 = 0.84~0.93;
R2

test = 0.89~0.92. The results showed that hydrophobicity, electrostatic, and Van der Waals
interactions contributed to the toxicity. What is more, the addition of fluorine and hydroxyl
groups in NACs increases the toxicity, while the insertion of methyl groups decreases
the toxicity in most cases. Importantly, the toxicity of substituents is non-additive. The
insertion of chlorine in ortho-position to the nitro group apparently enhances the toxic-
ity while the second chlorine insertion in para-position significantly reduces the toxicity.
Furthermore, recently, Hao et al., performed the QSTR modeling of the rat acute oral toxic-
ity of NACs and constructed an interspecies QTTR models between rat and mouse [55].
Seven simple 2D descriptors were utilized to achieve good prediction (Q2

LOO = 0.7003,
R2

adj = 0.7292, RMSEtrain = 0.5628; Q2
F1 = 0.7458, Q2

F2 = 0.7340, Q2
F3 = 0.7993, R2

test = 0.7593,
RMSEtest = 0.5024). Specifically, the van der Waals surface area, the presence of C-F at
topological distance 6, and high frequency of C-N at topological distance 9 directly affect
the acute oral toxicity of NACs to rat. The rat–mouse and mouse–rat interspecies QTTR
models also had excellent internal and external predictive performance and thus can be
used for interspecies data gap filling [55]. More importantly, the models were used for
a true external set containing hundreds of NACs without experimental values; the AD
analysis showed that more than 90% compounds fell within the AD of the models. To
better comprehend the mechanism of NACs acute toxicity in mammals, the authors also
developed QSAR models by using lipophilic descriptor logP as the only descriptor, showing
a poor correlation between the rat acute toxicity of NACs and logP [55]. Unlike aquatic
toxicity, logP (logKOW) has little impact on the rat acute toxicity of NACs. One possible
explanation is that the toxic mechanisms of terrestrial mammals are far more intricate than
aquatic toxicity since NACs’ reactions with organisms in vivo may play more important
roles than molecular diffusion.

Using physico-chemical and quantum chemistry descriptors sometimes are not enough
to obtain a satisfactory toxicity prediction, thus Mondal et al., established QSAR models
by using specific substructures generated by Monte Carlo optimization as descriptors to
predict the rat acute oral toxicity of NACs [58]. The best regression-based QSAR model
showed a satisfactory validation: R2

train = 0.719, Q2
train = 0.695; R2

test = 0.739, Q2
test = 0.631.

Some of the substructures are shown in Figure 1. As a result, substructures such as the
presence of double-bonded oxygen, sp2 carbon with double bond, any hetero atom with
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double-bonded oxygen etc. can enhance the acute oral toxicity. Others substructures
like the presence of an NH2 group and an sp3 carbon attached to the aromatic ring, the
presence of sp3 carbon with branching, the presence of a hetero aromatic ring containing
nitrogen, or the presence of oxygen and carbon etc. contribute to the decrease of NACs
toxicity. More detailed substructures are listed in the original published paper [58]. Using
QSAR incorporated with Monte Carlo approach significantly improved the specificity of
toxicological prediction. Meanwhile, the analysis of toxicity–structure relationship towards
specific substructures will further facilitate deeper understanding of the toxic mechanism.
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Other than recent QSAR models based on complex quantum chemistry descriptors,
Keshavarz et al., introduced models with several simple constitutional descriptors such
as nNO2 , nS, nP (number of NO2, sulfur, phosphorous) and two adjustable variables Tox

+

and Tox
− [60]. The two variables quantitatively represent a specific molecular moiety that

affects the rat acute oral toxicity of NACs. Although their models were derived from simple
parameters, a satisfying correlation was exhibited: R2

adj = 0.850, Q2
F1 = 0.867, Q2

F2 = 0.864,

Q2
F3 = 0.896. Compared with using complex quantum chemistry descriptors like other

studies mentioned in this review [47,48,51,55,57,58], which usually are calculated from
various softwares, the utilization of more interpretable descriptors inspires us with a new
and simple approach to comprehend the structure–toxicity relationship of NACs.2.3. QSAR
Studies on Mutagenicity and Carcinogenicity

2.3. QSAR Studies on Mutagenicity and Carcinogenicity

Mutation is a normal phenomenon in nature. From the point of view of evolution,
as far as the entire biological group is concerned, the evolution of organisms and the
emergence of new species are partly attributed to mutations, as well as the crossing-over
process. In this case, mutations are advantageous. However, in most cases, mutations
are neutral or even harmful and lethal since teratogenicity and carcinogenicity that result
from mutation are detrimental. The mechanism of gene mutation is that the sequence
of base pairs in DNA changes under the action of mutagen, leading to protein synthesis
errors under gene control, which can be manifested as the destruction and loss of enzyme
functions or structural functions. As a result, cell genetic characteristics change and
subsequent mutations happen [61]. Carcinogenesis is a complex process comprised of two
stages: The initiation stage is the cell gene mutation that is triggered by carcinogens; then
the growth promotion stage happens, where the mutant cells change the expression of
genetic information, causing the mutant cells and cancerous cells to proliferate and become
tumors [62]. Generally, it is believed that carcinogenesis is closely related to mutagenesis,
and most of the substances that can trigger mutations have carcinogenic effects. In this
review, QSAR studies on carcinogenicity and mutagenicity of NACs are discussed in terms
of different species.
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2.3.1. QSAR Studies on Bacteria

Among most bacteria strains, TA98 and TA100 of S. typhimurium strains are normally
considered as the most effective candidates for mutagenicity test since they are modified to
sensitively detect base-pair mutations [63]. Wang et al., built QSAR models integrated with
comparative molecular field analysis (CoMFA) to predict TA98 mutagenicity of NACs [64].
In this study, classical QSAR models based on quantum chemistry descriptors, 3D-QSAR
model, and 2D/3D-QSAR joint model were developed, respectively. After validation
and comparison towards their predictions, 2D/3D-QSAR joint model exhibited the best
performance with R2 = 0.835 and Q2

Loo = 0.672. It is concluded that the mutagenicity
of NACs incorporates molecular transportation, interaction of bio-macromolecules, and
nitroreduction. Consequently, the hydrophobicity and ELUMO were considered as the
indicators of nitroaromatic mutagenicity. Zhang et al., constructed QSAR models based on
PLS to predict the mutagenic activity (MA) of TA98 strain of 1- and 2-nitronaphthalenes
(NNs) and methylnitronaphthalenes (MNNs) [65]. The best model validation rendered a
plausible outcome: Q2 = 0.711, R = 0.876, p = 1.863 × 10−5, SE = 0.53. Among 15 quantum
chemistry descriptors, ∆H f , core-core repulsion energy (CCR), EHOMO-1, and ELUMO +
EHOMO were demonstrated to correlate mutagenicity significantly, as shown in Equation
(5). To be specific, the increase of ELUMO + EHOMO means the increase of electrophilicity,
leading to more reactions with cellular nucleic acids. As for the other three parameters, the
stability of mutagens decreased with the increase of their values.

LogMA = −10.527− 2.828EHUMO−1 − 0.050∆H f − 0.021CCR + 2.335(ELUMO + EHOMO) (5)

In 2019, Hao et al., reported the prediction on the mutagenicity of NACs towards
Salmonella typhimurium TA100 strain using quantum chemistry descriptor-based QSAR
model and machine learning-based classification approaches [47]. They identified one quan-
tum chemistry descriptor (ELUMO) along with four 2D descriptors (Infective-50, Hypnotic-
80, CATS2D_04_LL and TIC2) that were associated to the mutagenicity of NACs, of which
ELUMO and TIC2 negatively correlated with the mutagenicity, whereas the other three
descriptors had a positive correlation. The key statistical parameters were R2 = 0.961,
Q2

LOO = 0.950, R2
ext = 0.836, Q2

F1 = 0.808, Q2
F2 = 0.808, and Q2

F3 = 0.826. It is worthy to note
that some specific molecular properties or privileged substructures responsible for the high
mutagenicity of NACs were obtained through the classification methods (substructure
frequency analysis). Further, novel QSAR models combined with hierarchical support
vector regression (HSVR), and PLS methods were developed by Ding et al., to predict TA98
strain mutagenicity of NACs [66]. Various descriptors were selected in different models.
PLS model showed R2 = 0.72, Q2 = 0.45, RMSEtrain = 1.02, and RMSEtest = 0.97. Apparently,
this model was not ideal because several great prediction faults were observed. For HSVR
models, the validation showed a satisfactory result: R2 = 0.9, Q2 = 0.84, RMSEtrain = 0.63
and RMSEtest = 0.32, exhibiting high robustness and external predictivity. According to the
prediction of QSAR models, descriptors including electrophilic index (ω), hydrophobicity,
ELUMO, partial atomic charge on the carbon attached to the nitro group (qc2), the sum of
molar refractivity of substituents at the ortho positions (MRo), diNO2(I), and dipole moment
can account for the complex mutagenicity of NACs—from the preliminary permeation to
final base-pair mutations. Compared with previous QSAR models based on PLS, HQSAR,
CoMFA, and GFA, HSVR model still outcompetes them, giving a superior stability and
prediction. All these descriptors exert various mutagenic actions in different stages; further
studies on mutagenic mechanism of NACs and more comprehensive QSAR models are
necessary to promote the study on nitroaromatic mutagenesis.

2.3.2. QSAR Studies on Mammals

Numerous QSAR studies on bacteria mutagenicity of NACs have been conducted,
whereas little research on human cells has been done. Papa and co-workers constructed
QSAR models to predict NPAHs mutagenicity towards human h1A1v2 cells (a line of
B-lymphoblastoid cells), which were modified to express an enzyme that can metabolize
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PAHs [67]. Initially, 364 descriptors were selected to participate in modeling of 11 NPAHs
toxicity. Unlike pure quantitative prediction, Papa et al., adopted k-Nearest Neighbour
(kNN) and Classification and Regression Tree (CART) to classify prediction into two
succinct groups: mutagen and non-mutagen. In this case, the validation of their QSAR
models subsequently changed somehow. They used sensitivity (SE, percentage of mutagens
predicted correctly), accuracy (ACC, total percentage of chemicals predicted correctly), and
specificity (SP, percentage of non-mutagens predicted correctly) to quantitatively measure
the performance of models. The best kNN model showed ACC = 81.6%, SE = 87.1%,
SP = 72.2%, while CART model displayed ACC = 77.5%, SE = 87.1%, and SP = 61.1%. The
two best models were chosen since they displayed the highest sensitivity in their group
respectively. As a result, two vital descriptors, the 2D-topological descriptor 1-path Kier
alpha-modified shape index (S1K) and the number of aromatic nitro groups (nArNO2)
were proven to have high correlation with cellular mutagenicity.

Given the similarities of physiological structure among mammals, the toxicological
investigations in rats usually promote precaution in human health. Morales et al., estab-
lished QSAR models by multiple regression analysis (MRA) to predict rat carcinogenicity of
nitrocompounds [68]. The carcinogenicity was quantitatively determined by TD50 values of
female rats. After calculation of different QSAR models, the best model was generated after
orthogonalization and standardization, as shown in Equation (6). These spectral moment
parameters in Equation (6) refer to hydrophobicity, bond dipole moment, Gasteiger-Marsili
charge, and molar refractivity. Importantly, the authors further utilized topological sub-
structural molecular design (TOPS-MODE) to predict carcinogenicity based on the previous
outcome of QSAR. Therefore, the carcinogenicity of 36 molecular fragments was described
as seen in Figure 2. Table 2 quantitatively describes carcinogenicity of individual sub-
structures. Substructures with negative values refer to the fact that they may promote
carcinogenicity, while others with positive values mean the reduction of carcinogenicity.

log TD50 = 1.01 + 0.29Ω1µH
9 − 0.23Ω2µH

6 − 0.38Ω3µH
15 − 0.22Ω4µ0µGM

15 + 0.32Ω5µ1 + 0.16Ω6µ0 − 0.33Ω7µMR
11

R2 = 0.791 Q2 = 0.666
(6)

Table 2. Molecular fragments related to carcinogenic activity.

Studied Fragments Fragment
Contributions Studied Fragments Fragment

Contributions

F1 −0.036 F19 +0.188
F2 −0.420 F20 +0.649
F3 −0.718 F21 −0.235
F4 −0.134 F22 +0.581
F5 −0.260 F23 −0.466
F6 −0.058 F24 +0.791
F7 −0.040 F25 −1.390
F8 −0.243 F26 −2.329
F9 −0.233 F27 −0.799
F10 −0.321 F28 −0.779
F11 −0.186 F29 −0.661
F12 −0.175 F30 −0.202
F13 −1.112 F31 −0.092
F14 −0.638 F32 −2.770
F15 −0.912 F33 +0.010
F16 −0.666 F34 −0.871
F17 +0.180 F35 −0.605
F18 −1.206 F36 +0.890

Overall, the toxicity of NACs may result from various mode of interaction. One path
is attacking the electro-rich position in endogenous biomolecules to exert malfunctions of
protein, the other is the further reduction of hydroxylamines with individual toxicity. In
addition, single-electron reduction can produce free radical anions, leading to subsequent
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oxidative stress and cytotoxicity after redox cycles [43]. Table 3 summarizes the recent
QSAR studies on NACs toxicity in accordance with their toxic response endpoints. The
mechanism of NACs toxicity in aquatic environment is not complicated compared to other
toxic response endpoints. Hence, QSAR models in aquatic toxicity normally can be derived
from relatively limited descriptors; even using one descriptor such as LogKOW/LogP/KOW
is enough to get a decent prediction in some cases. For mammals, though, it usually
requires more descriptors to generate satisfactory results.
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Table 3. QSAR studies on the toxicity effects of NACs.

Toxicity Endpoints Chemicals Molecular Descriptors Organisms References

Aquatic Toxicity

Pesticides PSA, F+, H f , S, B, V, CV aquatic crustaceans [41]
Nitrophenols Hydrophobicity, harness, electrophilicity Chlorella vulgaris [44,49]

26 NACs E12, BCF, EHOMO, ELUMO, KOW Scenedesmus obliguus [42]
19 NACs EHOMO, ELUMO, KOW, distribution coefficient Scenedesmus vacuolatus [43]

Acute Toxicity

19 NACs Xv, Kα, Σσ−, ELUMO, logP and I carp [53]
25 NACs KOW, ELUMO and QNO2 Scenedesmus obliguus [54]

28 NACs Hydrophobicity, electrostatic, Van der Waals
interactions, -F and -OH rat [59]

128 NACs
The van der Waals surface area, the presence of C-F

at topological distance 6, and high frequency of
C-N at topological distance 9

rat [55]

90 NACs Presence of specific substructures generated from
Monte Carlo rat [58]
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Table 3. Cont.

Toxicity Endpoints Chemicals Molecular Descriptors Organisms References

Mutagenicity &
Carcinogenicity

219 NACs Hydrophobicity and ELUMO TA98/100 [64]

48 NACs EHOMO, Hypnotic-80, Infective-50, TIC2, and
CATS2D_04_LL TA100 [47]

16 NNs and
MNNs

Hf, CCR (core-core repulsion energy), EHOMO-1,
ELUMO + EHOMO

TA98 [65]

282 NACs ω, hydrophobicity, ELUMO, qc2, MRo, I(diNO2) and
dipole moment TA98 [66]

11 NPAHs S1K and nArNO2 human h1A1v2 cells [67]

48 NACs
Hydrophobicity, bond dipole moment,

Gasteiger–Marsili charge, molar refractivity and
specific molecular fragments

female rat [68]

3. Conclusions and Future Scope

In this review, QSAR studies on toxicities of NACs are classified into different genres.
For aquatic toxicity, it is concluded that hydrophobicity is one of the pivotal parameters to
affect the spread of NACs. This may be because the narcotic toxic effect plays a predominant
role in the aquatic environment, thereby hydrophobicity determines the penetration and
stimulation of toxicants towards cell membranes. Further, the toxic response endpoints
of most NACs are generally close to electron-rich sites due to their electrophilic nature.
Thus, ELUMO is always an indispensable indicator to correlate toxicity of NACs; the lower
the ELUMO value is, the more electrophilic they are. The toxicity of NACs with more nitro
groups generally depends on their electronic reactivity. That is to say, electron-withdrawing
substructures like halogen will enhance toxicity. In the reductive environment, NACs
are easily reduced to hydroxyl amines or other derivatives and produce free radicals,
interfering with normal metabolic activities and syntheses of genetic materials in the
cell. As for acute toxicity, numerous studies are conducted based on data of rodents,
which further help us understand the corresponding toxicity of NACs towards human.
In this case, the complexity of toxicology in mammals results in the various descriptors
utilized in QSAR studies. Hydrophobicity is no longer regarded as a key factor to toxicity,
instead, distinct quantum chemistry descriptors characterize toxicity to different extents.
Besides, specific molecular fragments, generated from Monte Carlo or Gauss approach, are
quantitatively correlated to NACs toxicity through QSAR studies, aiding us considerably in
the prediction of new chemicals. Researches on the mutagenicity of NACs are imperative
since genetic damages are usually irreversible. Therefore, precaution of the toxicants
using QSAR models can assure environmental safety and human health. Due to the high
sensitivity of TA98/100 strain to genetic mutation, they are selected as the most suitable
objects to detect mutagenicity. QSAR studies reveal that dipole moment, hydrophobicity,
electrophilicity, etc. contribute to mutations triggered by NACs. The QSAR studies
presented above exhibit good performance, though they show some limitations in the
types of test objects or applicability. Further studies in QSAR are still encouraged to
establish more comprehensive and accurate models to satisfy toxicological prediction of
new compounds under the regulatory framework.
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