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Abstract: The utilization of heterosis is an important way to improve wheat yield, and the production
of wheat hybrid seeds mainly relies on male-sterile lines. Male sterility in line 15 Fan 03 derived from
a cross of 72,180 and Xiaoyan 6 is controlled by a single recessive gene. The gene was mapped to
the distal region of chromosome 4BS in a genetic interval of 1.4 cM and physical distance of 6.57 Mb
between SSR markers Ms4BS42 and Ms4BS199 using an F2 population with 1205 individuals. Sterile
individuals had a deletion of 4.57 Mb in the region presumed to carry the Ms1 locus. The allele for
sterility was therefore named ms1s. Three CAPS markers were developed and verified from the
region upstream of the deleted fragment and can be used for ms1s marker-assisted selection in wheat
hybrid breeding. This work will enrich the utilization of male sterility genetic resources.

Keywords: genic male sterility; genetic mapping; CAPS marker; Triticum aestivum

1. Introduction

As a major food crop, common wheat (Triticum aestivum L., AABBDD) plays a vital role
in ensuring the food security of human beings. Development of wheat semi-dwarf varieties
during the 1950s and 1960s improved lodging resistance and permitted significant increases
in yield that led to a stable global food supply and eliminated the threat of hunger. These
events became known as the “Green Revolution”. However, with arable land currently
decreasing due to urbanization, environmental degradation, and rising population levels,
there is an emerging need to further increase wheat yield. Heterosis, a common biological
phenomenon widely used in maize (Zea mays L.) and rice (Oryza Sativa L.), offers a way
to increase wheat yield [1,2]. Despite decades of research, the use of male sterility for the
production of hybrid wheat has achieved only limited success. Wilson and Ross (1962)
introduced the nucleus of common wheat into the cytoplasm of Triticum timopheevii to
develop a common wheat T-type male-sterile line, and fertility restorer lines (T-type restorer
lines) were obtained by breeding and selection [3]. Thus, a three-parent hybrid system
was devised. Subsequently, new types of sterility systems, e.g., K- and V-type cytoplasmic
male sterility systems, a photo-thermal sterility system, and chemical male sterilizing
agents were described. However, critical biological and economic problems hindered each
system, and hybrid wheat as a commercial enterprise never exceeded 0.2% of the total
production [4,5].
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In 1931, Bovicini first discovered the phenomenon of nuclear male sterile in wheat,
and, to date, five nuclear male sterility loci have been identified, i.e., Ms1, Ms2, Ms3, Ms4,
and Ms5 [6–10]. Sterility alleles ms1 and ms5 are recessive and located on chromosome
4BS and 3AL, respectively [11,12], whereas Ms2, Ms3, and Ms4 are dominant. Ms2 and
Ms4 are located on chromosomes 4DS, whereas Ms3 is on chromosome 5AS [7,8,10,13,14].
Many sterile alleles of the Ms1 gene have been described. These presumably arose as
natural mutants, such as Pugsley’s male sterile (ms1a, [6,15]) and LZ (ms1g, [16]); as X-ray-
induced mutants, such as Probus male sterile (ms1b, [17]) and Cornerstone (ms1c, [18]);
or as EMS induced mutants, including FS2 (ms1d), FS3 (ms1e), and FS24 (ms1f ) [10,11].
Recently, 12 isomorphic variants of Ms1 gene, i.e., ms1d.1, ms1d.2, ms1h, ms1i, ms1j, ms1k,
ms1l, ms1m, ms1n, ms1o, ms1p, and ms1q, from the spring wheat variety Ningchun 4 were
identified following EMS treatment [19]. Many scientists believe that nuclear male-sterile
lines are ideal lines for the production of hybrid varieties, but a lack of stable male-sterile
maintainers prohibits their widespread application. Although a “two-line system” [20]
and an “XYZ hybrid” system using the nuclear male-sterile mutant “Cornerstone” were
proposed, neither proved successful [21,22]. Huang et al. (1988, 1991) discovered a nuclear
male-sterile mutant in the offspring of a cross of wheat varieties 72,180 and Xiaoyan 6 and
created a blue-aleurone nuclear male-sterile maintainer system (BM system) by introducing
a 4E chromosome from Agropyron elongatum containing a dominant blue endosperm gene
and a fertility restorer gene [23,24]. The seeds of the wheat 4E monomer alien addition
line are light blue. This line can produce seeds normally by selfing, and the offspring
can separate about 64% non-blue seeds (nuclear male sterile), 16% light blue seeds, 16%
medium blue seeds, and 4% deep blue seeds (fertile). All plants grown from non-blue seeds
were male sterile, whose fertility could be restored well in F1 by almost any variety of bread
wheat. The light blue seed is used as a maintainer for male sterility. Zhou et al. (2006) also
introduced the same 4E chromosome into Lanzhou Mutant 257A (ms1g) and established a
recessive nuclear male-sterile 4E-ms system [25]. This solved the difficulties in obtaining
stable maintainer lines and producing homozygous male-sterile seeds in large quantities.
It was a significant step forward in the applied research of wheat nuclear male sterility.

In this study, we mapped a nuclear male-sterile gene in line 15 Fan 03 (derived from the
blue-aleurone nuclear male-sterile maintainer system) and found a deletion of chromosome
fragment within the Ms1 locus. We developed molecular markers for MAS to speed up
hybrid breeding if a suitable system were to be developed.

2. Results
2.1. Sterile Plants in Line 15 Fan 03 Cannot Form Mature Pollen

Compared to the fertile line Mian 07-374, the glumes of sterile plants in 15 Fan 03 had a
larger opening angle opened for a longer time, were translucent, and had shorter filaments
causing the anthers to remain in the glume. Staining with 1% I2-KI showed that pollen
grains from sterile plants were yellowish-brown and malformed, demonstrating abnormal
development and lack of fertility (Figure 1). The anthers of sterile and fertile plants were
observed anatomically at different stages, and no significant differences were observed
in tapetum cell structure and microspore development during the mononucleosis stages;
however, degradation became evident at the tri-nuclear stage (Figure 2). Furthermore, at
the tri-nuclear stage, the sterile line had less pollen grains compared to the fertile line; this
was observed by scan electron microscopy (SEM) (Figure 3). There were no discernible
differences in the surface pattern on the anther walls between the two lines; however, the
inner anther walls of pollen grains in sterile plants were smooth and lacked grainy ubisch
bodies, whereas granulated ubisch bodies separated by similar cellular structures were
densely distributed on the inner walls of pollen from the fertile line. Pollen grains from
the fertile line were plump and near-spherical with a bulged ring protruding from the
germination hole. By contrast, the aborted pollen grains from sterile plants were collapsed,
irregular, and deformed; the germination hole was caved-in. This implies that sterile
pollens are not fully developed and cannot pollinate normally.
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Figure 1. Morphological characteristics of the sterile line and fertile line. (a) Spikes of Mian 07-374
and a sterile plant from 15 Fan 03. Bar, 1 cm; (b) Pollen grains from Mian 07-374 (upper) and a sterile
plant from 15 Fan 03 (lower) stained with I2-KI. Bar, 200 µm.
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from burst anthers. Bars, 0.2 mm (a1,a2). Anther walls. Bars, 10 μm (b1,b2). Cuticle surfaces. Bars, 10 μm (c1,c2). Pollen. 
Bars, 4 μm (d1,d2). 
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2.2. The Nuclear Male Sterility Gene Is Located on Chromosome 4BS

The F1 generation of the cross between a male-sterile plant in 15 Fan 03 and Mian 07-
374 showed 100% fertility. The F2 population derived from F1 plants segregated 892 fertile:
313 sterile, conforming with a 3:1 Mendelian ratio (χ2 = 0.458, p = 0.498) and indicating
that sterility was conferred by a recessive gene (Figure 4).
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DNA from the pooled samples of 15 Fan 03 (male-sterile line), Mian 07-374 (fertile
line), F2 individuals with 0% seed set (homozygous recessive, msms), and F2 individuals
with more than 99% seed set (heterozygous and homozygous dominant, Msms and MsMs)
was used as a template for whole-genome SNP genotyping using the Wheat660 SNP chip.
Of a total of 9042 SNPs detected homozygous in both 15 Fan 03 and 0% seed set pool,
10.05% (909) were located on chromosome 4B, whereas 1118 (12.36%) were located on
chromosome 5B. Less than 7% were located on each of the remaining chromosomes, and
the locations of 115 (1.27%) were not predictable (Figure 5a). For chromosome 4B, 22.86%
of the SNPs were located in the 0–150 Mb region, and 9.15% were in the 500–600 Mb region;
for chromosome 5B 10.72% of the SNPs were located in the 640–730 Mb region (Figure 5b,c).
These results predicted that the gene responsible for male sterility could be on chromosome
4B or 5B.

To further map the gene-regulating male sterile of 15 Fan 03 line, we used 364 in-
dividuals from the F2 population and developed SSR markers in the predicted physical
regions of chromosomes 4B and 5B. SSR markers Ms4BS42, Ms4BS54, Ms4BS390, and
Ms4B118 located at the terminal region of chromosome 4BS were significantly associated
with sterility, whereas the markers for chromosome 5B were not (Figure 6). The genetic
map positioned the sterility locus between SSR markers Ms4BS42 and Ms4BS54 in a genetic
interval and physical distance of 4.27 cM and 14.23 Mb, respectively. Based on the Chinese
Spring Reference Genome (IWGSCWGA v1.0), these markers were physically located on
chromosomes 4BS at 10.61 and 24.84 Mb, respectively.

To narrow down the interval of the sterility locus, 1205 F2 individuals were screened
by SSR markers Ms4BS42 and Ms4BS54, and 184 recombinants were identified. New SSR
markers developed from the target region allowed the locus to be fine-mapped between
Ms4BS42 and Ms4BS199 at a genetic distance of 1.4 cM and a physical distance of 6.57 Mb.
Based on IWGSCWGA v1.0, markers Ms4BS42 and Ms4BS199 were located on chromo-
somes 4BS at 10.61 and 17.18 Mb, respectively. Using the remaining polymorphic markers
Ms4BS132, Ms4BS199, Ms4BS234, and Ms4BS236, the genetic distance of target region
reduced. However, the physical distance based on IWGSCWGA v1.0 increased, indicating
that the region between Ms4BS132 and Ms4BS236 of 15 Fan 03 line is significantly different
from the Chinese Spring reference genome sequence.
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and the putative inverted segment is indicated.

2.3. Sterility in Line 15 Fan 03 Is Caused by a Chromosome Deletion

Many newly developed chromosome-specific 4BS markers in the mapped interval
were dominant makers. Therefore, Wheat660K SNP chip results of the fertile pool and the
sterile pool of F2 generation were used, and 874 SNPs were detected in the 4B chromosome
of the fertile plant pool but not in the sterile plant pool. Of these, 134 SNPs were clustered
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in the 10–15 Mb region of 4BS (Figure 7a). We speculated that a chromosome segment
might be lost in this region.
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Figure 7. Chromosome deletion fragment identified by FISH in 15 Fan 03, Mian 07-374, and F2 plants. (a,b) Distribution
of SNPs on chromosome 4B; (c) FISH analysis using (upper section) pSc119.2 (labeled green) and pAs1 (labeled red), and
(lower section) TraesCS4B01G017400 (labeled green) as probe. Arrows indicate chromosome 4BS terminal region identified
in the same cells. Left to right: Mian 07-374, 15 Fan 03, homozygous dominant, heterozygous, and homozygous recessive
F2 plants, respectively; (d) Markers, number of recombinants, predicted genes and their physical locations in the deleted
fragment of wheat chromosome 4B.

Specific primers for 16 genes located close to the sterility gene were designed to verify
the hypothesized deletion (Table 1 and Table S1). The first 10 sequentially distributed
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genes were not amplified in the sterile pool and sterile F2 individuals. According to
the physical locations of the genes, it was predicted that a fragment of 5 Mb would be
missing from the target region. The upstream break was between TraesCS4B02G015400LC
and TraesCS4B02G015200 (physical locations 10.79 and 11.43 Mb, respectively), and the
downstream break was between TraesCS4B02G021300 and TraesCS4B02G021600 (physical
locations 15.41 and 15.60 Mb, respectively).

Table 1. Primers specific to the 16 genes in the male-sterile gene location interval.

Gene ID Forward Primer Reverse Primer Position (Mb)

TraesCS4B01G015000 GCCTATCTTTGAACCGGCGA AATTAGGCGAGCCCAAGAGC 10.610
TraesCS4B01G015200LC CCCGGGCTTATGAAGGCTTG ATGGAAGGAGGAGGCATTGA 10.712
TraesCS4B01G015400LC GTATGCGACGACTCCCGAAG AGTACGCCGACTTCCCCTAT 10.789

TraesCS4B01G015200 CGTCGGACGATACGGACACA TGTCACCCTCCATCCTACGTAC 11.433
TraesCS4B01G016200 CGCCGGTAGGTAGTAATCCG TCCTGAGCCTGACCATCTCG 11.904
TraesCS4B01G017400 CCCTGTGCGGAATCTTCCAA CCAGAGTCACAAACCGCTCA 12.526
TraesCS4B01G017500 ACATTCACTTGACAGCGACCT CCACGGTACTCGCATGCTC 13.053

TraesCS4B01G017900 (Ms1) ACGCAGAAACGAACCTCGAA GCTAGAAGTGCTCCGGTTTG 13.126
TraesCS4B01G018300 TACTTGTCGGCCAAACGGA CGTCCGTCAAGAACACACCA 13.297
TraesCS4B01G019100 GTGGAGCAAGTGGACTCACC CCAGGCAAGTCGTCGATTCA 13.977
TraesCS4B01G020300 GAAAACCCTAGACGCTCCCC GCACCAACAAAACCGTCAGA 14.389

TraesCS4B01G021100LC ACTTTTGCGCCAGGTATCCA GCCTCTCGCGAAAGAAATGC 14.539
TraesCS4B01G021300 GGCATGTGCCTAGTGGGAAT CAGCAGCACAAGGTTGGTTC 15.409
TraesCS4B01G021600 GAGGTCATTTACCAGTGCCAGT TTCCACCGGTACTCTTCAGC 15.596
TraesCS4B01G022600 GGGCTACCGGCAACGTAATA AAGCGCACCCTCACAAGAAA 16.680
TraesCS4B01G023300 CGCTGGTTGGAGTTTACCCT TGTAAGGTCTTAGCGCCCAC 17.017

Fluorescence in situ hybridization (FISH) was carried out to further verify the results.
TraceCS4B017400 was used as a probe to hybridize with the sterile line 15 Fan 03, fertile
line Mian 07-374, and homozygous recessive sterile and dominant fertile F2 individuals
(with homozygous and heterozygous individuals confirmed by SSR markers Ms4BS42 and
Ms4BS54). Mian 07-374 and homozygous fertile F2 individuals had two hybridization sig-
nals at the end of chromosome 4BS, heterozygous F2 individuals had one signal, and sterile
plants from 15 Fan 03 and sterile F2 individuals had no signals (Figure 7c). We concluded
that sterility was caused by deletion of a substantial fragment from chromosome 4BS.

In order to narrow down the location and size of the deleted fragment, a number of
SSR markers were developed using IWGSCWGA v1.0 as reference. Primers MS13, MS19,
MS571, MS572, and MS577 were amplified in all four pooled samples, whereas MS41,
MS42, MS43, MS366, MS367 showed amplification only in Mian 07-374 and homozygous
dominant fertile F2 individuals. Based on the physical location of the SSR markers on
chromosome 4BS and the deletion interval, the upstream boundary of the deleted fragment
was between TraesCS4B025400LC and the marker MS41, physically located at 10.789 and
10.838 Mb, respectively. The downstream boundary was predicted between the gene
TraesCS4B021300 and TraesCS4B02G021600, which are physically located at 15.409 and
15.596 Mb, respectively.

In previous studies [19,26], the dominant fertile allele at locus MS1 was mapped to
position 13.126 Mb on chromosome 4BS. This position falls within the deleted fragment
found in sterile individuals of 15 Fan 03. Continuing the naming of mutant alleles at this
locus causing sterility, the present allele is named ms1s.

2.4. Breeding Molecular Marker Development for ms1s

The Wheat660K SNP chip data identified SNP AX-111474959 (physical position
10.615 Mb) as the closest SNP to the sterility gene. Three CAPS markers (ms1sCAPS1,
2, and 3) were developed from the flanking region of this SNP based on IWGSCWGA
v1.0. Restriction enzyme Bgl II (NEB, CITY, USA States) cleaved PCR products only from
sterile individuals from 15 Fan 03 and sterile F2 individuals (ms/ms) into two fragments.
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The ms1sCAPS1 cleaved an amplified 361 bp region into 232 bp and 129 bp fragments;
ms1sCAPS2 cleaved an amplified 347 bp product into 232 bp and 115 bp fragments; and
ms1sCAPS3 cut a 395 bp fragment into 232 bp and 163 bp fragments (Figure 8).
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Pooled DNA from random F2 individuals and heterozygous F2 individuals produced
three fragments after the restriction enzyme Bgl II treatment, of which ms1sCAPS1 pro-
duced 361 bp, 232 bp, and 129 bp; ms1sCAPS2 produced 347 bp, 232 bp, and 115 bp; and
ms1sCAPS3 produced 395 bp, 232 bp, and 163 bp fragments. These results confirmed the
functionality of the three CAPS markers for the selection of male sterility allele ms1s.

3. Discussion

Application of nuclear male sterility is one way to study heterosis in wheat. Although
there are many reports on nuclear male sterility in wheat, only 5 loci Ms1-Ms5 have been
identified and physically mapped. Sterility-causing alleles of Ms1 and Ms5 are recessive,
and those of Ms2, Ms3, and Ms4 are dominant. Three of them have been isolated and
cloned. The dominant Ms2 sterility allele in Taigu contains an originally unexpressed
“orphan” gene in its promoter region, which is activated and specifically expressed in
anthers causing male sterility [13]. Tucker et al. (2017) and Wang et al. (2017) cloned
the wildtype allele of Ms1 and found that it encodes a lipid transport protein expressed
only in microspores [19,26]. Pallotta et al. (2019) demonstrated that Ms5 encodes a lipid
transfer protein anchored by glycosylphosphatidylinositol, which is required for normal
development of the pollen outer wall [12].

Here, we studied the wheat nuclear male-sterile line 15 Fan 03 and compared it
with Mian 07-374 and generated an F2 population. The sterility gene was mapped be-
tween the SSR markers Ms4BS42 and Ms4BS199 physically positioned at 10.61 and 17.18
Mb, respectively. Sterility was caused by deletion of a chromosome 4BS fragment, de-
tectable by chromosomal FISH. Based on IWGSCWGA v1.0, the deleted region included
TraesCS4B01G017900 identified as the Ms1 allele positioned at 13.126 Mb. Among reported
Ms1 mutants, ms1a (Pugsley’s mutant) and ms1c (Cornerstone) mutants are terminal dele-
tions of chromosome 4BS [18,27]; ms1b (Probus mutant) and ms1g (LZ, [25]) are interstitial
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deletions [17,19]; and ms1d (FS2), ms1e (FS3), and ms1f (FS24) are nucleotide variants [10].
Nucleotide variant alleles in a series of EMS-induced sterile mutants in variety Ningchun 4
were named ms1h, ms1i, ms1j, ms1k, ms1l, ms1m, ms1n, ms1o, ms1p, and ms1q [19]. At the
same time, a nucleotide variant allele in a Qual 2000 TILLING population was named ms1h.
This allele has been re-designated as ms1r (RA McIntosh, personal communication).

The flowering phenotype of sterile plants in 15 Fan 03 differs from that in the fertile
plants of Mian 07-374, as the glume remains open for a longer time at a wider angle, and at
the tri-nuclear stage, the pollen grains degrade and the pollen activity is lost. However,
genetically, the sterile line 15 Fan 03 was similar to ms1b and ms1g mutants in possessing
interstitial deletions of 4BS chromosome segments bearing the Ms1 locus.

Wheat nuclear male-sterile lines have many advantages. For example, they are easily
restored by most common wheat varieties, with significant heterosis, and without the
adverse effect of exogenous cytoplasm. Furthermore, it is easy to select excellent hybrid
combinations. The main problem with this type of male-sterile line is that it is difficult to
obtain a stable male-sterile maintainer line; that is, it is difficult to produce a large number
of homozygous male-sterile seeds. However, using the blue-aleurone nuclear male-sterile
maintainer system (BM system), we can easily obtain wheat male-sterile lines (white grains,
such as 15 Fan 03) and maintainer lines (light blue grains). We obtained 11 combinations of
BM systems with modern main varieties. Moreover, white and blue seeds can be separated
at the seed stage, so it is easier to obtain pure male-sterile lines for the production of hybrid
wheat [23,24]. This solves the difficulties in obtaining stable male sterile maintainer lines
and producing a large number of homozygous male sterile seeds. Moreover, the easy
restoration of these lines by common wheat varieties has opened up a new direction for
the application of and research into wheat nuclear male sterility.

Because the genome of common wheat is large, complex, and heterogeneous, many
chromosomal variations are preserved in the species. These chromosomal abnormalities
may also alter the plant phenotype. For example, the absence of the end of chromosome
5AL causes reduced plant height [28]. In this study, a deleted chromosomal fragment was
found in sterile plants, and the positions of some markers were in opposite orientations
in genetic and physical maps (Figure 6), indicating that chromosomal inversion might
have occurred in the parental material. The upstream position of the deletion was between
TraesCS4B02G015400LC and marker MS41, whereas the downstream position was between
TraesCS4B021300 and TraesCS4B02G021600. Using this information and the wheat660K SNP
chip data, three CAPS markers were developed and validated on the F2 pooled DNA and
heterozygous F2 individuals, as well as 12 widely grown modern wheat varieties. These
CAPS markers can be used to genotype individuals in segregating populations at an early
stage of growth. Since an SNP marker is usually developed from a sequence polymorphism
between different cultivars, it is background genotype specific. We are currently exploring
other types of molecular markers that might be more suitable for marker-assisted selection
of ms1s.

4. Materials and Methods
4.1. Plant Material

An F2 population of 1205 individuals derived from a cross between 15 Fan 03 (white
grain, a nuclear male-sterile line, derived from the mutant in the offspring of a cross of wheat
varieties 72,180 and Xiaoyan 6, which introduced a 4E chromosome from Agropyron elonga-
tum containing a dominant blue endosperm gene and a fertility restorer gene) [24] and Mian
07-374 was used for genetic analysis, linkage mapping, and gene localization. At least three
spikes from each plant at heading were bagged, and the seed-setting rate was calculated as fol-
lows: Seed setting rate = (seeds from the two florets of the spikelet base)(no. of spiklets)× 2.
The seed setting rates lower than 10% represent sterile individuals; the seed setting rates
higher than 10% correspond to fertile ones.
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4.2. Morphological Observations

15 Fan 03, Mian 07-374, and the F2 population were planted in 1.5 m rows, with plant-
to-plant and row-to-row spacings of 10 cm and 25 cm, respectively, at the experimental
farm of Institute of Genetics and Developmental Biology in 2017. Anthers at the mature
tri-nuclear stage were sampled and stained with 1% I2-KI solution for 10 min to determine
the pollen fertility.

Anthers for histological studies were excised at different developmental stages, fixed
in FAA solution for 24 h, sliced into 4 mm sections, stained with 1% aniline saffron and 0.5%
aniline fast green, and observed under bright field using a Nikon Eclipse Ci-S microscope.
For scanning electron microscopy (SEM), anthers at the tri-nuclear pollen stage were dried
using a CO2 dryer (Hitachi Critical Point Dryer HCP-2) for 30 mins, and the golden surface
of the dried anthers was studied using a Hitachi S-3000N electron microscope.

4.3. Wheat660K SNP Chip Analysis

Genomic DNA from 15 Fan 03 (male-sterile line), Mian 07-374 (fertile line), and the
F2 population was extracted using a plant genomic DNA extraction kit (DP305, Tiangen
Biochemical Technology Co., Ltd., Beijing, China). Four DNA pools, separately derived
from 10 sterile plants of 15 Fan 03, the fertile line, F2 individuals with more than 99%
seed set, and F2 individuals with 0% seed set, were pooled and scanned by the Wheat660
SNP chip for genome-wide SNP analysis [29]. Sequences flanking SNPs were blasted
against IWGSCWGA v1.0 to predict physical locations on the Chinese Spring Reference
Genome. The SNPs identified in the four DNA pools were statistically analyzed using
Microsoft Excel.

4.4. SSR Marker Development and Genetic Map Construction

Genomic DNA of the F2 individuals was extracted using the CTAB method [30].
SSRLocator software [31] was used to develop SSR markers based on IWGSCWGA v1.0.
The parameters of primers were set at 18–23 bp, annealing temperature (Tm) 55–63 ◦C, GC
content 50–60%, and amplified DNA sequence length 100–280 bp (Table 2). All the markers
developed within the mapping interval were used for genotyping. The linkage map was
constructed using JoinMap 4.0 software [32] and MapChart 2.30 software [33].

Table 2. CAPS primers developed in this study.

Primer Sequence (5′-3′) Product Size (bp)

ms1sCAPS1F AAGAGCCCATATGCACCTTG
361ms1sCAPS1R GGTACCAGGGGGTTGAAGAT

ms1sCAPS2F AAGAGCCCATATGCACCTTG
347ms1sCAPS2R GAAGATAACTGGGCGTGGAA

ms1sCAPS3F AAGAGCCCATATGCACCTTG
395ms1sCAPS3R TGCGAAAGTGTTGTGCTACC

4.5. Fluorescence In Situ Hybridization

Root tips were prepared for fluorescent in situ hybridization (FISH) as described
by Han et al. [34]. The genomic DNA of TraesCS4B01G017400 was amplified using
the following primer pair: forward, 5′-GGGCTGGGAAAGAGCA-3′ and reverse, 5′-
CCCCAAGATACGTGTTCC-3′. It was labeled with Alexa Fluor-488-dUTP (green) as
needed. For Mc-FISH (Tang et al. 2014), pAs1 and pSc119.2 were labeled with Alexa
Fluor-488-dUTP (green) and Alexa Fluor-594–5-dUTP (red), respectively. The FISH images
were acquired using the epifluorescence ZEISS AXIO Imager 2.0.

Supplementary Materials: Supplementary Materials: The following are available online at https:
//www.mdpi.com/article/10.3390/ijms22168541/s1, Table S1: Information of candidate genes in
co-segregation region of ms1s.

https://www.mdpi.com/article/10.3390/ijms22168541/s1
https://www.mdpi.com/article/10.3390/ijms22168541/s1
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