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Abstract: Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and usually lethal lung
disease and it has been widely accepted that fibroblast proliferation is one of the key characteristics
of IPF. Long noncoding RNAs (lncRNAs) play vital roles in the pathogenesis of many diseases. In
this study, we investigated the role of lncRNA FENDRR on fibroblast proliferation. Human lung
fibroblasts stably overexpressing FENDRR showed a reduced cell proliferation compared to those
expressing the control vector. On the other hand, FENDRR silencing increased fibroblast proliferation.
FENDRR bound serine-arginine rich splicing factor 9 (SRSF9) and inhibited the phosphorylation
of p70 ribosomal S6 kinase 1 (PS6K), a downstream protein of the mammalian target of rapamycin
(mTOR) signaling. Silencing SRSF9 reduced fibroblast proliferation. FENDRR reduced β-catenin
protein, but not mRNA levels. The reduction of β-catenin protein levels in lung fibroblasts by gene
silencing or chemical inhibitor decreased fibroblast proliferation. Adenovirus-mediated FENDRR
transfer to the lungs of mice reduced asbestos-induced fibrotic lesions and collagen deposition. RNA
sequencing of lung tissues identified 7 cell proliferation-related genes that were up-regulated by
asbestos but reversed by FENDRR. In conclusion, FENDRR inhibits fibroblast proliferation and
functions as an anti-fibrotic lncRNA.

Keywords: FENDRR; SRSF9; mTOR signaling; β-catenin

1. Introduction

Idiopathic Pulmonary Fibrosis (IPF) is a chronic and progressive scarring lung disease
categorized under idiopathic interstitial pneumonia [1,2]. Lung fibroblast proliferation
is a main characteristic of IPF as it results in extracellular matrix deposition, followed
by damaging the lung parenchyma. The etiology of IPF is still unknown. However, it is
believed that repeated micro-injuries to lung epithelium lead to aberrant proliferation and
activation of lung fibroblasts, the failure to properly regulate the repair process, and the
development of fibrosis [3,4].

Long noncoding RNAs (lncRNAs) have diverse cellular functions [5–9]. Several stud-
ies have shown that the involvement of lncRNAs in pulmonary fibrosis [10–14]. Our
previous study has shown that FOXF1 Adjacent Non-Coding Developmental Regulatory
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RNA (FENDRR) has an anti-fibrotic activity by inhibiting the fibroblast activation and
reducing the bleomycin-induced lung fibrosis in mice [15]. We have also demonstrated
that FENDRR enhances the polarization of M1 macrophages via the STAT1 signaling [16].
FENDRR also has anti-proliferative effects in many cancer cells and has a role in tumor
immunogenicity [17–22]. However, whether and how FENDRR regulates fibroblast prolif-
eration in IPF is unknown. Based on our previous studies, we found that FENDRR binds
with serine-arginine (SR) rich splicing factor 9 (SRSF9) [15] which is known to regulate
mammalian target of rapamycin (mTOR) signaling [23].

Several signaling pathways are activated in IPF [24]. Among them, mammalian targets
of rapamycin (mTOR) and Wnt/β-catenin signaling pathways play important roles in
fibroblast proliferation [25,26]. β-catenin is known to promote cell proliferation in many
cells [25,27–29]. One study has shown that tumor growth is promoted by β-catenin protein
synthesis, which is enhanced by serine-arginine (SR) rich splicing factor 1 and 9 (SRSF1 and
SRSF9) [23]. The cytoplasmic functions of SRSFs include activating mTOR signaling [30,31]
and promoting protein translation [32]. SRSFs also act as oncogenic proteins to promote
cell proliferation [23,30,33–36].

In this study, we hypothesize that the binding of FENDRR with SRSF9 negatively
impacts mTOR signaling and cell proliferation. We found that FENDRR negatively affects
fibroblast proliferation. We also showed that FENDRR, bound with SRSF9, inhibited the
mTOR signaling pathway, and reducing β-catenin protein levels. Additionally, FENDRR
reduced asbestos-induced lung fibrosis and collagen deposition in mice.

2. Results
2.1. FENDRR Inhibits Fibroblast Proliferation

Since FENDRR expression is lower in lung fibroblasts from fibrotic lungs compared
to those from normal lungs [15], IPF fibroblasts-LL29 were selected for overexpressing
FENDRR. To examine the effects of FENDRR on fibroblast proliferation, we established a
lung LL29 fibroblast line stably expressing GFP-FENDRR or GFP vector control (VC). GFP
was observed in both GFP-FENDRR and GFP-VC lines (Figure 1A). The expression level of
FENDRR in the GFP-FENDRR line was 39 ± 11 folds over the control cells (Figure 1B). The
BrdU assay showed that FENDRR inhibited fibroblast proliferation by 68 ± 3% (Figure 1C).
Cell counting revealed a 42 ± 7% reduction in the cell numbers in FENDRR overexpressing
cells (Figure 1D,E).
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Figure 1. FENDRR has a negative effect on lung fibroblast proliferation. (A) Bright-field and GFP images of LL29 stable 
cells expressing GFP-FENDRR (FENDRR) and GFP vector control (VC). Scale bar: 100 µm. (B) Real-time PCR determina-
tion of FENDRR expression levels in the stable cells. FENDRR expression was normalized to β-actin and expressed as 
%VC. (C) Cell proliferation was determined by the BrdU assay in blank cells, VC, and FENDRR expressing stable cells 
after 6 days of culture. The results were expressed as %VC. (D) Nuclei staining of VC and FENDRR stable cells after 6 days 
of culture. Scale bar: 100 µm. (E) Cell counts of VC and FENDRR stable cells. In each experiment, 5 random fields were 
imaged, numbers of nuclei were counted, and cell counts were averaged. Cell counts were expressed as %VC. The cell 
counts for VC and FENDRR were 19.7 ± 2.0 and 11.3 ± 0.8 per field. Values represent the means ± SE. n = 3 independent 
experiments. * p < 0.05, ** p < 0.01 vs. VC. Student’s t-test for (B, E) and one-way ANOVA and Tukey’s multiple comparison 
for (C). 

2.2. Silencing of FENDRR Increases Fibroblast Proliferation 
As mentioned above, FENDRR expression is lower in fibrotic lungs compared to nor-

mal lungs, and normal pulmonary fibroblasts were selected for FENDRR silencing. To 
determine whether silencing of endogenous FENDRR affects fibroblast proliferation, nor-
mal human pulmonary fibroblasts (HPFs) were infected with a lentivirus expressing a 
FENDRR shRNA construct with a GFP marker. GFP was observed in both shCon- and 
shFENDRR-infected cells (Figure 2A). Real-time PCR analysis showed that the FENDRR 
expression level was reduced by 79 ± 5% (Figure 2B). The BrdU assay performed after 6 
days of lentiviral infection showed that silencing of FENDRR increased fibroblast prolif-
eration by 34 ± 8% (Figure 2C). These data further confirm that FENDRR is an inhibitory 
factor of lung fibroblast proliferation. 

Figure 1. FENDRR has a negative effect on lung fibroblast proliferation. (A) Bright-field and GFP images of LL29 stable
cells expressing GFP-FENDRR (FENDRR) and GFP vector control (VC). Scale bar: 100 µm. (B) Real-time PCR determination
of FENDRR expression levels in the stable cells. FENDRR expression was normalized to β-actin and expressed as %VC. (C)
Cell proliferation was determined by the BrdU assay in blank cells, VC, and FENDRR expressing stable cells after 6 days of
culture. The results were expressed as %VC. (D) Nuclei staining of VC and FENDRR stable cells after 6 days of culture.
Scale bar: 100 µm. (E) Cell counts of VC and FENDRR stable cells. In each experiment, 5 random fields were imaged,
numbers of nuclei were counted, and cell counts were averaged. Cell counts were expressed as %VC. The cell counts for VC
and FENDRR were 19.7 ± 2.0 and 11.3 ± 0.8 per field. Values represent the means ± SE. n = 3 independent experiments.
* p < 0.05, ** p < 0.01 vs. VC. Student’s t-test for (B,E) and one-way ANOVA and Tukey’s multiple comparison for (C).

2.2. Silencing of FENDRR Increases Fibroblast Proliferation

As mentioned above, FENDRR expression is lower in fibrotic lungs compared to
normal lungs, and normal pulmonary fibroblasts were selected for FENDRR silencing.
To determine whether silencing of endogenous FENDRR affects fibroblast proliferation,
normal human pulmonary fibroblasts (HPFs) were infected with a lentivirus expressing
a FENDRR shRNA construct with a GFP marker. GFP was observed in both shCon- and
shFENDRR-infected cells (Figure 2A). Real-time PCR analysis showed that the FENDRR
expression level was reduced by 79 ± 5% (Figure 2B). The BrdU assay performed after 6
days of lentiviral infection showed that silencing of FENDRR increased fibroblast prolifer-
ation by 34 ± 8% (Figure 2C). These data further confirm that FENDRR is an inhibitory
factor of lung fibroblast proliferation.
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Figure 2. FENDRR silencing increases lung fibroblast proliferation. (A) Bright-field and GFP images of HPF cells infected 
with FENDRR shRNA (shFENDRR) or shRNA control (shCon) lentiviruses (MOI 100 for 24 hrs). Scale bar: 100 µm. (B) 
Real-time PCR determination of FENDRR expression in HPF cells infected with shFENDRR or shCon. FENDRR expression 
was normalized to β-actin and expressed as %shCon. (C) Cell proliferation was determined by the BrdU assay in blank 
cells and the cells infected with shCon and shFENDRR after 6 days of culture. The results were expressed as %shCon. 
Values represent the means ± SE. n = 3 independent experiments. ** p < 0.01 vs shCon. Student’s t-test for (B) and one-way 
ANOVA and Tukey’s multiple comparison for (C). 

2.3. FENDRR Binds SRSF9 and Inhibits the Phosphorylation of PS6K 
RNA pulldown and mass spectroscopy analysis identified SRSF9 as one of the bind-

ing partners for FENDRR [15]. To confirm this result, an RNA immunoprecipitation assay 
was performed in LL29 cells. SRSF9 proteins were pulled down with anti-SRSF9 antibod-
ies. RNAs bound with SRSF9 proteins were isolated, and FENDRR was determined by 
real-time PCR. Our results showed that SRSF9 proteins bound endogenous FENDRR in 
LL29 cells with a 2.4 ± 0.30-fold enrichment compared to the IgG control (Figure 3A). 

Figure 2. FENDRR silencing increases lung fibroblast proliferation. (A) Bright-field and GFP images of HPF cells infected
with FENDRR shRNA (shFENDRR) or shRNA control (shCon) lentiviruses (MOI 100 for 24 h). Scale bar: 100 µm. (B)
Real-time PCR determination of FENDRR expression in HPF cells infected with shFENDRR or shCon. FENDRR expression
was normalized to β-actin and expressed as %shCon. (C) Cell proliferation was determined by the BrdU assay in blank cells
and the cells infected with shCon and shFENDRR after 6 days of culture. The results were expressed as %shCon. Values
represent the means ± SE. n = 3 independent experiments. ** p < 0.01 vs. shCon. Student’s t-test for (B) and one-way
ANOVA and Tukey’s multiple comparison for (C).

2.3. FENDRR Binds SRSF9 and Inhibits the Phosphorylation of PS6K

RNA pulldown and mass spectroscopy analysis identified SRSF9 as one of the binding
partners for FENDRR [15]. To confirm this result, an RNA immunoprecipitation assay was
performed in LL29 cells. SRSF9 proteins were pulled down with anti-SRSF9 antibodies.
RNAs bound with SRSF9 proteins were isolated, and FENDRR was determined by real-
time PCR. Our results showed that SRSF9 proteins bound endogenous FENDRR in LL29
cells with a 2.4 ± 0.30-fold enrichment compared to the IgG control (Figure 3A).
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Figure 3. FENDRR reduces PS6K phosphorylation by binding SRSF9. (A) RNA immunoprecipitation showing the inter-
action of FENDRR with SRSF9 in LL29 cells. FENDRR enrichment was expressed as %IgG. (B) Western blot showing that 
FENDRR inhibits the phosphorylation of PS6K in LL29 stable cells expressing FENDRR or vector control (VC). (C) Quan-
titative analysis of protein levels of phosphorylated PS6K (p-PS6K). Values were normalized to total PS6K and then ex-
pressed as %VC. (D) Cell proliferation was determined by the BrdU assay at 6 days in LL29 cells infected with a lentivirus 
expressing a SRSF9 shRNA (MOI of 100 for 24 h). Values were expressed as %shCon. (E) Western blot showing the phos-
phorylation of PS6K at different times points (0, 15, 30, and 60 min) in LL29 cells treated with FGF2 (50 ng/mL). (F) Quan-
titative analysis of the phosphorylated PS6K and total PS6K protein levels from (E). Values were normalized to total PS6K 
and then expressed as % 0 Min. (G) Fibroblast proliferation in LL29 cells treated with FGF2 (50 ng/mL) for 3 days as 
determined by the BrdU assay. Values were expressed as %Blank. (H) Fibroblast proliferation in LL29 stable cells express-
ing vector control (VC) or FENDRR treated with FGF2 (80 ng/mL) for 3 days was determined by the BrdU assay. Values 
were expressed as %VC of Blank. Values represent the means ± SE. n = 3 independent experiments. * p < 0.05 vs. IgG, VC, 
or 0 min, ** p < 0.01 vs. Blank, **** p < 0.0001 vs. shCon, # p < 0.05 and ### p < 0.001 vs VC. Student’s t-test for (A, C, G); one-
way ANOVA and Tukey’s multiple comparison for (D, F); and two-way ANOVA and Tukey’s multiple comparison for 
(H). 

Figure 3. FENDRR reduces PS6K phosphorylation by binding SRSF9. (A) RNA immunoprecipitation showing the interaction
of FENDRR with SRSF9 in LL29 cells. FENDRR enrichment was expressed as %IgG. (B) Western blot showing that FENDRR
inhibits the phosphorylation of PS6K in LL29 stable cells expressing FENDRR or vector control (VC). (C) Quantitative
analysis of protein levels of phosphorylated PS6K (p-PS6K). Values were normalized to total PS6K and then expressed as
%VC. (D) Cell proliferation was determined by the BrdU assay at 6 days in LL29 cells infected with a lentivirus expressing a
SRSF9 shRNA (MOI of 100 for 24 h). Values were expressed as %shCon. (E) Western blot showing the phosphorylation of
PS6K at different times points (0, 15, 30, and 60 min) in LL29 cells treated with FGF2 (50 ng/mL). (F) Quantitative analysis of
the phosphorylated PS6K and total PS6K protein levels from (E). Values were normalized to total PS6K and then expressed
as % 0 Min. (G) Fibroblast proliferation in LL29 cells treated with FGF2 (50 ng/mL) for 3 days as determined by the BrdU
assay. Values were expressed as %Blank. (H) Fibroblast proliferation in LL29 stable cells expressing vector control (VC)
or FENDRR treated with FGF2 (80 ng/mL) for 3 days was determined by the BrdU assay. Values were expressed as %VC
of Blank. Values represent the means ± SE. n = 3 independent experiments. * p < 0.05 vs. IgG, VC, or 0 min, ** p < 0.01
vs. Blank, **** p < 0.0001 vs. shCon, # p < 0.05 and ### p < 0.001 vs. VC. Student’s t-test for (A,C,G); one-way ANOVA and
Tukey’s multiple comparison for (D,F); and two-way ANOVA and Tukey’s multiple comparison for (H).

The phosphorylation of PS6K protein, a downstream molecule of mTOR signaling,
can be enhanced by SRSF9 [23]. The binding of FENDRR with SRSF9 may affect the PS6K
phosphorylation. To test this possibility, we performed Western blotting on cell lysates
extracted from FENDRR stable cells using antibodies against phosphorylated PS6K. The
results showed that FENDRR reduced the phosphorylation of PS6K protein (Figure 3B,C).
However, whether this effect is due to the binding of FENDRR to SRSF9 needs to be further
confirmed via competition experiments.



Int. J. Mol. Sci. 2021, 22, 8536 6 of 19

SRSF9 has been reported as an oncogenic protein in several cancer cells [23,33,34]. To
evaluate the contribution of SRSF9 to fibroblast proliferation, we silenced SRSF9 using
a lentiviral shRNA vector in LL29 cells. The 3 shRNAs showed a similar knockdown
efficiency (65–68%) (Figure S1A,B). The silencing of SRSF9 by all of the 3 shRNAs reduced
fibroblast proliferation by 39–48% (Figure 3D).

We further examined the effects of activating mTOR signaling using FGF2 on fibroblast
proliferation. FGF2 increased the phosphorylation of PS6K in LL29 cells at 15 min (Figure
3E,F). The treatment of LL29 cells with FGF2 for 3 days increased cell proliferation by 38
± 2% as determined by the BrdU assay (Figure 3G). Furthermore, FENDRR reduced cell
proliferation of both basal and FGF2-mediated cell proliferation (Figure 3H).

2.4. FENDRR Reduces β-Catenin Protein Level

Since β-catenin promotes fibroblast proliferation [25] and overexpression of SRSF9
increases β-catenin protein levels in HEK293T [23], we wondered whether FENDRR reg-
ulates β-catenin expression in lung fibroblasts. Western blot analysis showed that stable
cells expressing FENDRR had a 41 ± 5% reduction in β-catenin protein levels compared
to control cells (Figure 4A,B). However, β-catenin mRNA was not changed (Figure 4B).
The mRNA expression of β-catenin target genes, TCF1, LEF1, and AXIN2 was reduced by
FENDRR overexpression (Figure 4C).
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Figure 4. FENDRR reduces β-catenin protein level. (A) Western blot showing β-catenin protein levels in FENDRR
overexpressing or vector control (VC) stable cells after a 6-day culture. (B) Quantification of β-catenin mRNA and protein
expression. β-catenin mRNA expression was determined by real-time PCR. β-actin was used as the reference gene. Values
were expressed as %VC. (C) mRNA expression of β-catenin target genes, TCF1, LEF1, and AXIN2 in FENDRR and VC stable
cells. mRNA expressions were determined by real-time PCR using β-actin as the reference gene and expressed as %VC.
Values represent the means ± SE. n = 3 independent experiments. * p < 0.05 vs. VC. Student’s t-test for (B,C).

2.5. Silencing and Overexpression of β-Catenin Reduces or Increases Fibroblast Proliferation

To mimic the FENDRR-mediated reduction of β-catenin, we reduced β-catenin levels
in LL29 cells using adenoviral β-catenin shRNA and a chemical inhibitor and examined
the effects of such treatments on fibroblast proliferation. Adenovirus-mediated β-catenin
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silencing reduced the β-catenin protein level by 49 ± 7% and mRNA level by 70 ± 3%
(Figure S2A,B). A chemical inhibitor, XAV939 reduced the β-catenin protein level by 60± 6%
(Figure 5A,B). β-catenin silencing and chemical inhibition reduced fibroblast proliferation
by 26 ± 3% and 54 ± 7%, respectively (Figure 5C).
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 Figure 5. β-catenin contributes to fibroblast proliferation. (A) XVA939 (10 µM)-mediated reduction of β-catenin protein
levels in LL29 cells. The control is 0.1% DMSO. (B) Quantitative analysis of β-catenin protein levels in LL29 cells treated
with XAV939. The results were expressed as %VC. (C) BrdU assay of cell proliferation in LL29 cells infected with adenovirus
containing β-catenin shRNA constructs or treated with XVA939 for 6 days. The results were expressed as %shCon or
%Control. (D) Western blot showing β-catenin levels in LL29 cells after transfection (nucleofection) of ∆GSK-β-catenin
overexpressing plasmid or its control plasmid (CON). (E) Quantitative analysis of β-catenin protein levels in D. The results
were normalized to β-actin and expressed as %CON. (F) The BrdU assay was performed to determine cell proliferation in
LL29 stable cells expressing vector control (VC) or FENDRR at day 6 after transfecting ∆GSK-β-catenin overexpressing
plasmid or its control plasmid (CON). The results were expressed as %VC of CON. Values represent the means ± SE. n
= 3 independent experiments. * p < 0.05, ** p < 0.01, **** p < 0.0001 vs. shCon, Control or VC. Student’s t-test for (B,C,E).
Two-way ANOVA and Tukey’s multiple comparison for (F).
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We then determined the effects of overexpressing β-catenin on the proliferation of
vector control and FENDRR stable cells. We overexpressed β-catenin through transfecting
∆GSK β-catenin (a constitutively active form of β-catenin) [37] overexpressing plasmid
using nucleofection technique. The overexpression increased the β-catenin protein level
by 91.18 ± 27.08% (Figure 5E,F). The overexpression of β-catenin also increased the cell
proliferation of both vector control and FENDRR overexpressing cells (Figure 5F).

2.6. FENDRR Attenuates Asbestos-Induced Pulmonary Fibrosis in Mice

We have previously shown that FENDRR reduces bleomycin-induced pulmonary
fibrosis [15]. Although this model is commonly used, bleomycin-induced lung fibrosis is
reversible at 4 weeks of the treatment. We thus tested the effects of adenovirus-mediated
overexpression of FENDRR in the lung on asbestos-induced pulmonary fibrosis, which
can persist for at least 2 months. Crocidolite asbestos (50, 100, and 200 µg/mouse) was
intratracheally delivered into the lungs of C57BL/6J mice and lung fibrosis was evaluated
at 3 weeks and 2 months. No mice died after asbestos delivery. H&E staining showed
dose-dependent fibrotic lesions and increases in the fibrosis score, as determined by the
modified Ashcroft scoring, at 3 weeks after asbestos delivery. Fibrosis was not resolved
for up to 2 months (Figure 6A,B). This is consistent with collagen deposition as revealed
by Mason’s trichrome staining, which shows blue color in fibrotic areas of mouse lungs
(Figure 6C). Male and female mice showed a similar pattern of dose-dependent fibrosis
scores at 3 weeks. However, at 2 months, the fibrosis score in the asbestos group was
significantly different from controls in male but not in female mice, although there was a
trend of increase in the fibrosis score in female groups (Figure S3A,B). Asbestos-treated
mice showed a reduced Fendrr expression in the lungs at 3 weeks (32–48% reduction) and
2 months (51% reduction) after asbestos delivery (Figure 6D). There were no differences
in male and female groups (Figure S3C,D). The treatment condition with 200 µg/mouse
of crocidolite asbestos had dense fibrotic lesions and the highest fibrosis score and was
chosen for further experiments.

Fibroblast proliferation is a key event in pulmonary fibrosis [25,26]. Since our in vitro
studies showed that FENDRR inhibits fibroblast proliferation, we wondered whether
FENDRR has an anti-fibrotic effect on asbestos-induced fibrosis. FENDRR was delivered to
the lungs of mice using adenovirus-mediated gene transfer. We have previously shown that
under the same conditions as used in this study, FENDRR expression was increased 1.7-fold
after the delivery of an adenovirus expressing FENDRR into the lungs [15]. Adenovirus-
mediated FENDRR transfer into the lungs reduced fibrotic lesions, fibrosis scores, and
collagen deposition (Figure 6E–G). There were no apparent differences in fibrosis scores
between male and female mice (Figure S3D,E).



Int. J. Mol. Sci. 2021, 22, 8536 9 of 19
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 6. FENDRR reduces asbestos-induced lung fibrosis. (A) H & E staining of the lung tissues 
from the mice treated with different doses (50, 100, and 200 µg) of crocidolite asbestos (Cro) and 
collected at 3 weeks (wks) and 2 months (Mo). TiO2 (100 µg) was used as a control. (B) Fibrosis scores 
as determined by the modified Ashcroft score in the lungs of mice treated with crocidolite. Mouse 
number and sex for each group: 3 Wks, TiO2 = 6 (3F, 3M), Cro 50 = 7 (4F, 3M), Cro 100 = 6 (3F, 3M), 
Cro 200 = 6 (3F, 3M) and 2 Mo, TiO2 = 7 (4F, 3M), Cro 100 = 9 (6F, 3M). (C) Trichrome staining of lung 
sections of mice treated with crocidolite. (D) Fendrr expression of asbestos-treated mice as deter-
mined by real-time PCR using Gapdh as a control. Mouse number and sex for each group: 3 Wks: 
TiO2 = 6 (3F, 3M), Cro 50 = 7 (4F, 3M), Cro 100 = 6 (3F, 3M), Cro 200 = 6 (3F, 3M) and 2 Mo, TiO2 = 7 
(4F, 3M), Cro 100 = 9 (5F, 2M). (E) H & E staining of the lung sections from mice treated with virus 
control (VC) or FENDRR adenovirus and TiO2 or crocidolite (200 µg). (F) Fibrosis scores as deter-
mined by the modified Ashcroft score in the lungs of mice treated with FENDRR adenovirus and 
crocidolite. Mouse number and sex: VC TiO2 = 15 (8F, 7M), FENDRR TiO2 = 12 (6F, 6M), VC Cro = 
17 (9F, 8M) and FENDRR Cro = 15 (7F, 8M). (G) Trichrome staining of the lung sections of mice 
treated with FENDRR adenovirus and crocidolite. Scale bar: 100 µm for all sections. Values repre-
sent the means ± SE. * p < 0.05, ** p < 0.01, *** p < 0.01, **** p < 0.0001, # p < 0.05. One-way ANOVA and 
Bonferroni’s multiple comparison for (B). One-way ANOVA and Fisher’s LSD test for (D, F). 

Figure 6. FENDRR reduces asbestos-induced lung fibrosis. (A) H & E staining of the lung tissues
from the mice treated with different doses (50, 100, and 200 µg) of crocidolite asbestos (Cro) and
collected at 3 weeks (wks) and 2 months (Mo). TiO2 (100 µg) was used as a control. (B) Fibrosis
scores as determined by the modified Ashcroft score in the lungs of mice treated with crocidolite.
Mouse number and sex for each group: 3 Wks, TiO2 = 6 (3F, 3M), Cro 50 = 7 (4F, 3M), Cro 100 = 6 (3F,
3M), Cro 200 = 6 (3F, 3M) and 2 Mo, TiO2 = 7 (4F, 3M), Cro 100 = 9 (6F, 3M). (C) Trichrome staining
of lung sections of mice treated with crocidolite. (D) Fendrr expression of asbestos-treated mice as
determined by real-time PCR using Gapdh as a control. Mouse number and sex for each group: 3
wks: TiO2 = 6 (3F, 3M), Cro 50 = 7 (4F, 3M), Cro 100 = 6 (3F, 3M), Cro 200 = 6 (3F, 3M) and 2 Mo, TiO2

= 7 (4F, 3M), Cro 100 = 9 (5F, 2M). (E) H & E staining of the lung sections from mice treated with
virus control (VC) or FENDRR adenovirus and TiO2 or crocidolite (200 µg). (F) Fibrosis scores as
determined by the modified Ashcroft score in the lungs of mice treated with FENDRR adenovirus
and crocidolite. Mouse number and sex: VC TiO2 = 15 (8F, 7M), FENDRR TiO2 = 12 (6F, 6M), VC Cro
= 17 (9F, 8M) and FENDRR Cro = 15 (7F, 8M). (G) Trichrome staining of the lung sections of mice
treated with FENDRR adenovirus and crocidolite. Scale bar: 100 µm for all sections. Values represent
the means ± SE. * p < 0.05, ** p < 0.01, *** p < 0.01, **** p < 0.0001, # p < 0.05. One-way ANOVA and
Bonferroni’s multiple comparison for (B). One-way ANOVA and Fisher’s LSD test for (D,F).
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2.7. RNA Sequencing Analysis Identifies Seven Cell Proliferation-Related Genes That Are
Up-Regulated by Asbestos, but Attenuated by FENDRR

To evaluate the effect of FENDDR on the transcriptome in vivo, RNA sequencing
was performed on the lung tissues from the asbestos-induced fibrosis mouse model with
or without FENDRR overexpression. RNAs were extracted from lung tissues on day 21
from 4 groups of mice, vector control and crocidolite control (VC-TiO2), vector control
and crocidolite (VC-Cro), FENDRR overexpression and crocidolite control (FENDRR-
TiO2), and FENDRR overexpression and crocidolite (FENDRR-Cro), and RNA sequencing
was performed as described in the Materials and Methods. The results revealed that a
large number of genes (219 genes) were differentially expressed in the lungs of VC-Cro
mice compared to VC-TiO2. Among them, 193 genes were up-regulated and 26 were
down-regulated. Seventy genes (20 up-regulated and 50 down-regulated) were expressed
differently between VC-Cro and FENDRR-Cro groups. The expression levels of 76 genes
(14 up-regulated and 62 down-regulated) were different in the lungs of mice between VC-
TiO2 and FENDRR-TiO2 (Figure S4A–C). Differentially expressed genes were visualized
in volcano plots based on their fold changes and FDR. Red dots and green dots represent
differentially up-regulated and down-regulated genes, respectively (FDR < 0.05 and fold
change ≥ 2). Black dots indicate genes that did not change based on FDR ≥ 0.05 and fold
change < 2 (Figure S4D–F).

The genes that were up-regulated in the VC-Cro group and down-regulated in the
FENDRR-Cro group are listed in Table S1 Functional annotation on these genes showed
that they are involved in collagen metabolic and catabolic processes, arginine metabolic
and catabolic processes, immunity, and regulation of cell proliferation (Figure S5 and
Table S2). The cellular components of these differentially expressed genes are involved in
extracellular space (Figure S5 and Table S3). KEGG analysis showed that these genes are
involved in arginine biosynthesis and metabolism (Figure S5 and Table S4).

Seven crocidolite-upregulated genes, which are attenuated by FENDRR, are related
to cell proliferation (Tables S1 and S2). Those genes are arginase 1, glycoprotein Nmb,
nitric oxide synthase 2, programmed cell death 1 ligand 2, scinderin, SWI/SNF related-
Matrix associated-Actin dependent Regulator of Chromatin Subfamily A member 4, and
Wnt Family Member 5A.

3. Discussion

The global incidence of IPF is rising annually [38] and the management of the disease
has become important. The greatest challenge of disease management is that the current
drug treatment options only slow down the disease progression, but cannot cure the dis-
ease [39,40]. Understanding key molecular mechanisms leading to the pathogenesis of IPF
will help to develop effective treatment strategies. Fibroblast proliferation is a key charac-
teristic of IPF [25,26,41,42]. Several studies have shown that FENDRR negatively affects
cell proliferation in various cancers in the lungs [17,18,43,44], gastrointestinal tract [20,21]
bone [45], and kidneys [19]. However, the exact cellular mechanisms on how FENDRR
regulates cell proliferation are unclear. In this study, we demonstrate that FENDRR inhibits
lung fibroblast proliferation. We also provide evidence to support a model that FENNDRR
decreases fibroblast proliferation by binding SRSF9, inhibiting the phosphorylation of PS6K
and reducing β-catenin protein level (Figure 7).
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RNA immunoprecipitation analysis demonstrated that FENDRR bound SRSF9 (Figure 3A).
The primary function of SRSF proteins is RNA splicing. However, the changes in the RS
domains modulate the localization of these proteins in the nucleus or cytoplasm [32]. It has
been shown that mutations in arginine sites to prevent methylation result in an increased
shuttling of SRSF1 to the cytoplasm [46]. Also, mutations in RS domains that prevent the
phosphorylation of RS domains increase the cytoplasmic accumulation of SRSF1 [47]. There
is evidence showing that SRSF1 and SRSF7 in the cytosolic fraction are associated with
ribosomal subunit, suggesting the involvement of SRSF proteins in mRNA translation [48].
Another study showed that hyper-phosphorylation of the RS domain in SRSF1 promoted
the mRNA translation as determined by luciferase reporter assay [49]. Since SRSF9 can
shuttle between the nucleus and the cytoplasm [32], and our previous results show that
FENDRR is predominantly located in the cytoplasm in human lung fibroblasts, the binding
of FENDRR with SRSF9 likely occurs in the cytoplasm.

SRSF9 is considered an oncogenic protein [23,33,34]. Our current studies reveal that
the knockdown of SRSF9 in lung fibroblasts inhibits cell proliferation, which is consistent
with several studies in cancer cells. For example, silencing SRSF9 in bladder cancer cells
and neuroblastoma cells reduces cell proliferation [33,34] Subcutaneous tumor growth in
mice is promoted by injecting NIH3T3 fibroblasts cells stably expressing SRSF9 [23].

The binding of FENDRR with SRSF9 could affect its downstream signaling. One such
signaling is mTOR, which regulates cell metabolism, growth, proliferation, and survival.
It enhances protein and lipid synthesis while reducing autophagy [50,51]. PS6K, one of
the key components in mTOR signaling, regulates several proteins involved in protein
translation. PS6K promotes translation initiation by phosphorylating eIF4B, which is a
component of 5′-cap binding. PS6K also inactivates eukaryotic elongation factor 2 kinase
(eEF2K), a negative regulator of eukaryotic elongation factor 2 (eEF2), and thus increases
the translation elongation. Furthermore, PS6K enhances ribosome biogenesis by promoting
the transcription of rRNA via phosphorylating the transcription factor UBF-1 [52,53].

The overexpression of SRSF1 and SRSF9 induces the phosphorylation of PS6K in
HEK293T cells [23]. SRSF1 also activates mTOR signaling in MEF and NIH3T3 cells as
determined by the phosphorylation of PS6K and 4E-BP [54]. In the lung fibroblasts stably
expressing FENDRR, we observed increased phosphorylation of PS6K, suggesting that the
binding of FENDRR with SRSF9 may inhibit mTOR signaling. The involvement of mTOR
signaling in fibroblast proliferation is also supported by our finding that FGF2, a growth
factor that activates mTOR signaling [55,56], induced the phosphorylation of PS6K and
increased fibroblast proliferation.
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The activation of mTOR signaling induces protein synthesis by translating genes
responsible for cell growth and proliferation. β-catenin is one of the major mediators to pro-
motes cell proliferation [28,29,57] and its synthesis is enhanced by SRSF1 and SRSF9 in an
mTOR-dependent manner [23]. Thus, the FENDRR-mediated reduction in the phosphoryla-
tion of PS6K may potentially affect β-catenin protein levels and thus fibroblast proliferation.
Indeed, FENDRR reduced the protein level, but not the mRNA level of β-catenin. Further-
more, reducing β-catenin levels in fibroblasts by gene silencing and chemical inhibition
decreased cell proliferation. These results suggest that FENDRR-mediated inhibition of
fibroblast proliferation is likely via a reduction in β-catenin protein level.

miR-214 is known to reduce the β-catenin expression in cancer cells [58–60]. We have
previously shown that FENDRR competes with miR-214 [15]. This raises the possibility
that FENDRR may regulate β-catenin protein levels via miR-214. However, this is not the
case as our current studies showed that overexpression of FENDRR decreased β-catenin
protein levels in lung fibroblasts. If FENDRR-mediated changes in β-catenin protein levels
are via competing with miR-214, an increased β-catenin protein level should be observed
in FENDRR-overexpressing cells. The plausible explanation is that β-catenin is likely
not a target of miR-214 in lung fibroblasts since a microRNA-target relationship is cell
context-dependent.

There are several lung fibrosis mouse models including bleomycin, paraquat, and
asbestos [61]. Exposure to asbestos is considered a significant health hazard due to its
potential risk of developing lung fibrosis and malignancies [62]. The alveolar epithelial
injury caused by asbestos fiber-generated ROS is the hallmark to develop fibrosis in the
lungs [41,63]. FENDRR was observed to be down-regulated in the lung of asbestos-treated
mice. Although the precise mechanism by which asbestos reduces lung FENDRR expression
is uncertain, we identified several potentially important pathways using RNA sequencing
studies of FENDRR- and asbestos-treated mice. RNA sequencing identified that certain
genes involved in the PPAR signaling pathway, chemokine signaling pathway, and IL-17
signaling pathway are up-regulated by crocidolite. These pathways may regulate Fendrr
expression. However, further studies are required to explore the involvement of these
pathways in fibrosis and Fendrr regulation. TGFβ1 signaling is another potential pathway
to regulate FENDRR expression because TGFβ1 is increased in the lungs of asbestos-treated
mice and rats [64] and is known to be involved in IPF. Our in vitro studies support the
role of TGFβ1/Smad3 and hypoxia/HIF-1α signaling in the downregulation of FENDRR
expression [15,65]. Adenovirus-mediated FENDRR transfer into the mouse lungs reduced
asbestos-induced fibrotic lesions, fibrosis scores, and collagen deposition, suggesting that
FENDRR is an anti-fibrotic lncRNA in vivo.

RNA sequencing identified 26 genes in the mouse lung tissues that were up-regulated
by crocidolite but reversed by FENDRR. Among them, 7 genes [arginase 1 (Arg1), glyco-
protein Nmb (Gpnmb), nitric oxide synthase 2 (Nos2), programmed cell death 1 ligand 2
(Pdcd1lg2), scinderin (Scin), SWI/SNF related, Matrix associated, Actin dependent Regula-
tor of Chromatin, Subfamily A, member 4◦(Smarca4), and Wnt Family Member 5A◦(Wnt5a)]
are reported to be involved in cell proliferation based on our functional annotation analysis.

Arginase is an enzyme important for the biosynthesis of polyamines from arginine.
These polyamines are required to synthesize new cellular DNAs, RNAs, and proteins
in the event of cell proliferation [66,67] including fibroblast proliferation [68]. Gpnmb is
a type I transmembrane glycoprotein, and which is up-regulated in lung fibrosis mice
models [69]. Furthermore, silencing of GPNMB has been shown to reduce the proliferation
of osteosarcoma cells through suppressing mTOR signaling [70]. Nitirc oxide has been
reported to enhance the Smad signaling to promote pulmonary fibrosis in rat models [71].
It was recently shown that cell surface expression of both PD-L1 and PD-L2 were increased
in IPF fibroblasts compared to healthy controls [72], and the inhibition of Pd-l1 significantly
reduced lung fibrosis in bleomycin-mice models [73]. SCIN is involved in cytoskeletal
remodeling and the silencing of SCIN in cancer cells inhibits cell proliferation [74–76].
SMARCA4 is part of the chromatin remodeling complex SWI/SNF. SMARCA4 is highly
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expressed in human IPF lungs and the deletion of Smarca4 results in a decreased prolifera-
tion of alveolar type II cells [77]. WNT5a, a non-canonical Wnt ligand, is highly induced in
lung fibrosis [78–81]. We have previously shown that WNT5a increases lung fibroblast pro-
liferation through NFAT signaling [82]. Therefore, our RNA sequencing data provide new
directions to further investigate molecular mechanisms associated with asbestos-induced
lung fibrosis and FENDRR functions.

In summary, we conclude that FENDRR acts as an anti-fibrotic lncRNA to inhibit
fibroblast proliferation by binding SRSF9 and inhibiting mTOR signaling, thereby reducing
the β-catenin protein translation.

4. Materials and Methods
4.1. Cell Culture

Human lung fibroblasts, LL29 cells isolated from the lungs of an IPF patient were
purchased from American Type Culture Collection (ATCC, Manassas, VA, USA). Primary
human pulmonary fibroblasts (HPFs) isolated from the lungs of a healthy subject were
purchased from PromoCell (Heidelberg, Germany, Cat. No: C-12361). LL29 cells were cul-
tured in F12K medium with 10% fetal bovine serum and 1% penicillin-streptomycin. HPFs
were cultured in fibroblast medium (PromoCell, Cat. No: C-23220) with its supplements
(PromoCell, Cat. No: C-39320) containing fetal calf serum (0.2 mL/mL), basic fibroblast
growth factor (1 ng/mL), and insulin (5 µg/mL).

4.2. Vector Construction and Virus Preparation

For the construction of a lentiviral human FENDRR expression vector, human lung tis-
sue cDNA was used as a template to amplify FENDRR variant 3 (GeneBank ID: MK522493)
by PCR. Primers used for the amplification are listed in Table S5. The PCR product and the
pLVX/CMV-EGFP vector were double-digested to generate XhoI and EcoRI sticky ends.
The digested PCR product was ligated to the pLVX/CMV-EGFP vector at XhoI and EcoRI
sites. A random genomic DNA fragment (500 bp) was used to construct a control vector
(VC), which did not contain any known sequence of mRNAs, lncRNAs, or microRNAs.

Lentiviral shRNA vectors for human FENDRR and SRSF9 were constructed as pre-
viously described [83]. The sequences of shRNAs are listed in Table S5. A control vector
(pMiRZip) was purchased from System Biosciences (Mountain View, CA, USA). Aden-
oviral β-catenin silencing vector containing 4 shRNAs and its control vector containing 4
non-relevant shRNAs [84] were constructed as previously described [85].

Lentiviruses and adenoviruses were prepared and titrated according to the previously
reported methods [83,85].

4.3. Generation of Stable Cells Expressing FENDRR

To generate FENDRR and VC stable cells, LL29 cells were infected with a lentivirus
expressing FENDRR or its control vector at a multiplicity of infection (MOI) of 50. After
a 24-h of infection, the virus was removed, fresh medium was added, and cells were
incubated for another 48 h. Cells were then cultured in the medium containing 0.5 µg/mL
puromycin. The medium was replaced every 2 days until cells attained 70–80% confluence.
Then, cells were sub-cultured and maintained in the medium containing 0.1 µg/mL of
puromycin. During experimental conditions, these cells were cultured in the absence of
puromycin.

4.4. RNA Isolation and Real-Time PCR

Tri reagent (Molecular Research Center, Cincinnati, OH, USA) was used to isolate total
RNAs according to the manufacturer’s protocol. DNA digestion (ThermoFisher Scientific,
Waltham, MA, USA) was performed, followed by cDNA synthesis using random primers.
These cDNAs were diluted (1:100) and used for real-time PCR reaction as previously
described [86]. The specificity and linearity of the qPCR assays were assessed by examining
the melt curve for each primer pair and Ct values, respectively. Relative expression levels of
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mRNAs and lncRNA FENDRR were calculated using the comparative Ct method. β-actin
or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as internal controls.
Primers used for the real-time PCR were listed in Table S6.

4.5. RNA Immunoprecipitation (RIP)

LL29 cells were cultured in 10-cm dishes until a 70–80% confluence was attained.
They were harvested with trypsinization and lysed with 1 mL of RIP buffer [50 mM KCl,
25 mM Tris (pH 7.4), 5 mM EDTA, and 0.5% NP-40] containing 1 U/µL RNase inhibitor
(Super RNase inhibitor, Ambion, Foster City, CA, USA, Cat. No: AM2694), and 1x Halt®

protease inhibitor (ThermoFisher Scientific, Waltham, MA, USA, Cat. No:1861281). After
centrifuging the lysate at 10,000× g for 15 min, the supernatant was collected and incubated
with 40 µL of protein A/G beads (Santa Cruz Biotechnology, Santa Cruz, CA, USA, Cat.
No: sc-2003) for 1 h at 4 ◦C. The mixture was centrifuged at 16,000× g for 15 min and the
supernatant was collected. Fifty microliters were taken from this pre-cleared lysate and set
aside as an input control. The remaining lysate was divided into two aliquots, and each
aliquot was incubated with 10 µg of rabbit anti-SRSF9 antibody (Abcam, Boston, MA, USA,
Cat. No 74782) or IgG control antibodies (Invitrogen, Waltham, MA, USA, Cat. No: 10500C)
overnight at 4 ◦C. Forty microliters of protein A/G beads were added to each aliquot and
incubated for 1 h at 4 ◦C. Beads were pelleted and washed with 500 µL of ice-cold RIP buffer
three times, followed by 500 µL of a final ice-cold PBS wash. Beads were pelleted and PBS
was removed completely. Then, TRI reagent (Molecular Research Center, Cincinnati, OH,
USA) was added to isolate co-precipitated RNA. The RNAs were reverse-transcribed to
cDNA. The amount of FENDRR in immunoprecipitated RNA was determined by real-time
PCR and calculated using 2−ct. The enrichment fold was calculated over the IgG control.

4.6. Western Blot

Protein samples were extracted using a 1X SDS sample buffer containing 0.06 M Tris
(pH 6.8), 2.1% (w/v) SDS, 5% (v/v) glycerol, and 1% (v/v) 2-mercapto-ethanol. Protein
concentration was determined using a DC protein assay kit (Bio-Rad, Hercules, CA, USA).
Twelve µg of samples were separated on 10% SDS PAGE gels for detecting β-catenin,
phospho-PS6K and PS6K, or 12% SDS PAGE gels for detecting SRSF9. Then, proteins
were transferred to nitrocellulose membranes. Membranes were blocked with 5% milk
for 1 h at room temperature. Primary antibodies used for Western blotting are as follows:
rabbit anti-β-catenin (dilution 1:2000, Cell Signaling, Danvers, MA, USA, Cat. No: 9562),
rabbit anti-SRSF9 (dilution 1:500, Abcam, Boston, MA Cat. No 74782), rabbit anti-PS6K
(dilution 1:1,000, Cell Signaling, USA, Cat. No: 9202), rabbit anti-phosopho-PS6K (dilution
1:1000, Cell Signaling, USA, Cat. No: 9205), and mouse anti-β-actin (dilution 1:3000,
ThermoFisher Scientific, Waltham, MA, USA, Cat. No: MA5-15739). The membranes were
incubated with primary antibodies overnight at 4 ◦C. Then, membranes were incubated
with horse-radish peroxidase-conjugated goat anti-rabbit or goat anti-mouse (dilution
1:2000) secondary antibodies (Jackson Immunoresearch, West Grove, PA, USA) for 1 h
at room temperature. The PageRuler Prestained protein ladder (ThermoFisher Scientific,
Waltham, MA, USA) was run along with samples in each blot. The signal was developed by
adding chemiluminescent peroxidase substrate and images were taken with an Amersham
Imager 600 (GE Healthcare, Pittsburg, PA). The protein band intensities were quantified
using Image J software [87] (https://imagej.nih.gov, accessed on 1 August 2021) and
normalized to an internal control, β-actin. The protein expression was represented as a
percent of the control sample.

4.7. Nucleofection

Nucleofection reaction was carried out using Amaxa™ Basic Nucleofector™ Kit for
Mammalian Fibroblasts (Lonza, Allendale, NJ, USA, Cat. No: VPI-1002). Briefly, 0.3 × 106

cells in the nucleofection reagent were mixed with 2 µg of control vector (pGFP) or ∆GSK
β-catenin overexpressing vector [43] kindly provided by Dr. Angela Barth from Stanford

https://imagej.nih.gov
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University), and the A-024 program was run with the Nucleofector II device (Lonza,
Allendale, NJ, USA). Then, cells were suspended and cultured in F12K medium containing
10% fetal bovine serum and 1% penicillin-streptomycin.

4.8. Cell Proliferation Assay

Fibroblast proliferation was determined using a BrdU cell proliferation kit (EMD
Millipore, St Charles, MO, USA). Otherwise indicated, 2000 cells/well were seeded in
96-well plates for all cell proliferation experiments. The following day the medium was
replaced, and cells were infected with an adenovirus or a lentivirus at an MOI of 100.
After 24-h of virus infection, the medium was replaced with fresh medium. Cells were
then incubated for up to 6 days in F12K medium with serum. For chemical inhibition of
β-catenin, cells were treated with 10 µM of XAV939 (Selleckchem, Houston, TX, USA) for
6 days. To activate the mTOR signaling, after 24 h serum starvation, cells were treated with
Fibroblast Growth Factor (FGF) 2 at 50 ng/mL for 3 days in a serum-free medium. For all
the experiments above, prior to the 12 h endpoint, the BrdU reagent was added and the
assay was proceeded according to the manufacturer’s protocol.

4.9. A Mouse Model of Asbestos-Induced Pulmonary Fibrosis

All animal procedures used in this study were approved by the Institutional Animal
Care and Use Committee at Oklahoma State University under the protocol number, VM
15–38. All experiments performed on mice were in accordance with the relevant guidelines
and regulations of this committee. The study is reported in accordance with the ARRIVE
guidelines. Asbestos preparation and delivery to mice were performed as previously
described [88]. Crocidolite asbestos (kindly provided by Dr. Andy Ghio, US Environmental
Protection Agency) and the control, TiO2 (Sigma-Aldrich, St Louis, MO, USA, Cat. No:
1667585) were dissolved in PBS containing 15 mM HEPES to obtain a stock concentration of
1, 2 or 4 mg/mL. The mixture was sonicated at 40% power for 8 min (Sonic Sonicator, Vibra
Cell, Sonic & Materials Inc, Newtown, CT, USA, Cat. No: VCX 130PB). On day 1, male
and female C57BL/6J mice (7–8 weeks old) were anesthetized using ketamine/xylazine.
A 20-gauge Angiocath IV catheter was intubated in mice. Then, 50, 100, and 200 µg (in
50 µL) of crocidolite asbestos, or TiO2 were delivered intratracheally in two equal aliquots,
two minutes apart. After each delivery, the mice were placed to the right and then left
decubitus position for 10–15 s.

In another experiment, on day 0, male and female C57BL/6J mice (8 weeks old) were
anesthetized using isoflurane and adenovirus expressing FENDRR or its vector control
(VC) (50 µL) were intratracheally delivered at 5 × 109 IU/mouse. On day 1, 200 µg of
crocidolite or TiO2 was delivered as described above.

At 3 weeks or 2 months, mice were sacrificed by exsanguination under anesthesia
using ketamine/xylazine. Then, lungs were perfused with sterile PBS via the right ven-
tricle until they are pale in color. Left lungs were collected and snap-frozen using liquid
nitrogen. The lung tissues were then powdered using a motor and pestle and lysed with
Tri reagents, followed by RNA isolation. Right lungs were perfused with 10% formalin for
histopathological analysis.

The degree of fibrosis was determined by the modified Ashcroft score [89]. Briefly,
the slides were coded. Then, each of the 4 lobes of the right lung was imaged at a 20X
objective lens magnification under a light microscope. Approximately, 7, 5, 5, and 3 fields
were taken for inferior, superior, middle, and post cavel lobes, respectively, resulting in a
total of 20 random fields per slide. A field that is covered by more than 50% of bronchi or
vessels was excluded. Each image was blindly scored based on the modified Ascroft score
as previously described [89], and an average score was obtained from 20 images per slide.

Collagen deposition in the mouse lungs were determined using Trichrome staining
(Sigma-Aldrich, St. Louis, MO, USA).
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4.10. Statistical Analysis

Values represent the means ± SE. Statistical analysis was performed using GraphPad
Prism 7. We used the Student’s t-test for two-group comparison, a one-way ANOVA
for multiple comparisons involving one factor or independent variable, and a two-way
ANOVA for multiple comparisons involving two factors or independent variables, followed
by Tukey’s or Bonferroni (if “n” is not equal among groups) or Fisher’s LSD post hoc test.
A p-value of <0.05 was considered to be statistically significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22168536/s1, Supplementary Materials and Methods: RNAseq analysis. Figure S1:
Silencing of SRSF9, Figure S2: Silencing of β-catenin, Figure S3: FENDRR reduced asbestos-induced
lung fibrosis, Figure S4: Differentially expressed genes in the lung tissues of crocidolite- and FENDRR-
treated mice, Figure S5: Functional annotation of crocidolite-up-regulated and FENDRR-down-
regulated genes, Table S1: Crocidolite up-regulated and FENDRR down-regulated genes, Table
S2: Biological processes of crocidolite up-regulated and FENDRR down-regulated genes, Table S3:
Cellular components of crocidolite up-regulated and FENDRR down-regulated genes, Table S4:
KEGG analysis of crocidolite up-regulated and FENDRR down-regulated genes. Table S5: Primers
for the construction of plasmids, Table S6: Primers used for real-time PCR.
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