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Abstract: The triad of noise-generated, drug-induced, and age-related hearing loss is the major cause
of acquired sensorineural hearing loss (ASNHL) in modern society. Although these three forms of
hearing loss display similar underlying mechanisms, detailed studies have revealed the presence
of sex differences in the auditory system both in human and animal models of ASNHL. However,
the sexual dimorphism of hearing varies among noise-induced hearing loss (NIHL), ototoxicity, and
age-related hearing loss (ARHL). Importantly, estrogen may play an essential role in modulating
the pathophysiological mechanisms in the cochlea and several reports have shown that the effects
of hormone replacement therapy on hearing loss are complex. This review will summarize the
clinical features of sex differences in ASNHL, compare the animal investigations of cochlear sexual
dimorphism in response to the three insults, and address how estrogen affects the auditory organ at
molecular levels.

Keywords: acquired sensorineural hearing loss; noise trauma; ototoxicity; presbycusis; estrogen;
cochlea; sexual dimorphism

1. Introduction

Hearing loss is the predominant health issue in recent decades because it places
psychological and socioeconomic burdens on the world. According to World Health Orga-
nization (WHO), almost 6.1% of the world’s population has disabling hearing loss (about
432 million adults including 242 million males and 190 million females). Furthermore, it
may rise to 630 million by 2030 and over 900 million by 2050 [1]. Acquired sensorineural
hearing loss (ASNHL) is the most common type of hearing loss that includes noise-induced
hearing loss (NIHL), ototoxicity, age-related hearing loss (ARHL), Meniere’s disease, and
autoimmune-related hearing loss, as well as others. Among these, noise, ototoxic drugs,
and aging account for the major contributing causes of ASNHL in modern society. The
triad of ASHNL represents the damage of the auditory pathway in response to acute,
subchronic, and chronic environmental insults [2].

While the clinical features of noise, drug, and age-related hearing loss had been well
understood, recent studies have demonstrated the sex differences of hearing severity in
the triad of clinical ASNHL patients and explored the mechanisms underlying the sexual
dimorphism in the animal models. This review article will focus on sexual dimorphism in
ASNHL from the clinical and basic perspectives, and will explore the available studies to
elucidate the effect of sex hormones on the auditory organ.
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2. Clinical Aspects of Sex Differences in Acquired Sensorineural Hearing Loss
2.1. NIHL

NIHL accounted for at least 16% of all disabling hearing loss and has a demanding
societal cost [3]. The pattern of an audiogram in NIHL usually presents a notch at 4 kHz
with a spread to the frequencies of 3 kHz and 6 kHz [4,5]. After prolonged exposure to noise,
the lower frequencies at 0.5, 1, or 2 kHz may also be involved [6]. Several reports have noted
significant sexual dimorphism in NIHL. In Norway, a series of studies showed that women
exhibited better hearing preservation after adjusting noise exposure and occupational
factors [7,8]. In the latest cross-sectional study including 1140 males and 1140 females in
China, males had a higher risk of high-frequency hearing loss compared to females in
equivalent noise exposure and age [9]. The largest meta-analysis of occupational NIHL also
demonstrated that male workers had higher odds of experiencing high-frequency NIHL
than female workers [10]. Another aspect of gender difference in NIHL was described in
Chung’s study. They showed that males had a larger “ear effect” (right ear being more
sensitive) in response to industrial noise exposure compared to females. In addition,
females had better hearing than males after noise exposure in this study [11].

Apart from adults, NIHL in adolescents became a popular and crucial issue in recent
years [12] but evidence of a sex difference in NIHL among adolescents is lacking. Several
reports demonstrated the gender difference in their attitudes toward noise [13,14]. In 1997,
Holmes et al. screened the hearing in 342 adolescents and 10.2% of males failed to pass
at 6000 Hz in contrast to the 5% in females [15]. Males used firearms more frequently
and a significant correlation was observed between failure at 6000 Hz and firearm use.
Concerning the prevailing portable listening devices in recent decades, males had higher
overall calculated exposure levels and chose higher levels of music in the quiet environment
than females [14]. However, the hearing threshold at 4 kHz, which is most affected by noise,
did not differ between males and females aged 12–19 in the South Korean population [16].
Additional work with longitudinal follow-up is necessary to explore whether recreational
music has a differential impact on the hearing between male and female adolescents.

2.2. Ototoxicity

Drug ototoxicity is another main cause of ASNHL in modern society. Abundant
evidence has shown that ototoxic agents were mainly transported from the strial vessels
or diffused via the round window into the cochlea after intratympanic administration or
systemic use [17–19]. Various targeted sites of the inner ear including hair cells, supporting
cells, spiral ganglion cells, and the auditory nerve can be injured according to the properties
of the drugs. Among these, hair cells are consistently the predominant vulnerable site [20].
The well-known ototoxic agents include aminoglycosides, loop diuretics, platinum-based
chemotherapies, nonsteroidal anti-inflammatory drugs (NSAIDS), and so on. Although
various ototoxic drugs were found, the gendered difference was only discovered in part
due to the lack of research until recent decades. Franconi et al. summarized the gender dif-
ference in drug responses from the pharmacokinetics to pharmacodynamics aspects. They
concluded that females were more likely to experience adverse drug reactions including
ototoxic effects [21,22]. One cohort from Canada showed that the ototoxicity of an amino-
glycoside antibiotic, amikacin, was associated with the female sex (females had a higher
risk of ototoxicity than males) when treating patients with nontuberculous mycobacteria
pulmonary disease [23]. In contrast, the ototoxicity risk of platinum-based chemotherapies
such as cisplatin was higher in males [24–27]. The possible reason may attribute to the
finding that some female cell lines are less sensitive to platinating agents than their male
counterparts and may cause the phenotypic differences following cisplatin therapy [28].
However, some studies reported that platinum-based chemotherapies did not exhibit the
gender difference in ototoxicity [29]. The sex difference of cisplatin ototoxicity still needs
to be clarified due to the heterogeneous hearing results.
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2.3. ARHL

ARHL or presbycusis usually represents developing high-frequency hearing impair-
ment and frequently occurs with poor speech discrimination [30]. According to the WHO
estimation, approximately one-third of people have disabling hearing loss after 65 years
old and half of those are individuals over 85 years old in the United States [31]. Hearing
loss in the elderly is often associated with countless negative impacts on life including com-
munication obstacles, isolation, late-life depression, cognitive decline, and so on [32–35].
For decades, substantial cross-sectional and longitudinal human studies in various regions
described that ARHL had a higher prevalence in males than females [36–42]. Pearson et al.
proposed that the hearing threshold declined twice as fast in men than in women at almost
any frequencies and men had an earlier onset of hearing decline [36]. Although it was
considered that males might experience more noise exposure than females, their data still
showed similar hearing outcomes after adjusting the noise and occupational factors [8].
Meanwhile, similar results were noted in another study that found that the thresholds at
0.25 kHz and 8 kHz increased gradually every year, and men had significantly higher in-
creasing rates than women [43]. Concerning the hearing thresholds at different frequencies,
elderly males had higher hearing thresholds than females at higher frequencies during
aging in longitudinal [36] and large cohort [44] studies. These studies demonstrated that
hearing loss is more profound in elderly males than females.

In recent years, a growing literature has shown that hearing loss is a risk factor for
dementia [45]. The less perception from the peripheral auditory system decreases the
transduction of sound to the central cortical area and also reduces the neural activities and
signals’ coding [32]. The treatment of hearing impairment could increase and maintain
the cognitive reserve and prevent dementia as stated in the latest report of the Lancet
Commission [35]. Although ARHL was identified as the most significant risk factor in
dementia [46], the investigations of sex differences in the impact of ARHL on cognitive
function were scarce. A study from Korea observed the association between hearing loss
and cognitive impairment only in women aged 65 years and older [47], whereas recent
research from a US national populational-based sample of adults aged 60 to 69 years old
revealed that this association only appeared in males [48]. The discrepancy between the two
studies may be due to the uncertain effect of gender differences in social networks [49–51].
While several factors could affect the sex differences in neurodegeneration [52], further
studies to explore how ARHL affects cognition function in males and females would
be helpful to determine whether hearing loss is a precocious sex-dependent indication
of neurodegeneration.

2.4. Other Pathological Diseases Associated to ASNHL

Apart from NIHL, ototoxicity, and ARHL, Meniere’s disease and autoimmune in-
ner ear disease are also associated with ASNHL. Meniere’s disease is characterized by
fluctuating and progressive sensorineural hearing loss accompanied by episodic vertigo.
Although the exact causes of Meniere’s disease are not clear, endolymphatic hydrops are
likely causative of this disease [53]. Several reports had revealed a slight female preponder-
ance in Meniere’s disease [54,55]. Those who had a lower estrogen level presented poor
auditory function in postmenopausal patients with Meniere’s disease [56]. Autoimmune
inner ear disease features fluctuating bilateral progressive sensorineural hearing loss within
weeks or months, likely due to a consequence of antibodies from various conditions such
as viral infection, trauma, and vascular injury that damaged the inner ear [57]. In addition,
autoimmune inner ear disease commonly occurs in females [58], similar to the female
predominance in systemic autoimmune diseases [59].

3. Animal Investigations of Sex Differences in Acquired Sensorineural Hearing Loss

The sex differences in ASNHL were also evident in subsequent animal studies [60–62].
Sexual dimorphism in the auditory system was observed in many species for decades.
Nonmammalian species including frogs, praying mantises, birds, and so on were described
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in detail [63–65]. However, only mammals are summarized here given the anatomical and
physiological similarities with humans.

A series of studies in sex differences regarding the mammalian auditory system
including mice, rats, chinchillas, rhesus monkeys, spotted hyena, and sheep were con-
ducted [60,66–70]. Of these, several strains of mice such as CBA/CaJ and C57BL/6J mice
were considered as useful models and were extensively applied in most types of hearing
loss studies because the auditory circumstance and potentially interacting factors can be
carefully controlled [71]. Auditory brainstem response (ABR) and otoacoustic emission
(OAE) were typically used in animal models as the objective auditory measurements.

There are sundry sexual facets that contribute to the roles of this dimorphism: genetic
factors, anatomical differences, occupation type, employment status, and so on. Some
studies reported that males possess a slightly longer cochlear length but this finding still
lacked clinical data and pathophysiological evidence [72,73]. From the molecular aspects
to the clinical presentations, the disparities of sex and sex-related hormones are of interest
to scientists and clinicians. Therefore, studying the sexual dimorphism in animal models
of the auditory system may help us develop treatments for hearing impairment based on
different genders.

3.1. NIHL

Although several animal studies have reported the sex difference in NIHL, the results
varied in different species or strains. Milon et al. demonstrated that after exposure to
2 h of octave-band noise, female B6CBAF1/J mice had a significantly lower compound
threshold shift and reduced permanent threshold shift compared to control male mice.
However, no significant difference in hair cell counts and inner hair cell synapse counts
between the two groups was noted [60]. Another study found that after exposure to
100 dB SPL broadband noise, there was no difference in the ABR threshold but a significant
effect on the frequency–sex interaction in CBA/CaJ mice was noted. In addition, females
had more excitatory synapses of immunolabeling in the ventral cochlear nucleus at the
lower frequency and less at the higher frequency [74]. This result was consistent with
McFadden et al. who emphasized that female chinchillas had less low-frequency hearing
loss than males but exhibited greater hearing loss at 16 kHz. Meanwhile, less hair cell
loss in female chinchillas was noted [69,75]. However, in Willott’s study, female C57BL/6J
mice lost more outer hair cells than ovariectomized female or male mice after exposure to
nightly moderately intense augmented acoustic environments [76]. This opposite result
may be attributed to the specific characteristic of C57BL/6J mice regarding elevated ABR
thresholds of higher frequencies at 3 months of age and this trait may induce the interaction
of ARHL and NIHL [62].

3.2. Ototoxicity

Sex differences in ototoxicity are also a widely discussed topic. Various animal models
were examined for further investigation due to inconsistent human observational studies
as mentioned above. One study provided direct evidence that the female cisplatin group
had more deteriorated OAE values than the male cisplatin group among the Wistar albino
rats. Although ABR values did not show a significant difference, the female cisplatin
group had more apoptotic spiral ganglion neurons [77]. One recent study reported that
inconsistent hearing thresholds after cisplatin injection were observed in different strains of
mice [78]. For example, the CBA/CaJ mice revealed no significant sex difference; the female
C57BL/6J mice had higher threshold shifts than the males at 4 kHz and 16 kHz. In contrast,
in BALB/cJ mice, males had higher threshold shifts than the females at 4 k, 8 k, and 12 kHz.
Interestingly, no significant difference in hair cell counts between male and female mice
was observed in this study. There are two possible reasons for the heterogeneous results.
First, there may be different susceptibilities to ototoxicity in these strains. Second, the
different aging rates in these strains induced by ARHL may interfere with the degree of
ototoxicities. Thus, the clear mechanism still needs to be investigated.
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Regarding aminoglycosides, one animal study demonstrated that male Long–Evans
rats had poor OAE values compared to female rats after treatment with kanamycin [79]. In
the same manner, another study found that female guinea pigs that received gentamicin
had better ABR performance than both the males with the same dosage treatment and the
lower dosage male controls [80]. The diverse results between clinical and animal studies
may be due to different animal species and drug pharmacodynamics.

3.3. ARHL

To understand the mechanism of sexual dimorphism in presbycusis, various animal
models were conducted. CBA/CaJ mice experience progressive high-frequency hearing
loss first and then gradually experience low-frequency loss. In addition, CBA/CaJ mice do
not develop premature hearing loss, thus they are a suitable animal model for evaluating
aging hearing [81,82]. When mice are growing older, the trend of dropped sex hormone
levels mimics the trends for humans. One study reported that middle-aged and elderly
male CBA mice had decreased OAE levels which indicated the outer hair cell dysfunction,
while female mice levels only declined after menopause [61]. Another study examined
both CBA/J and CBA/CaJ mice for the onset of ARHL and found that male mice had
significantly poorer high-frequency thresholds than the females but not in C57BL/6J
mice [76,82]. Subsequently, the Ahl gene was proposed as the reason to explain the trait
of C57BL/6J mice in having a different result compared to CBA mice [76,83]. Overall,
the structural cochlear changes including in spiral ganglion cell counts or strial capillary
density in these animal models provided evidence of sex differences in auditory organs
during aging [76,84,85].

4. How Could Hormones Influence Hearing in Molecular Aspects?

As the above observational and animal studies have shown that females have better
hearing than males in several ASNHL cases, the main sex difference in hearing may
attribute to the distinct sex hormones in the respective genders. Among the sex hormones,
estrogen is the most important and widely discussed hormone in this field. Androgen is
less discussed in the auditory system and its effect on ASNHL is still under investigation.

4.1. Estrogen in Auditory Function

Estrogen plays the most crucial role in this issue. Some animal and human studies have
demonstrated that women may be protected against hearing loss because of estrogen and its
signaling pathways [86,87]. Several clinical reports have observed that the level of estrogen and
its derivatives positively influence OAE amplitudes and ABR wave latencies [88–92]. Women
had subtle fluctuating auditory thresholds during their menstrual cycle phases and their
best hearing thresholds were observed at the highest peak of estrogen level [92]. Meanwhile,
a more extensive scale study including 1830 postmenopausal women found the association
between hearing loss and the serum estradiol level [93]. These observational studies imply
the protective effect of estrogen on hearing. According to Guimaraes et al., pre-menopausal
CBA female mice have healthier outer hair cells than middle-aged males [61]. These results
agreed with McFadden’s study that interpreted the better response of the human female
outer hair cell system with the presence of estrogen and stated that masculinization may
decrease the auditory response [94].

4.2. Potential Molecular Effects of Estrogen and Receptors on the Auditory System

Estrogen was regarded as neuroprotective and neurotrophic for the brain and pre-
sumably had protective effects on the auditory system [95]. A series of research studies
to investigate the mechanism of estrogen in molecular aspects were conducted. One is
Turner’s syndrome (TS), characterized by females with a partly or completely missing
X chromosome and leading to ovarian dysgenesis accompanied by little or none of the
endogenous estrogen production [96]. TS provided scientists the perspective on how estro-
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gen regulates hearing as progressive sensorineural hearing loss was commonly noted in
women with TS and also in the TS animal model [96,97].

Two main estrogen receptors (ERs) include estrogen-receptor-α (ERα) and estrogen-
receptor-β (ERβ) [98]. Many transcriptional regulation mechanisms of estrogen receptors
have been identified and mainly operate via direct DNA binding [99]. Both ERα and ERβ
play crucial roles in the development and maintenance of normal sexual reproductive
functions and modulate transcription by binding to estrogen response elements (ERE) [100].
In mice and rats, both ERα and ERβ can be detected in inner or outer hair cells, stria vascu-
laris, spiral ganglion cells, vestibular cells, and in the central auditory system. However,
one human study revealed that ERα was observed only in the spiral ganglion cells, whereas
ERβ was observed in the stria vascularis of the human inner ear [101–103]. Therefore, how
estrogen and receptors are involved in the functional well-being of the auditory system is
still under investigation. The hypothetical molecular effects of estrogen on the inner ear is
shown in Figure 1.

In hair cells, oxidative stress due to overproduction or insufficient detoxification of
reactive oxygen species (ROS) during acoustic trauma, ototoxic drug exposure, and aging is
the major contributor to cell death in ASNHL [2]. Estrogen could induce superoxide dismu-
tase (SOD) expression in the blood and brain to increase plasma total antioxidant capacity
and provide neuroprotection [104,105]. Therefore, it was speculated that estrogen would
increase the antioxidant enzymes in hair cells to preserve hearing function [88]. In addition,
estrogen can inhibit apoptosis via upregulating neuronal Bcl-2 and Bcl-xL [106,107]. In fact,
a previous study has shown that estradiol protects the cochlea against gentamicin ototox-
icity through the inhibition of the JNK (a pro-apoptotic) pathway [108]. Spiral ganglion
neuron (SGN) loss is another cochlear pathology following hair cell death in ASNHL [2].
The SGN function is preserved by the brain-derived neurotrophic factor (BDNF) which
could be enhanced by the ERβ agonist [109,110]. Furthermore, estrogen could protect the
cortical neurons and auditory midbrain against glutamate excitotoxicity [111,112] which
also plays an important role in the cochlear synaptopathy during ASNHL [113].

The cochlear lateral wall, which consists of a spiral ligament and stria vascularis, is
also under estrogen modulation. Stria vascularis is important in the homeostasis of the
water and blood circulation in thecochlea. There are several ion channels distributing
stria vascularis and the K+ channel is influenced by estrogen levels [114]. Meanwhile,
estrogen activates various downstream pathways to modulate the PI3K signaling and then
enhance the nitric oxide production which can dilate vessels and increase the cochlear
blood flow [115,116]. Therefore, estrogen may play an important role in maintaining
hearing and balance. For example, estrogen levels correlated with auditory and vestibular
function in postmenopausal patients with Meniere’s disease [56] because lower estrogen
may be involved in the microcirculatory disturbance and endolymphatic hydrops of the
inner ear [117].

Another type of orphan nuclear receptors that mimic the ERs is the estrogen-related
receptors (ERRs). ERRs have sequence similarities with ERs and share transcription targets
with ERs. The ERRs exhibit neuroprotection and modulate cell apoptosis in many target
organs via regulating the ROS system or mitochondrial function and may also have roles
in maintaining hearing function [118–120]. The mice study supported the hypothesis,
demonstrating worse hearing performance in ERR gamma knockout mice [119].
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Figure 1. Overview of potential molecular effects of estrogen on the auditory system. Estrogen could enhance the expression
of antioxidant SOD and reduce apoptosis by upregulating Bcl-2/Bcl-xL and inhibiting the JNK pathway. In addition,
estrogen increases the BDNF in neurons and inhibits glutamate excitotoxicity. Estrogen could also help to modulate cochlear
homeostasis and increase cochlear blood flow. Abbreviations: SOD = superoxide dismutase and BDNF = brain-derived
neurotrophic factor.

4.3. The Role of Estrogen on Sex Differences in ASNHL

As estrogen seems to have protective effects on the auditory system in the molecular
aspects, it is still unclear whether estrogen could account for the sex differences in the triad
of ASNHL. For NIHL, Meltser et al. demonstrated that ERβ knockout mice had temporary
hearing loss after acoustic trauma, whereas ERα knockout mice and wild-type mice did
not [110]. In addition, the ERβ agonist treatment could reduce the temporary threshold
shift. In female rats after ovariectomy, noise exposure can also cause more significant
damage [121]. These results may partially explain the better hearing in females in response
to noise observed in the clinic but the direct effect of estrogen on the auditory system in
NIHL needs further elucidation.

In contrast to the possible protective effect of estrogen on the cochlea in NIHL, whether
estrogen plays a role in ototoxicity is still under investigation. Low estrogen may be
associated with the decreased distortion product OAE and increased ABR thresholds in
ovariectomized rats after cisplatin treatment [122]. Conversely, estrogen could protect
against gentamicin-induced outer hair cell death by inhibiting the JNK signal pathway in
the organ of Corti explants [108]. Further exploration is needed to elucidate the effect of
estrogen on the cochlea when exposed to ototoxic drugs.

Regarding ARHL, the fluorescence intensities of ERα and ERβ were decreased in both
sexes when aging and elderly female mice still had higher ERβ levels in spiral ganglion
cells, vestibular hair cells, dark cells, and vestibular ganglion cells than males. In contrast,
ERα level showed a gender difference only in spiral ganglion cells [102]. These findings
strengthen the hypothesis that ERβ has a positive effect on hearing in ARHL. Interestingly,
young female mice had a stronger fluorescence intensity of ERα than males did in the
cerebral cortex. In addition, the higher ERα mRNA level was present in female mice but
ERβ did not show a significant difference between young female and male mice [123]. This
may account for the fact that young female mice had shorter ABR latencies and a larger
amplitude than young male mice [124]. Further studies regarding hormone therapy for
ARHL have demonstrated how estrogen affects ARHL which we will discuss in the “The
Effect of Hormone Therapy on Hearing” section.
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4.4. Androgen in Auditory Function

Androgen is another dominant sex hormone that regulates the development of male
characteristics, strengthens muscle mass, and increases energy and libido. Androgen is
mainly produced in the testicles in males but a part of androgen is synthesized in the
ovaries and adrenal glands [125]. In contrast to the known effects of estrogen on hearing
function, little is known about how androgen might influence hearing. In addition, whether
androgen receptors (AR) are expressed in the inner ear of vertebrates is not clear. One of the
well-established model systems for studying the neural and hormonal mechanisms among
vertebrates is fish [126]. The distribution of AR mRNA expression in the inner ear of teleost
fish supports the possible role of androgen as the modulator for the auditory system [127].
However, the specific role of AR in the inner ear still needs further investigation.

The previous animal study had shown that testosterone in serum increased neural
thresholds in females in a frequency-specific way [128]. From a clinical perspective, the
polycystic ovarian syndrome women with higher testosterone (one of the most potent
androgen) presented significantly higher hearing thresholds at higher frequencies than
controls. However, the above studies only included female participants and the luteinizing
hormone, insulin, and other hormones could also influence their results [129–131]. In
contrast, male patients with hypogonadism disorders such as Kallmann syndrome or Cogan
syndrome were reported with sensorineural hearing loss but their hearing loss mostly
has been attributed to genetic mutations rather than to testosterone deficiency only [132].
Although there is a lack of direct clinical evidence of testosterone and hearing loss, some
studies considered that testosterone might have a negative impact on hearing because
higher testosterone could lower the OAE amplitudes [66]. However, hyperandrogenism
did not affect OAE or the medial olivocochlear reflex response in adult females [133].
As a result, whether androgen plays an essential role in ASNHL is still unclear. One
recent report revealed that AR inhibition protected against cochlear injuries in kanamycin-
induced hearing loss in rats [134]. Further investigations are needed to elucidate the role of
androgen in the auditory system.

5. The Effect of Hormone Therapy on Hearing

Even though the benefits of hearing protection from ERs were evident, the clinical
usage of estrogen to protect or treat ASNHL remains difficult to validate. From a therapeutic
perspective, estrogen regulates many physiological functions in the whole-body system
such as cardiac, gastrointestinal, nervous, and respiratory systems rather than hearing
alone. There is more evidence regarding the interactions between sex hormones and the
function of the inner ear, especially in the mechanism of hearing impairment and balance
disorders in elderly females and pregnant women [135]. Particularly, a lower level of serum
possibly impedes hearing sensitivity in postmenopausal women [93]. Intrinsic estrogen
or estrogen therapy might slow down the hearing loss in aging females [136,137]. These
reports implied that estrogen is one of the key ways to preserve hearing in the aging human,
especially for aging postmenopausal women.

For decades, hormone-replacement-therapy (HRT) users are the most available group
to evaluate how estrogen influences hearing in the clinical aspect. It is challenging to
compare and interpret because HRT regimens vary in dosage, composition, duration, and
initiation with regards to the onset of menopause [138]. Currently, the studies regarding
HRT and hearing have mainly focused on postmenopausal female ARHL. One cross-
sectional study found that postmenopausal women using HRT had higher serum estradiol
levels and better pure tone thresholds than non-HRT treatments but no detailed regimens
were disclosed [93]. Another prospective case-control study including a total of 109 women
indicated that estrogen supplementation helped delay hearing loss in postmenopausal
women. Those who took 17β-estradiol only had significantly better hearing performance
than the non-HRT control. Interestingly, the estrogen group also showed significantly
better hearing than the group using the combined regimen containing 17β-estradiol and
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norethisterone acetate (one of the progestin derivatives) [137]. These reports imply that
estrogen alone shows benefits for hearing, while progestin has a negative impact on hearing.

Another case-control study included 124 postmenopausal women and found that
progestin (as a component of HRT) resulted in poorer hearing, whereas estrogen alone
showed no significant hearing difference but still with a better trend than the non-HRT
control [139]. Their group then conducted the parallel animal study in peri-menopausal
mice via the usage of HRT and the result was consistent with their previous human
study [140]. Similarly, a large observational human study from Curhanet et al. that
included 80,972 women was also in agreement with Guimaraes’s finding [141]. Therefore,
to clarify the specific effect from long-term HRT, a study used ovariectomized mice to
examine hearing after six months using estradiol, progestin, and estradiol accompanied
by progestin and a placebo [142]. According to their results, the estradiol-treated mice
presented with lower thresholds and higher amplitude values of ABR compared to other
hormone treatments. Meanwhile, progestin-treated mice had decreased ABR thresholds.
These results were also strengthened by their in vitro and in vivo studies, showing that
a high gene expression of IGF-1R, which can regulate anti-apoptotic responses in inner
ear cells, is only present in the estradiol group rather than other groups [142]. These
clinical and animal studies help us to determine how HRT and estrogen influence hearing
in ARHL.

Taken together, estrogen has a positive effect on hearing and has been proved in vitro
and in vivo. In clinical practice, estrogen and its derivatives are predominantly used
in HRT regimens. However, most HRTs are comprised of progestin and its derivatives
which showed negative effects on hearing. This is characterized as the main reason the
previous human studies showed inconsistent outcomes. As we are aware that estrogen
operates in the hypothalamic–pituitary–gonadal axis, which functions not only in hearing
but throughout the whole body, the adequate dose necessary to reach the therapeutic
effect and avoid side effects on other organs still needs to be investigated. Therefore, aside
from using systemic estrogen as a therapy, localized use may be the better choice to apply
estrogen and its derivatives to improve hearing impairment. Some strategies for cochlear
drug delivery such as nanoparticles, hydrogels, or micropumps can be the focus of future
investigations [143,144].

6. Conclusions and Future Perspectives

Sex differences are important in the studies of translational neuroscience [145]. Al-
though the mechanisms underlying the triad of ASNHL may be similar, we need to consider
sexual dimorphism during the interpretation of results in clinical and basic hearing re-
search [146–149]. From a clinical perspective, females exhibited better hearing than males
during noise exposure and aging, while animal investigations only demonstrated better
hearing in females in ARHL (Table 1). Conversely, sex differences in drug-related hearing
loss are still uncertain. Several articles have revealed the potential protective effects of
estrogen at molecular levels but the exact mechanisms of hearing preservation by estrogen
in the auditory system are not totally elucidated. Lastly, the evidence of estrogen to protect
hearing mainly focuses on ARHL in postmenopausal woman and the effect of hormone
therapy on the auditory organ is still unclear. In the current era of translation research and
personalized medicine, future basic and clinical investigations to elucidate the sex differ-
ences in the cochlea are essential to help to develop personalized therapeutic strategies
against ASNHL [148,150,151].

Looking ahead, the study of stem cells and gene therapy in recent years provides
new directions for the development of ASNHL treatment in the future decades [152].
Although regeneration of hair cells seems promising in animal models [153], previous
studies have revealed that men and women might respond differently to regenerative
medicine therapies [154]. Therefore, sex differences must be considered before entering
clinical trials. In addition, we also must consider gender-specific strategies in the era of
gene editing (CRISPR-Cas9) [155]. The usage of gene therapy to upregulate the expression
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of ERs in the inner ear may be a potential therapeutic option to improve hearing for ASNHL
in the future [156].

Table 1. Summary of sex differences in the triad of ASNHL.

Noise
(NIHL)

Drugs
(Ototoxicity)

Age
(ARHL)

Clinical aspects Females had better hearing [7–11] Aminoglycosides: females had a
higher risk [23]
Cisplatin: males had a higher risk
[24–27] or no gender difference [29]

Males had a higher
prevalence [36–40,42,43]

Animal investigations B6CBAF1/J mice: females had a
reduced permanent threshold
shift [60]
CBA/CaJ mice: no sex difference [74]
Chincillas: females had less hair
cell loss [75]
C57BL/6J mice: females had more
hair cell loss [76]

Cisplatin:
Wistar albino rats: females had more
apoptotic spiral ganglion neurons [77]
CBA/CaJ mice: no sex difference [78]
C57BL/6J mice: females had higher
threshold shifts [78]
BALB/cJ mice: males had higher
threshold shifts [78]
Aminoglycosides:
females had better OAE in the
Long–Evans rats [79] and ABR in
guinea pigs [80]

CBA mice: females had better
hearing during aging [61]
CBA/J and CBA/CaJ mice: males
had higher high- frequency ABR
thresholds in late-onset
ARHL [82]

Estrogen effect ERβ agonist reduced the temporary
threshold shift after acoustic trauma
in mice [110]

Cisplatin:
low estrogen increased ABR
thresholds [122]
Aminoglycosides:
estrogen protected against outer hair
cell death [108]

Elderly female mice had higher
ERβ levels than males and
preserved better hearing
function [102]
Postmenopausal women who had
a higher serum estradiol level had
better pure tone thresholds [93]
and estrogen supplementation
helped delay hearing loss [137]
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