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Abstract: Climate change has been predicted to influence the marine phytoplankton community and
its carbon acquisition strategy. Extracellular carbonic anhydrase (eCA) is a zinc metalloenzyme that
catalyses the relatively slow interconversion between HCO3

− and CO2. Early results indicated that
sub-nanomolar levels of eCA at the sea surface were sufficient to enhance the oceanic uptake rate of
CO2 on a global scale by 15%, an addition of 0.37 Pg C year−1. Despite its central role in the marine
carbon cycle, only in recent years have new analytical techniques allowed the first quantifications
of eCA and its activity in the oceans. This opens up new research areas in the field of marine
biogeochemistry and climate change. Light and suitable pH conditions, as well as growth stage, are
crucial factors in eCA expression. Previous studies showed that phytoplankton eCA activity and
concentrations are affected by environmental stressors such as ocean acidification and UV radiation
as well as changing light conditions. For this reason, eCA is suggested as a biochemical indicator in
biomonitoring programmes and could be used for future response prediction studies in changing
oceans. This review aims to identify the current knowledge and gaps where new research efforts
should be focused to better determine the potential feedback of phytoplankton via eCA in the marine
carbon cycle in changing oceans.

Keywords: sea surface microlayer; diatom; carbon-concentrating mechanism; ocean acidification

1. Introduction

Extracellular carbonic anhydrase (eCA) is a zinc metalloenzyme that accelerates
the slow interconversion between bicarbonate ions (HCO3

−) and carbon dioxide (CO2)
to the equilibrium concentration at the cell surface [1]. eCA has been widely found in
mammals [2], plants and phytoplankton [3], and prokaryotes [4]. In general, there are
seven CA gene classes that have been recognized in photosynthetic organisms, identified
as α-, β-, Υ-, δ-, ζ-, θ- [3,5] as well as a recently discovered ι-CA gene class [6]. Meanwhile,
the η-CA gene class has been found within the malaria pathogen Plasmodium sp. [7]. The
first five gene classes (α, β, Υ, θ and η) are different in terms of their primary structure [8]
but share a common feature of bound zinc (Zn2+) on their activation site [9]. The δ-CA
(TWCA1) [10,11] and ζ-CA (CDCA) [12] classes with the capability to bind with alternative
metal cofactors as well as Zn2+, such as cobalt (Co2+) and cadmium (Cd2+), respectively,
have been identified in the diatom Thalassiosira weisflogii (T. weisflogii). The δ- and ζ- classes
are likely to be the major CA classes that facilitate CO2 supply in centric diatoms [13] as a
carbon-concentrating mechanism (CCM). More recently, Jensen, et al. [6] discovered a new
ι-CA class in Thalassiosira pseudonona (T. pseudonona), which unusually prefers manganese
(Mn2+) to Zn2+ as a cofactor. Overall, the gene distributions of CA in microalgae cells vary
between species even if they belong to the same family [14]. For additional information on
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the function, physiological relevance, and diverse CA expression in microalgae, we refer to
a recent review [14].

eCA expression is highly responsive to environmental changes, particularly at low
aqueous CO2 concentrations [15]. Previous studies have shown that the levels of eCA
expression differ significantly between phytoplankton species based on laboratory exper-
iments [16–18]. The availability of inorganic carbon, light levels and pH [19,20], as well
as the phytoplankton growth stage [18], are important factors in the regulation of eCA
activity. The taxonomic composition and cell size of a phytoplankton community also
influence the level of eCA expression [21,22]. The different levels of eCA among species
provide evidence that the mechanism of inorganic carbon (Ci) acquisition in phytoplankton
is species-dependent and eCA is produced when demand for CO2 exceeds the rate of
uncatalyzed HCO3

− to CO2 conversion [16,17,23].
Under a future of climate change, marine photoautotrophs will undergo complex

changes in their physiology, driven by increasing sea-surface temperatures, continuing
ocean acidification, and changing light conditions [24,25]. Numerous laboratory studies
have already described the effect of ocean acidification on Ci acquisition of microalgae,
specifically diatom and their eCA activity [26–28]. Thus, it is not surprising that these
changes include the expression of eCA in phytoplankton, particularly those residing in the
near-surface layer. In this review, we focus on the available studies on eCA in the marine
environment, including biological function and current approaches to understanding the
eCA in changing oceans.

2. Biological Function of eCA in the Marine Environment

For decades, CA has been known to exist in many photosynthetic organisms and
to be involved in CCMs, which help the cell to produce biomass via photosynthesis,
particularly in a CO2-limited environment [3]. At the alkaline pH of seawater (pH 7.8–8.4),
Ci predominantly exists in ionic forms, whereby approximately 90% is present as HCO3

−,
9% as carbonate ions (CO3

2−), and 1% present as CO2, the substrate for the CO2-fixing
enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) [29,30]. RubisCO
has a lower affinity for CO2 and, at the relatively low CO2 concentration found in the
marine environment, the activity of this enzyme is less than half-saturated [3,31]. It
was reported that the CO2 concentration at an air-equilibrated water surface is lower
(13 µM at 20 ◦C) than typical values of the half-saturation constant (KC) of RubisCO in
diatoms (KC = 23–68 µM) [32], cyanobacteria (KC = 100–180 µM) [33], and haptophytes
(KC = 15–24 µM) [34]. To overcome the CO2 limitation and slow diffusion rate in seawater,
photosynthetic organisms evolved CCMs to increase the concentration of CO2 in the vicinity
of the cell internal RubisCO site [31]. These mechanisms include active uptake of both
extracellular HCO3

− and CO2 as carbon sources for photosynthesis. RubisCO-mediated
carboxylation competes with the oxygenation of ribulose 1,5-biphosphate (RuBP), which
reduces carbon fixation and promotes photorespiration [35]. However, the degree to which
these two competitive reactions occur depends on the (O2) and CO2 concentrations at the
active site of RubisCO and the relative affinity of the enzyme to these gases.

In phytoplankton and aquatic macrophytes, CA can be located either in periplasmic
space (eCA) or attached to the outer cell wall and/or in the chloroplast (internal CA,
iCA) (Figure 1) [36–38]. There are lines of evidence supporting the role of eCA in some
microalgae CCM, particularly diatoms, and eCA expression is induced under low CO2
concentration [23,30,39]. CCM consists of a Ci pump, CA enzyme to equilibrate HCO3

− to
CO2, and a compartment of RubisCO such as pyrenoid or carboxysome [33]. The function
of eCA in CCMs is mainly to convert available HCO3

− to CO2 close to the cell membrane
and facilitate CO2 transport through the cell’s membrane by diffusion [38]. At low partial
pressures of CO2 (pCO2) in the surrounding medium, i.e., seawater, the thin diffusion layer
around the cell becomes depleted rather quickly compared with the larger bulk phase
outside of the diffusion layer. Thus, eCA accelerates the slow dehydration of HCO3

− to
CO2 within the boundary layer, increasing the surface CO2 concentration for fixation by
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Rubisco [3]. Besides, eCA also functions to recover leaked CO2 from the cell and convert it
to HCO3

− [40], implying that the presence or absence of eCA allows more energy-efficient
Ci recycling in CO2 and HCO3

− users [41].
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The role of eCA in marine biogeochemical cycling is highlighted by the fact that eCA
is ubiquitous and requires the binding of trace elements on its activation site, such as Zn,
Cd, and Co [42,43], and, more recently discovered, Mn [6]. In 1994, Morel and co-workers
proposed the “zinc hypothesis” where the low levels of Zn in surface water may limit CO2
uptake and the growth rate of T. weissflogii through eCA. Based on this finding, the low
level of Zn in seawater has been suggested to reflect the distribution of eCA in seawater,
which was proposed to be at nanomolar levels [44], but only recently confirmed with
the development of an analytical technique to quantify eCA in seawater [18]. Analysis
with the same diatom, T. weissflogii, showed that Cd [12,45] and Co [11] could partially
replace Zn in CA by 50%, depending on the species, when the metals were present at
concentrations typical of surface seawater. However, further analyses with chlorophytes
and prymnesiophytes [46] indicated that Cd only acted as a nutrient in a narrow species-
specific concentration range. For this reason, the replacement of Zn with Cd or Co has
been suggested to be species-specific [47]. An activation of CA by Mn was proposed more
recently as a ubiquitous sub-class of CA [6], and eCA could potentially be important in the
understanding of Mn distribution in the oceans. A recent field study by Morel, et al. [48]
in the eastern tropical South Pacific revealed that the substitution of Cd and Co for Zn
occurred when dissolved Zn levels were extremely low and not necessarily with the lowest
pCO2 conditions. This further suggests that diatoms in the marine environment may be
co-limited by Zn-Cd-Co and CO2 [49]. To date, the cellular quotas of Zn attached to CA in
marine phytoplankton remain an open question. Subhas, et al. [50] estimated the use of
Zn quota by marine phytoplankton assemblages from the North Pacific Ocean to be in the
range of 10–40% using Zn/phosphate and CA/particulate organic carbon (CA/POC) ratios.
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The estimated values are 10 times lower than our previous estimation from a laboratory
experiment using monoculture solutions [18]. Some species are likely to utilize Cd, Co or
even newly found Mn as a cofactor, and such estimations are likely to be very uncertain
within natural assemblages. Trace metal quotas in marine phytoplankton also depend on
cell size [49,51]. A holistic approach is needed to resolve the coupling of marine trace metal
chemistry to total CA expression and activity in natural phytoplankton assemblages.

3. Extracellular Carbonic Anhydrase in a Changing Ocean

Under future climate change, marine photoautotrophs will undergo complex changes
in their physiology, driven by increasing sea-surface temperatures, continuing ocean
acidification, and changing light conditions [24]. As outlined above, changes could include
the expression of eCA and changes within CCMs of phytoplankton communities. Between
1994 and 2007, it was reported that the amount of oceanic carbon increased by 34 ± 4 Pg C,
which represents over 31 ± 4% of anthropogenic CO2 emissions [52]. Future concentrations
of CO2 in the atmosphere are projected to reach ∼1000 µatm by 2100 if anthropogenic
emissions are ongoing at the current rate [53] and thus will be taken up by the ocean
through the sea surface microlayer (SML). The increased CO2 uptake by the ocean will
influence the seawater chemistry, increase acidity, and shift the dissolved inorganic carbon
system from carbonate (CO3

2−) towards HCO3
− and CO2 [54,55]. This phenomenon is

termed ocean acidification [54]. The air-sea CO2 exchange depends not only on temperature,
salinity, and physical mixing of water, but also on the photosynthesis and respiration of
plankton communities to maintain an air–sea CO2 gradient as a driving force for the
exchange. Organisms in the euphotic zone will be exposed to a higher CO2 environment
with the consequence of lower pH. Consequently, their physiologies will respond to
these changes in marine carbonate chemistry. Ocean acidification generally affects the
species composition of phytoplankton assemblages [56], changes the cellular mechanisms
involved in the acquisition of inorganic carbon, and negatively affects the physiology
of calcifying organisms such as coccolithophores [57]. Laufkötter, et al. [58] estimated a
decrease in global average phytoplankton net primary production of 6.5% within 50 years
of observation (1960–2006) due to changes in climate-relevant factors, with a consequence
of reduced efficiency of the biological pump and thus the ocean’s capability to capture
anthropogenic CO2 in the deep ocean.

Many laboratory studies have already described the effect of ocean acidification on the
Ci acquisition of diatoms and their eCA activity (Table 1) [26–28]. In most cases, increased
CO2 levels inhibit the eCA activity of diatoms. Hence, indirect uptake of HCO3

− via
the eCA pathway is likely to be reduced under future elevated CO2 levels in the oceans.
Nevertheless, diatoms display a high diversity in terms of Ci acquisition strategies, which
can take both HCO3

− and CO2 [16,59]. T. weissflogii, where HCO3
− is the main Ci species

taken up during low pCO2, showed the highest eCA expression under low pCO2 (36 µatm,
pH = 9.1) [26] and decreased eCA expression by more than 50% after exposure to moderate
pCO2 levels (180 µatm and 360 µatm). The eCA expression was close to the detection limit
under high pCO2 (1800 µatm). Overall, under Ci limitation, eCA becomes an essential
pathway for photosynthetic carbon fixation in T. weissflogii. Decreased eCA expression
of T. weissflogii under high pCO2 has been observed in other studies [27,28]. T. weissflogii
exhibited significantly higher photosynthetic oxygen evolution rates at low CO2 or HCO3

−

levels, suggesting that T. weissflogii has higher affinities for CO2 or HCO3
− when their

concentrations are not sufficient to support saturated growth and photosynthesis [28]. Gao
and Campbell [25] suggested that CCMs in diatoms potentially link to multiple metabolic
pathways that differ between species. For instance, under non normal conditions, T. weiss-
flogii employs C4 pathways as additional CCMs before RubisCO-aided carboxylation [60],
and the δ-CA of T. weissflogii can catalyse the hydration of CO2 and increase the HCO3

−

concentration intracellularly [61]. Phaeodactylum tricornutum (P. tricornutum), however,
relies solely on biophysical CCMs in which HCO3

− is pumped into the cell and converted
into CO2 by the eCA in the chloroplast [27,28]. This explains the low eCA expression with
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increasing CO2 concentrations in P. tricornutum [26]. Trimborn, et al. [40] observed that
the eCA activities of T. pseudonana were not affected by CO2 levels, suggesting that eCA
plays a negligible role in its carbon acquisition strategy, but eCA plays an important role in
bloom-forming diatom species such as Thalassionema nitzschioides (T. nitzschioides), Eucampia
zodiacus (E. zodiacus), and Skeletonema costatum (S. costatum). The absence of eCA activities in
T. pseudonana was reported in previous studies using the isotope-disequilibrium [62], Mem-
brane inlet mass spectrometry (MIMS) [16], and potentiometric methods [17,63]. Details of
the photophysiological responses in terms of growth, respiration, and photoinhibition of 20
species of marine diatoms to ocean acidification were reviewed by Gao and Campbell [25],
outlining further such complexity.

The extent of how much the carbon acquisition strategies of natural phytoplankton
assemblages are affected by ongoing ocean acidification has been examined in incubation
experiments on board research vessels (Table 1). An early study by Tortell and Morel [64]
demonstrated that HCO3

− uptake in the equatorial Pacific Ocean is regulated by the
ambient CO2 concentrations, where phytoplankton assemblages did not express eCA
under high CO2 concentrations (750 µatm). Several studies observed a reduction in eCA
activity as a response to high CO2 concentrations (800 µatm) in diatom assemblages of
the West Antarctic Peninsula [65–67] and more recently in the Timor Sea phytoplankton
assemblages [18,68]. Contrarily, tolerance of highly variable CO2 levels has been observed
for diatom assemblages in the subarctic Pacific, indicating that the direct uptake of HCO3

−

dominates carbon uptake for these assemblages [69]. Evidence of direct HCO3
− uptake has

been seen in southern Bering Sea and Ross Sea diatom assemblages, which is estimated to
contribute up to 60–95% of total Ci uptake [21,39,69], suggesting that the HCO3

− transport
system is probably never completely suppressed under any ocean conditions [21]. In
the Southern Ocean, preferred Ci sources under elevated CO2 are highly variable [70–72],
whereby phytoplankton assemblages show substantial direct HCO3

− uptake. Overall, these
findings highlight the fact that the effect of future ocean acidification on phytoplankton Ci
acquisition strategies may vary between oceanic provinces due to the changing composition
of phytoplankton assemblages and environmental conditions. An increase in seawater
acidity increases the hydration rates by eCA [73]. Meanwhile, future increases in CO2
levels would save about 20% of the energy demand for CCMs [74] of diatoms, as less eCA
would be required to maintain Ci acquisition. Phytoplankton species that possess direct
HCO3

− uptake as their preferred Ci may become less CO2 sensitive than those relying
solely on CO2 uptake or indirect HCO3

− uptake through eCA. More field experiments
from different oceanic regions are needed to compile a comprehensive understanding of
how marine phytoplankton would acquire Ci in the future oceans.

Short-term shifts in phytoplankton species composition with variable CO2 concentra-
tions are expected in future oceans. The effect of CO2 concentrations on species composition
also varies between oceanic regimes. For instance, incubations of equatorial Pacific phy-
toplankton assemblages resulted in the dominance in diatoms over the prymnesiophyte
Phaeocystis antarctica under elevated CO2 (750 µatm) [56]. Meanwhile, increased CO2 lev-
els (800 µatm) would also favour the growth of larger cells (e.g., Chaetoceros spp.) over
smaller cells (e.g., pennate diatom Pseudo-nitzschia) as observed in incubation experiments
with Ross Sea phytoplankton communities [75], because larger cells are subject to greater
reaction-diffusion limitations [76]. Shifting towards larger diatoms (Thalassiosira sp., T.
nitzschioides and Nitzschia longissimi) is also observed in natural phytoplankton assem-
blages from the Kiel Fjord (Germany) under distinct “greenhouse” conditions (8.5 ◦C and
990 µatm) [77]. In very different oceanic conditions, combining high CO2 and surface
solar radiation resulted in declines in the diatom abundance from the South China Sea
and their primary productivity [78]. Such taxonomic shifts are likely to be influenced by
the physiological mechanisms of Ci use by specific species and, therefore, it is essential to
fully describe the CCMs of natural phytoplankton assemblages to predict how they will
respond to future changes in CO2 levels [21]. A shift towards larger cells—as observed for
diatoms—could increase the vertical flux of POC and the efficiency of the carbon pump to
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the deep ocean by forming rapidly sinking aggregates [79]. Moreover, larger diatoms had
higher total CA activity for a given Zn- or Cd-limited growth rate, and thus, the cell could
be co-limited by Zn, Cd, and CO2 at low external CO2 concentrations [49]. This is because
larger cells have lower cellular Zn due to their lower cell surface to volume ratio, and a
greater restriction of a diffusive flux of biologically available dissolved Zn to their surface
due to a thicker diffusive boundary layer around their cells [80].

As continuing ocean acidification directly affects the physiology of certain diatoms, it
may also indirectly influence their response to other environmental factors including ultra-
violet (UV) radiation, light, increasing temperature, or nutrients [25]. The net effect of ocean
acidification on marine producers largely depends on the photo-biological conditions (light
or UV radiation) [81,82], as well as interaction with rising sea-surface temperatures [83]
and probably other variables such as changes in nutrient availability. These environmental
factors may have a synergistic or antagonistic effect on the Ci acquisition of diatom species.
A combination of low light and high CO2 reduced the eCA activity of S. costatum by 2.5-fold,
implying that besides CO2, the efficiency of CO2 uptake is dependent on the availability of
light [84]. This highlights the importance of light in CCMs efficiency.
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Table 1. Studies on the effect of ocean acidification, UV radiation, light, warming, and combination effect on carbon acquisition strategies of phytoplankton through laboratory (diatom
species) and incubation experiments on board research vessels (natural phytoplankton assemblages).

Experiment Phytoplankton Results Observation Types References

Ocean
Acidification

Thalassiosira weissflogii Decline in eCA expression with increasing CO2
concentrations Laboratory [26–28]

Phaeodactylum tricornutum Decline in eCA expression with increasing CO2
concentrations Laboratory [26–28]

Thalassiosira pseudonana eCA activities were not affected by CO2 concentrations Laboratory [16,17,40,62,63]
Thalassiosira nitzschioides, Eucampia
zodiacus, and Skeletonema costatum

eCA is important in bloom-forming diatom species.
eCAdecline with increasing CO2 supply (800 µatm) Laboratory [40]

Antarctic phytoplankton
(Chaetoceros debilis, Pseudo-nitzschia,

Fragilariopsis kerguelensis, and Phaeocystis
antarctica)

Preferences for Ci sources are partly species-specific.
eCA activities of Pseudo-nitzschia and P. antartica

increased under low pCO2 but the eCA activities of C.
debilis and F. kerguelensis were unaffected by pCO2

Field
experiment [70]

Equatorial Pacific Ocean
natural assemblages

No eCA expression under high CO2 concentrations
(750 µatm)

Field
experiment [64]

West Antarctic Peninsula
diatom assemblages

Decline in eCA expression with increasing CO2
concentrations (800 µatm)

Field
experiment [65–67]

Timor Sea phytoplankton
assemblages

eCA decreased faster in the low pH/high CO2
treatment compared to the in situ CO2 treatment

Field
experiment [18,68]

Subarctic Pacific diatom
assemblages

eCA activity does not respond to increasing CO2,
indicating direct HCO3

− uptake
Field

experiment [69]

Southern Bering Sea eCA activity does not respond to increasing CO2,
indicating direct HCO3

− uptake
Field

experiment [21]

Ross Sea diatom assemblages Regulation of Ci uptake by phytoplankton is
dependent on seasonal bloom

Field
experiment [69,75]

Southern Ocean
phytoplankton assemblages Substantial direct HCO3

− uptake by phytoplankton Field
experiment [71,72]

UV radiation Skeletonema costatum Degradation of eCA by 78% after 2 h exposure Laboratory [85]

Light + Ocean acidification Skeletonema costatum
Higher eCA activity under low CO2 and high light.

Efficiency of CO2 uptake by S.costatum is dependent
on the availability of light in addition to CO2

Laboratory [84]

Light +
warming

Thalassiosira weissflogii and Phaeodactylum
tricornutum

Declined in eCA expression in T. weisfligii but not in P.
tricornutum Laboratory [86]
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4. Enrichment of eCA in the Sea Surface Microlayer

The hypothetical enrichment of eCA within the sea surface microlayer (SML) was
proposed by Berger and Libby [87] in the late 1960s considering the hydrophobic nature of
eCA [88]. The SML is a boundary layer between the ocean and the atmosphere, covering
a significant fraction of the Earth’s surface [89], and is characterized as a distinct habitat
for plankton communities [90]. A high abundance of microorganisms such as picophyto-
plankton accumulating in the SML compared to underlying water at 1-metre depth has
been frequently reported [91,92]. Besides, earlier studies [93,94] have described that the
SML is dominated by diatom, cryptophytes, and dinoflagellates species. Indeed, various
species of dinoflagellates and diatom are reported to express eCA [18,76,95].

It was suggested that eCA expression in the surface water is associated with surface
water ecology [18,96], and so the SML may contain a sufficient amount of extracellular
and membrane-bound eCA to enhance the conversion between HCO3

− and CO2 in the
boundary layer between the ocean and the atmosphere. Thus, any CO2 produced by eCA
at the SML would rapidly be utilized by cells and converted to biomass. Berger’s and
Libby’s hypothesis remained unanswered for five decades as existing analytical techniques
were too insensitive and impractical for immediate shipboard measurements. Using a
fluorescent technique [18], we found that the concentrations of eCA in natural seawater are
in the nanomolar range (0.10 nM–0.76 nM) and enriched in the SML by a mean of 1.5 ± 0.7
compared to underlying water from 1-metre depth [97]. This finding is supported by
Subhas, et al. [50], whereby CA in natural seawater was externally bound and accounted for
up to 80% of total CA. Nevertheless, the eCA concentrations observed in Mustaffa, et al. [97]
were considerably low based on an estimated value of 1.8–4.8 nM considering that for eCA
about 0.3% of its molecular weight consists of Zn [42], and Zn is enriched in the SML by an
enrichment factor (EF) of 1.5–4.0 [98]. A short residence time of Zn in the SML [99] and
a short lifetime of eCA could explain the low levels in the SML. Meanwhile, a complex
enrichment process in the SML [94,100] including wind speed, intense UV radiation, and
temperature fluctuation [101], excludes a simple explanation of eCA enrichment and opens
up a new research field.

Recently, Watson, et al. [102] pointed out that most computer models underestimate
oceanic carbon uptake, partially due to constraints in the measurements of sea-surface
temperature. However, using a conservative laminar film model [103], we concluded
that the existing nanomolar level of eCA in the SML can enhance CO2 exchange by up to
15% [97], which represents 0.37 petagrams (Pg) carbon year−1 considering a global estimate
of oceanic carbon uptake of 2.5 Pg C yr−1 [104]. Based on the EF of eCA per chlorophyll-a
from our study [97] and a global concentration of chlorophyll-a (0.1–2.1 mg/m3; source:
http://oceancolor.gsfc.nasa.gov/, accessed on 5 March 2021) during the cruise, we estimate
here that the concentration of eCA in the SML could be in the range of 0.12–1.20 nM
(EF = 0.3–3.4) and could contribute up to a 23% enhancement of CO2 exchange based on
Keller’s model. With this estimation, we suggest that ignoring the enrichment of eCA
at the SML further explains why computer models underestimate global carbon uptake
rates. However, the enhancement could be less than 23% considering the complexity of the
SML and uncertainty in the measurement of air–sea CO2 exchange in natural conditions.
Further validation is needed as the eCA expression in natural communities is dependent
on pCO2 conditions, light, and nutrient availability. Besides, the eCA levels may vary
between oceanic provinces with different phytoplankton communities and sizes, as diatoms
commonly express eCA when demand for CO2 outstrips the rate of supply by uncatalyzed
bicarbonate to CO2 conversion, whereas cyanobacteria do not [38,64].

Life in the SML is challenging as the communities are exposed to intense light, UV
radiation, and temperature fluctuations [101], which limit the activity and abundance of
photosynthetic organisms [105]. Thus, the efficiency of CO2 uptake by phytoplankton
in the SML is likely to be affected by UV radiation. In a laboratory experiment, Wu and
Gao [85] observed that the eCA activity of S. costatum was enhanced by 28% and 24% under
UV-A and UV-B radiation, respectively. This was observed at relatively low irradiance
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(PAR = 161 Wm−2) after 1-hour exposure and contributed up to 6% of the photosynthetic
carbon fixation rate. However, exposure to higher levels of UV radiation (UV-A + UV-
B) for 2 h degraded the eCA by 78%, implying that UV radiation contributes to greater
photoinhibition of photosynthesis [85]. Degradation of RubisCO has been observed under
similar high UV conditions [106,107]. The light conditions and warming of the ocean
(i.e., 200 µmol photons m−2 s−1 and 25 ◦C)—predicted future climate conditions [53]—
substantially declined the expression of eCA and RubisCO activity in T. weisflogii but not in
P. tricornutum [86]. This suggests that climate-related feedbacks are species-specific and T.
weisflogii may have benefits in terms of its growth in the future ocean.

With future changes of UV flux to the ocean [108] as well as an increase in sea-surface
temperature, it is reasonable to expect a lower eCA expression in SML communities with
a consequence of decreased CO2 uptake by the ocean and thus decreased air-sea CO2
exchange. Despite the relevance of the SML in air–sea CO2 exchange [109,110] and the fact
that phytoplankton at the near-surface layer have been suggested to control the air-sea CO2
equilibrium [111], the sensitivity of the SML communities to ocean acidification and combi-
nation effects including UV radiation and temperature are still largely unexplored [112].
Because of the unique location of the SML between the ocean and atmosphere, the commu-
nities in this layer are likely to be the first to be exposed to climate-related changes. For
instance, previous studies have shown that light limitation affects growth rates and biomass
in SML communities [95], and high nutrient loads changed the density and composition of
SML communities [113]. Incomplete understanding of the Ci acquisition strategy in the
SML community’s response to future climate change leads to difficultly in predicting the
global chemical enhancement of CO2 and biogeochemical cycling by eCA. Overall, futures
investigations are necessary to get a mechanistic understanding of phytoplankton and its
carbon acquisition strategies in the dynamic SML and upper ocean layer.

5. Conclusions

Our review highlighted the current knowledge and gaps in the knowledge about
the role of eCA in the changing ocean. eCA activity and concentrations are affected by
environmental stressors such as ocean acidification and UV radiation as well as changing
light conditions. Thus, eCA potentially serves as a biochemical indicator in biomonitoring
programmes and could be used for future response prediction studies in changing oceans.
As most of the studies were carried out in the short term (i.e., days), we propose that
studies aiming for a long-term response of diatoms to environmental changes should be
conducted in the future. We also suggest including the near-surface layer (including the
SML) communities in a research effort to study physiological responses towards ocean
acidification, UV radiation, temperature fluctuations, as well as nutrient limitations. Such
studies will provide further insights into the global chemical enhancement of CO2 and
biogeochemical cycling in future oceans. Furthermore, advancing technology such as
analytical methods, molecular tools, and bioinformatics are needed to resolve the metabolic
roles of eCA in photosynthetic organisms. The application of such tools will be crucial to
widening the perspective of eCA studies in natural seawater and predicting changes for
the future oceans, including the interaction of multiple concurrent changes such as pH and
light conditions. In this context, the SML—covering 71% of the Earth’s surface—seems
to be a good candidate with more drastic changes likely to occur. Overall, eCA from
different oceanic provinces remains to be explored to further improve computer models
of marine carbon cycling, including the oceanic CO2 uptake as well as their response in a
future ocean.
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