
 International Journal of 

Molecular Sciences

Article

Polyurethane Composites Reinforced with Walnut Shell Filler
Treated with Perlite, Montmorillonite and Halloysite
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Abstract: In the following study, polyurethane (PUR) composites were modified with 2 wt.% of wal-
nut shell filler modified with selected mineral compounds–perlite, montmorillonite, and halloysite.
The impact of modified walnut shell fillers on selected properties of PUR composites, such as rheolog-
ical properties (dynamic viscosity, foaming behavior), mechanical properties (compressive strength,
flexural strength, impact strength), dynamic-mechanical behavior (glass transition temperature,
storage modulus), insulation properties (thermal conductivity), thermal characteristic (temperature
of thermal decomposition stages), and flame retardant properties (e.g., ignition time, limiting oxy-
gen index, heat peak release) was investigated. Among all modified types of PUR composites, the
greatest improvement was observed for PUR composites filled with walnut shell filler functionalized
with halloysite. For example, on the addition of such modified walnut shell filler, the compressive
strength was enhanced by ~13%, flexural strength by ~12%, and impact strength by ~14%. Due to
the functionalization of walnut shell filler with thermally stable flame retardant compounds, such
modified PUR composites were characterized by higher temperatures of thermal decomposition.
Most importantly, PUR composites filled with flame retardant compounds exhibited improved flame
resistance characteristics-in all cases, the value of peak heat release was reduced by ~12%, while the
value of total smoke release was reduced by ~23%.

Keywords: polyurethane composites; walnut shells; perlite; montmorillonite; halloysite; high-energy
ball milling process

1. Introduction

Polyurethanes (PUR) were first synthesized by Wurtz in 1849. A few decades later, in
1937, Otto Bayer obtained polyurethane in the known to this day, polyaddition reaction of
polyol and polyisocyanate [1]. Now polyurethanes are widely used in different applica-
tions, such as building construction, packaging, and furnishing [2,3]. Polyurethanes are
composed of rigid (hydrogen bonds) and flexible (the rest of the polyol chain) segments.
After the formation of polyurethane macromolecule, the rigid segments are joined together,
which leads to the formation of soft and hard domains [4]. The polyaddition reaction
leading to the production of polyurethane materials is carried out in the presence of chain
extenders, catalysts, flame retardants, and blowing agents [5]. Due to the wide range of
selection and modification of used raw materials, polyurethane products can be obtained
in various forms, including foams, coatings, sealants, adhesives, films, and fibers [6–8].

Foams have the largest share in the polyurethane materials market. PUR foams are
divided into rigid, semi-rigid, and flexible.

Rigid foams are mainly used in building construction, to fill empty spaces near the
window and door frames, for thermal and acoustic insulation [9,10]. Polyurethanes decom-
pose at temperatures about 200 ◦C [11]. PUR materials are flammable, and their combustion
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process is accompanied by the release of heat and toxic gases. The easy ignition and high
flame spreadability of polyurethane foams are the main disadvantages that noticeably
limiting of PUR foams in many applications [12]. However, it is possible to use special
additives aimed at reducing the flammability of the obtained materials–flame retardants.
In line with the environmental goals and the principles of Sustainable Development, in
recent years the research has been conducted to search for more and more natural and
effective modifiers for polymer materials. To move away from chlorine-containing flame
retardants, so-called non-halogen substances based on nitrogen, phosphorus, silicon, and
boron compounds are used [13,14]. Moreover, recently more modifiers, not only flame
retardant, have been used. Fillers of natural and plant origin may also positively affect the
mechanical properties of the obtained composites. The literature commonly describes the
use of natural additives in polymeric materials [8,9,15–20].

Perlite (P) is an inorganic chemically inert in many environments compound, com-
posed mainly of SiO2, Al2O3, Na2O, K2O, and water [21]. Accordingly, with the estimation
of global production, the leading producers of world production of perlite are China (47%),
Greece (20%), Turkey (16%), and United States (13%) [22]. Perlite is an amorphous volcanic
glass showing very low density and high porosity. It is also characterized by high thermal
stability. Interestingly, when heated to a temperature between 760 and 1100 ◦C, perlite
can expand even 7–16 times its original volume and acquires the properties of a thermal
and acoustic insulator [23,24]. Perlite exhibits low thermal conductivity and good fire
resistance, which makes it a potentially good flame retardant modifier [25].

Another interesting inorganic compound is montmorillonite (MMT), described with
the chemical composition of Al2O3·4SiO2·3H2O. Montmorillonite has a layered structure,
where the octahedron Al-O layer is between two tetrahedron Si-O layers [26,27]. MMT
is characterized by a large specific surface, due to this it may delay thermal degradation
and create a thermal barrier [28]. Due to its properties, in recent years montmorillonite
has been increasingly used to increase the fire retardancy and thermal stability of polymer
composites [29]. It may also improve the mechanical properties of the obtained materials
which additionally increases its attractiveness as a modifier [30].

Halloysite is another layered mineral. It is aluminosilicate clay with the chemical
composition of Al2Si2O5(OH)4. Naturally, halloysite occurs as small cylinders. It is char-
acterized by a layered structure and specific surface area [31]. When heated to high
temperatures, the halloysite loses the water between layers. Halloysite can be used as
reinforcement in the preparation of polymer materials due to its physico-chemical prop-
erties and thermal stability [32,33]. Recently, it was proved that the layered structure
of the halloysite can alter the thermal stability and flammability properties of polymer
composites [34–36].

In the present study, the influence of modified walnut fillers on mechanical properties
and the burning behavior of rigid polyurethane foams was determined. In our previous
studies [37–39], the effect of polyol obtained based on walnut shells and silane-modified
walnut filler on the properties of PUR foams. However, to our best knowledge, there have
been no studies related to the modification of walnut fillers in the direction of reducing
flammability. A goal of this study was to investigate the influence of non-halogen fire
retardants (perlite, montmorillonite, and halloysite) as modifiers of walnut fillers.

2. Results and Discussion
2.1. Filler Characterization

The structure of walnut shell fillers was examined using scanning electron microscopy
(SEM). The obtained images (Figure 1) revealed that before the treatment, the surface of
walnut shell filler is quite smooth and uniform. After the modification of walnut shell filler
with perlite, montmorillonite, and halloysite the external morphology of the fillers seems
to be less uniform with visible particles of the modifying compounds located on the surface
of the walnut shell filler. This confirms a successful modification of walnut shell filler with
perlite, montmorillonite, and halloysite.
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Figure 1. The external surface of (a) unmodified walnut shell filler, and walnut shell filler modified with (b) perlite,
(c) montmorillonite, and (d) halloysite.

This, in turn, determines the further properties of PUR foams. The size of walnut shell
fillers modified with perlite, montmorillonite, and halloysite was measured in a polyol
dispersion. According to the results presented in Figure 2, the size of walnut shell fillers
ranges between 900 and 4000 nm. In the case of unmodified walnut shell filler, the highest
percentage (22.5%) is shown by the particles with an average size of 1720 nm. After the
modification of the walnut shells with perlite and halloysite the average size of the particles
decreases to 1480 nm (20.2% of the particles) and 1280 (20.4% of the particles), respectively.
The particles of walnut shell filler modified with montmorillonite exhibit an average size
of 1990 nm (22.5% of the particles).
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The viscosity of the PUR systems is a critical parameter, which affects the foaming
process and the proper expansion of the cells [40,41]. According to the results presented
in Figure 3, the addition of walnut shell fillers affects the viscosity of the PUR systems.
When compared with the reference PUR system (without the addition of the filler), the PUR
systems containing each type of walnut shell fillers exhibit an increased viscosity due to the
presence of walnut shell filler particles. This may be connected with fact that the filler parti-
cles can interact with the polyether polyol through physical interactions—mainly hydrogen
bonding and van der Wall interaction, increasing the total viscosity of the PUR system [42].
Compared to the reference PUR system, the greatest increase in dynamic viscosity exhibits
PUR system with the addition of walnut shell filler modified with montmorillonite—the dy-
namic viscosity (measured at 0.5 RPM) increases from 860 to 1950 mPa·s. Most importantly,
in the case of each PUR system, the viscosity decreases with increasing the shear rates. Such
behavior is characteristic for non-Newtonian fluids with a pseudoplastic nature [43,44].
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2.2. Characterization of PUR Composites Reinforced with Walnut Shell Fillers

The foaming behavior was evaluated by measuring the processing times of the PUR
synthesis—start, growth, and tack-free times. The start time was measured from the start
of mixing of components to a visible start of foam growth, extension time elapsing until
reaching the highest volume of the foam, and gelation time was determined as the time
when the foam solidifies completely and the surface is no longer tacky [45]. According
to the results presented in Table 1 the addition of walnut shell fillers affects the value
of start time and growth time. When compared with reference PUR foam, the value of
start time increases from 40 s (for PUR_0) to 57, 55, 62, and 51 s for PUR_WS, PUR_WS/P,
PUR_WS/MMT, and PUR_WS/HL, respectively. A similar tendency is observed in the
case of growth time—after the addition of walnut shell fillers, the value increases from 295 s
to 358, 340, 370, and 325 s, respectively. This dependence may be connected with higher
viscosity of the PUR systems containing walnut shell fillers. According to the literature,
the higher viscosity of PUR systems has a significant impact on the expansion process
of PUR cells and may extend the reaction time by up to several minutes [39]. Moreover,
the increased viscosity influences the proper stoichiometry of the PUR synthesis reaction,
slowing down the polymerization process and leading to phase separation [40]. This effect
may be additionally enhanced with the presence of filler particles which contribute to
limiting the mobility of the polymer chains during the PUR synthesis [46,47]. Among all
studied PUR systems walnut the highest increase in the value of processing times exhibits
PUR composites containing walnut shell fillers modified with montmorillonite, probably
as a result of the high viscosity of such a modified PUR system.
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Table 1. Processing times of PUR mixtures containing walnut shell fillers.

Sample
Processing Times [s]

Start Time Growth Time Tack-Free Time

PUR_0 40 ± 2 295 ± 6 358 ± 8
PUR_WS 57 ± 3 358 ± 5 346 ± 9

PUR_WS/P 55 ± 2 340 ± 7 348 ± 7
PUR_WS/MMT 62 ± 3 370 ± 8 340 ± 8

PUR_WS/HL 51 ± 3 325 ± 6 355 ± 7

The cellular structure of PUR composites is one of the most important factors, which
determines the further physico-mechanical performances of PUR composites [44,48]. There-
fore, a crucial factor determining the formation of PUR composites with a well-developed
closed-cell structure is the proper balance between the concentration of the filler, the viscos-
ity of the PUR systems, and the appropriate dispersion of the filler in the PUR matrix [49].
The morphology of the reference PUR foam and PUR composites containing walnut shell
fillers are presented in Figure 4.
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The morphology of the reference foam is well-preserved and consists of uniform
closed-cells with a negligible number of open-cells. The addition of WS filler results in
a similar structure, however, the number of broken cells is slightly increased. The effect
is more prominent in the case of PUR_WS/MMT. A more homogenous structure is ob-
served in the case of PUR_WS/P and PUR_WS/HL. This may be connected with the
fact that montmorillonite-modified walnut shell filler possesses larger particles, and the
viscosity of such modified PUR system is higher when compared with the PUR_WS/P
and PUR_WS/HL (see Figure 2). This may result in poor interfacial adhesion between
the filler surface and the PUR matrix, which promotes earlier cell collapsing phenom-
ena and increases a high possibility of generating open pores [50]. Deterioration of the
foam morphology after the incorporation of the filler was reported in previous studies as
well [51–53].
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According to the results presented in Figure 5, the addition of walnut shell fillers affects
the average cell diameter. The average cell diameter of reference foam (PUR_0) is 470 µm,
and it decreases to 420, 410, 415, and 390 for PUR_WS, PUR_WS/P, PUR_WS/MMT,
and PUR_WS/HL, respectively. According to the previous studies, the filler particles
incorporated into the PUR system may act as nucleating centers for the formation of the
cells, changing the nucleation character from homogenous to heterogonous. Because of
this, greater numbers of the cells start to nucleate at the same time, which reduces the
diameter of the cells. Moreover, the further expansion of the cells is limited by increased
viscosity of the PUR systems, which in turn contribute to the formation of the smaller
cells [54–59]. On the other hand, as presented in Figure 5. after the incorporation of
the walnut shell filler, the overall distribution of the cells becomes less uniform. This
effect is more prominent in the case of PUR composites containing walnut shell filler
modified with montmorillonite. Previous studies have shown, that the application of the
filler particles with larger diameters, results in rupturing of the cells, due to incomplete
incorporation of the filler particles into the PUR matrix [50]. The confirmation of these
results may be also found in the results of the closed-cell content (Figure 6). For reference
foam (PUR_0) the closed-cell content is 90.8%. After the addition of walnut shell fillers, the
value decreases to 86.5, 87.1, 80.2, and 88.1% for PUR_WS, PUR_WS/P. PUR_WS/MMT
and PUR_WS/HL respectively.
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Figure 6. Closed-cell content and thermal conductivity results of PUR composites containing walnut
shell fillers.

According to the results presented in Figure 7 the addition of walnut shell fillers
increases the value of apparent density of developed PUR composites. The apparent
density of the reference PUR_0 is 35.9 kg m−3 and it increases to 37.9, 38.2, 38.6, and
41.0 kg m−3 for PUR_WS, PUR_WS/P, PUR_WS/MMT, and PUR_WS/HL. This is mostly
connected with the increased dynamic viscosity of PUR systems containing solid particles
of walnut shell fillers and the molecular weight of the fillers. However, the changes in
the apparent density of PUR density are not significant and may be considered negligible.
Most importantly, the addition of walnut shell fillers does not deteriorate significantly the
value of thermal conductivity of PUR composites, which is a crucial factor, determining the
further application of PUR materials in the construction industry. According to the result
presented in Figure 6, the thermal conductivity of reference PUR_0 is 0.025 Wm−1 K−1

and it increases insignificantly to 0.028, 0.027, 0.030, and 0.026 Wm−1 K−1 for PUR_WS,
PUR_WS/P, PUR_WS/MMT, and PUR_WS/HL. A slight increase in the thermal conduc-
tivity of PUR composites may be related to the presence of solid particles in the PUR
matrix, which contributes to the increase in the value of λsolid. Among all developed PUR
composites, the highest value of thermal conductivity is observed for PUR composites con-
taining walnut shell filler modified with montmorillonite (PUR_WS/MMT). As discussed
previously, such modified PUR composites are characterized by a less uniform structure
with a lower content of closed-cells. Taking into consideration that the thermal conductivity
of the air (λ = 0.025 Wm−1 K−1) is higher than that of the blowing agent encapsulated
in the closed-cells of PUR structure (CO2), the thermal conductivity of PUR composites
containing montmorillonite-modified walnut shell filler is increased.

The mechanical properties of polyurethane foams are dependent on the apparent
density and filler properties. As shown in previous studies [27,60,61], the mechanical
properties of the obtained PUR composites strongly depend on the type of filler, its surface,
particle size, and its interaction with the polymer matrix. Therefore, the effect of walnut
fillers on compressive strength, flexural strength, and impact strength were assessed.

The results of the compressive strength measured at 10% deformation (σ10%) are
shown in Figure 8. Comparing with PUR_0 in the case of compression parallel to the
foam growth direction, the value of σ10% increases by ~3, 11, 8, and 13% for PUR_WS,
PUR_WS/P, PUR_WS/MMT, and PUR_WS/HL, respectively. A similar relationship is
observed in the case of perpendicular compression. The value of the compressive strength
increases from the value of 129 kPa for PUR_0 to 135, 143, 138, and 145 kPa for PUR_WS,
PUR_WS/P, PUR_WS/MMT, and PUR_WS/HL, respectively.
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Figure 8. The impact of walnut fillers on the compressive strength of PUR foams.

As presented in Figure 9, the incorporation of analyzed fillers influences also the flexu-
ral and impact strength of PUR composites. When comparing with PUR_0 aforementioned
properties are improved. The best values for both of these properties are achieved by
PUR_WS/HL. When comparing the flexural strength results with the reference foams, an
increase by ~5, 11, 10, and 12% respectively for PUR_WS, PUR_WS/P, PUR_WS/MMT, and
PUR_WS/HL are observed. The impact strength increases from 358 J m−2 for PUR_0 to
366, 389, 387 and 401 J m−2 for PUR_WS, PUR_WS/P, PUR_WS/MMT, and PUR_WS/HL,
respectively. On the basis of the obtained results, it can be observed that the foams with
the addition of walnut fillers showed improved mechanical properties. The best results
were noticed for foams with the addition of modified fillers (PUR_WS/HL, PUR_WS/P,
and PUR_WS/MMT). The improvement of the mechanical properties of modified foams
compared to the reference foam may be related to the morphology of these foams, their
viscosity, and the incorporation of reinforcing walnut filler particles into the PUR struc-
ture [57,59]. The modified foams show a better cross-linked cell structure, with smaller
cells, which better stabilizes and prevents foam damage, which can be observed in better
results of modified PUR foams, obtained during the analysis of flexural, compressive, and
impact strength [60–63].
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Figure 9. The impact of walnut shell fillers on the flexural strength and impact strength of PUR foams.

According to the results presented in Figure 10a, the incorporation of walnut shell
fillers affects the value of Tg. When compared with PUR_0, after the addition 2 wt.%
of each filler, the values of Tg shift towards higher temperatures. The highest value of
Tg exhibits PUR composites reinforced with 2 wt.% of walnut shell filler modified with
halloysite–comparing to PUR_0 the value of Tg increases from 147 to 166 ◦C. These results
are in agreement with the results of apparent density. As presented in Figure 8, the
values of apparent density of PUR composites containing walnut shell fillers are somewhat
higher, while the overall structure quite uniform with a great number of closed-cells. Some
deterioration in Tg is observed d in the case of PUR composites reinforced with walnut shell
filler modified with montmorillonite. The value of Tg decreases slightly to 143 ◦C, however,
it is still comparable with the value obtained for PUR_0. This may be connected with the
more porous structure of PUR_WS/MMT, which contributes to an increase in the mobility
of the polymer chains. The confirmation of the Tg results may be also found in the results of
the storage modulus (E’). According to the results presented in Figure 10b the incorporation
of walnut shell fillers increases the value of E’. It is believed that well-dispersed particles of
walnut shell fillers can generate some interlocks between the cells. The more complex PUR
structure limits the mobility of PUR chains, thereby improving the reinforcement effect of
the PUR composites.
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The dimensional stability was determined based on the linear changes in dimensions,
volume, and mass of PUR composites. Measurements were carried out for 14 days at
+70 and −20 ◦C. The results obtained during the analysis are summarized in Table 2.
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Table 2. Dimensional stability of PUR composites containing walnut shell fillers.

Sample
Dimensional Stability at 70 ◦C [%] Dimensional Stability at −20 ◦C [%]

Width Length Thickness Width Length Thickness

PUR_0 1.82 ± 0.01 1.70 ± 0.01 1.85 ± 0.01 1.93 ± 0.01 1.79 ± 0.01 1.77 ± 0.01
PUR_WS 1.72 ± 0.01 1.64 ± 0.01 1.77 ± 0.01 1.84 ± 0.01 1.77 ± 0.01 1.73 ± 0.01

PUR_WS/P 1.68 ± 0.01 1.53 ± 0.01 1.73 ± 0.01 1.76 ± 0.01 1.69 ± 0.01 1.65 ± 0.01
PUR_WS/MMT 1.66 ± 0.01 1.42 ± 0.01 1.67 ± 0.01 1.73 ± 0.01 1.74 ± 0.01 1.71 ± 0.01
PUR_WS/HL 1.65 ± 0.01 1.49 ± 0.01 1.71 ± 0.01 1.77 ± 0.01 1.77 ± 0.01 1.68 ± 0.01

As can be noticed based on the presented data, the addition of the used fillers affected
the dimensional stability of the foams conditioned with both higher and lower temperatures.
The dimensional stability of PUR composites indicates that the addition of walnut shell
fillers resulted in negligible changes in dimensional stability of the modified composites in
relation to the reference foam. However, when comparing the results obtained during the
test, a decrease in changes in width, length, and thickness is observed. This proves that
the addition of fillers minimally but increases the dimensional stability of the modified
PUR composites.

The burning behavior of PUR composites was assessed using the cone calorimetry
method. Table 3 presents summarized results obtained during the experiment including
the ignition time (IT), the peak rate of heat release (pHRR), the total heat release (THR),
the total smoke release (TSR), the average yield of CO, and CO2 (COY and CO2Y), and the
limiting oxygen index (LOI).

Table 3. The results of the cone calorimeter experiment.

Sample IT
(s)

pHRR
(kW m−2)

THR
(MJ m−2)

TSR
(m2 m−2)

COY
(kg kg−1)

CO2Y
(kg kg−1)

LOI
(%)

PUR_0 4 265 21.9 1516 0.375 0.388 20.2
PUR_WS 6 232 23.8 1394 0.439 0.315 19.9

PUR_WS/P 8 236 20.7 1329 0.393 0.311 21.0
PUR_WS/MMT 7 233 21.3 1274 0.394 0.312 20.8

PUR_WS/HL 8 234 20.1 1160 0.368 0.299 21.5

When comparing the modified PUR composites to the reference PUR_0, it can be
observed that the modifications affected the ignition time (IT) slightly. The ignition time
increases from 4 s for PUR_0 to 6 s for PUR_WS, 7 s for PUR_WS/MMT, and 8 s for
PUR_WS/P and PUR_WS/HL, respectively. The intensity of the flame was determined
by the heat peak release value (pHRR), related to the release of low molecular weight
compounds (olefins, amines, or isocyanates). As it can be noticed in Figure 11, all analyzed
PUR composites show one main peak of this parameter. When compared with PUR_0,
which has a peak value of 265 kW m−2, PUR composites show lower values of this param-
eter and are 236, 234, 233, and 232 kW m−2 respectively for PUR_WS/P, PUR_WS/HL,
PUR_WS/MMT, and PUR_WS, which proves a slight reduction of heat released during
combustion of PUR composites. The incorporation of walnut fillers affects also the total
heat release (THR). The value of this parameter increased for PUR_WS to 23.8 MJ m−2,
comparing with PUR_0 (21.9 MJ m−2), and decreased for PUR_WS/MMT (21.3 MJ m−2),
PUR_WS/P (20.7 MJ m−2), and PUR_WS/HL (20.1 MJ m−2).
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When analyzing the effect of modifiers on the total smoke release (TSR) presented in
Figure 11, it can be noticed that the addition of walnut fillers decreased this value from
1516 m2 m−2 for the reference foam to 1394, 1329, 1274, and 1160 m2 m−2 for PUR_WS,
PUR_WS/P, PUR_WS/MMT, and PUR_WS/HL, respectively. The inclusion of walnut
fillers also affected the amount of gas released. Compared to the foam PUR_0, the amount
of carbon monoxide released increased from 0.375 kg kg−1 to 0.393 and 0.394 kg kg−1 in
the case of PUR_WS/P and PUR_WS/MMT, and to even 0.439 kg kg−1 for PUR_WS and
decreased to 0.368 kg kg−1 in the case of PUR_WS/HL. On the other hand, in the case of
carbon dioxide, all modified foams showed a lower amount of released gas. The CO2Y
parameter was 0.388 kg kg−1 for the reference foam and decreased to 0.315, 0.312, 0.311
and even 0.299 kg kg−1 for PUR_WS, PUR_WS/MMT, PUR_WS/P and PUR_WS/HL,
respectively. Concerning the limiting oxygen index (LOI), it could be seen that the used
fillers also influenced this parameter. The PUR_WS (19.9%) showed a slightly lower LOI
value than the reference foam (20.2%). On the other hand, the remaining foams achieved
better, higher values of this parameter. Compared to PUR_0, the LOI value increased to
20.8% for PUR_WS/MMT, 21.0% for PUR_WS/P, and PUR_WS/HL—reaching the highest
value of 21.5%. Based on the obtained results, it could be concluded that the application of
modified walnut filler can improve the flammability properties of PUR composites. Among
the analyzed composites, the foam PUR_WS/HL showed the best fire resistance properties
in this experiment.

To assess the effect of walnut shell fillers on the thermal stability of the PUR composites
the thermogravimetric analysis (TGA) and derivative thermogravimetry analysis (DTG)
were performed. During the study, the following stages of thermal decomposition were
determined. Moreover, char residues at the temperature of 600 ◦C were determined. The
results of TGA/DTG analysis are presented in Figure 12 and Table 4. According to the
results presented in Figure 12a,b, it can be concluded, that in the case of non-modified
walnut shell filler, three stages of thermal decompositions are observed. The first stage of
mass loss occurs at a relatively low temperature (~100 ◦C) and refers to the evaporation of



Int. J. Mol. Sci. 2021, 22, 7304 12 of 18

the moisture absorbed by the filler and volatile compounds (low molecular weight esters
and fatty acids) which are inherent to the filler. The second stage representing 30% of mass
loss occurs between 300 and 500 ◦C. The maximum rate at ~300 ◦C refers to the thermal
degradation of cellulose and hemicellulose [64,65]. The last step of thermal decomposition
occurs between 400 and 500 ◦C with the maximum rate at ~460 ◦C and refers to the thermal
decomposition of lignin [65]. When comparing with non-modified walnut shell filler, the
walnut shell fillers modified with perlite, montmorillonite, and halloysite also reveal three
main stages of thermal decomposition; however, the weight loss of hemicellulose and
lignin is reduced. This behavior may be connected with the presence of thermal protective
layers created by layered fillers—perlite, montmorillonite, and halloysite, which effectively
improve the thermal stability of modified walnut shell fillers.
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Table 4. The results of thermal stability of PUR composites.

Sample
Tmax (◦C) Char Residue

(wt. %) at 600 ◦C1st Stage 2nd Stage 3rd Stage

PUR_0 209 ± 4 306 ± 4 571 ± 4 22.6 ± 0.2
PUR_WS 203 ± 5 319 ± 5 583 ± 5 31.8 ± 0.1

PUR_WS/P 221 ± 2 321 ± 4 595 ± 5 35.0 ± 0.2
PUR_WS/MMT 209 ± 2 313 ± 2 590 ± 2 31.3 ± 0.2

PUR_WS/HL 211 ± 5 325 ± 4 599 ± 6 35.8 ± 0.2
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DSC/TGA analysis of PUR composites is presented in Figure 12c,d. In general,
thermal degradation of PUR porous materials involves three stages. The individual stages
correspond to characteristic temperatures (Tmax) determined based on the results obtained
during thermogravimetric analysis (TGA). The first stage of thermal degradation (Tmax1) is
related to the thermal decomposition of low molecular weight compounds [66,67]. In the
case of analyzed PUR composites, the first stage of decomposition occurs between 203 and
221 ◦C. It can be noticed that the incorporation of walnut shell fillers results in higher values
of Tmax1, which can be related to the modification of the filler with natural flame retardant
compounds—perlite, montmorillonite, and halloysite [68]. The value of Tmax1 increases
from 209 ◦C (for PUR_0) to 221, 209, and 211 ◦C, respectively. The slight deterioration in
thermal stability of PUR composites is observed after the incorporation of unmodified
walnut shell filler—the value of Tmax1 decreases slightly from 209 to 203 ◦C due to the
cellulosic nature of the filler. The second stage of thermal degradation refers to the thermal
degradation of hard segments of PUR composites and thermal degradation of walnut shell
fillers (cellulose/hemicellulose/lignin) [60]. In all cases, the thermal degradation occurs
in the range between 306 and 325 ◦C. Based on the obtained results, it can be concluded
that the greatest improvement in thermal degradation of PUR composites is observed for
PUR composites containing walnut shell filler modified with halloysite—the value of Tmax2
increases from 306 to 325 ◦C. The last, third stage of thermal degradation (Tmax3) is related
to the degradation of the compounds and fragments that were generated during previous
stages [69]. In the case of analyzed PUR composites, it occurs in the temperature range
between 571 and 599 ◦C. The incorporation of the walnut shell fillers results in a slight
increase in the temperature characteristic for this stage Tmax3. The greatest improvement
in Tmax3 is observed for PUR composites containing walnut shell filler modified with
halloysite compound. By analyzing the influence of walnut shell fillers on the thermal
stability of the obtained PUR composites, the char residue amount at 600 ◦C was also
evaluated. When comparing the carbonization residue with the PUR_0 result, it can
be concluded that with increasing walnut shell fillers content, the residue content also
increases. More specifically, the amount of char residue increases from 22.6% for PUR_0
to 31.8, 35.0, 31.3 and 35.8%, respectively for PUR_WS, PUR_WS/P, PUR_WS/MMT and
PUR_WS/HL. Based on the obtained results, it can be concluded that the incorporation of
walnut shell fillers improves the thermal stability of the obtained PUR composites.

3. Materials and Methods
3.1. Materials

Polymeric diphenulmethane diisocyanate with the brand name of Purocyn B was sup-
plied by Purinova Company (Bydgoszcz, Poland). Polyether polyol with the brand name of
Stepanpol PS-2352 was purchased from Stepan Company (Northfield, IL, USA). Potassium
octoate with a brand name of Kosmos 75 and potassium acetate with a brand name of Kos-
mos 33 was supplied by Evonik Industry (Essen, Germany). The silicone-based surfactant
with the brand name Tegostab B8513 was purchased from Evonik Industry (Essen, Ger-
many). Pentane and cyclopentane (used as a blowing agent in a volume ratio of 50:50 v/v)
were supplied by Sigma-Aldrich Corporation (Saint Louis, MO, USA). Walnut shells (WS)
were supplied by a local company from Poland. The halloysite powder with a specific sur-
face of 64 m2/g, material was purchased from by Sigma-Aldrich (Saint Louis, MO, USA),
montmorillonite clay, Nanomer® contains 15–35 wt. % octadecylamine, 0.5–5 wt.% amino-
propyltriethoxysilane was purchased from Merck (Darmstadt, Germany), perlite powder with
a specific surface of 60–70 m2/g was supplied by Sigma-Aldrich (Saint Louis, MO, USA).

3.2. Synthesis of PUR Composites

Before adding to the polyol system, walnut shell filler was mechanically ground and
sieved using a 100 µm sieve. In the next step, walnut shell filler was modified with per-
lite/montmorillonite/halloysite using a high-energy ball milling process. Walnut shell filler
was mixed with perlite/montmorillonite/halloysite powder (walnut shell filler weight
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to perlite/montmorillonite/halloysite weight ratio = 1:2) and milled using a high-energy
ball milling process (60 min, 3000 rpm, ball weight to powder weight ratio = 12:1). Walnut
shells modified with perlite/montmorillonite/halloysite were used as reinforcing filler in
the synthesis of PUR composites. The impact of the type of filler on the selected physical
and mechanical properties of PUR composites was determined. Each component of the
PUR system was added based on the weight percentage of polyol (Stepanpol PS2352).
The preweighted amount of polyol, blowing agent (pentane/cyclopentane), surfactant
(Tegostab B8513), catalysts (Kosmos 33, Kosmos 75), and water were placed in the beaker
and mechanically stirred for 60 s (2000 RPM). In the next step, the walnut shell filler modi-
fied with perlite/montmorillonite/halloysite was added to the mixture and continually
stirred for another 60 s. After that, the polymeric diphenylmethane diisocyanate (Purocyn
B) was added to the mixture and such obtained system was mixed vigorously for 30 s
(2000 RPM). As synthesized PUR composites were freely expanded and cured for 24 h
at room temperature. The produced PUR composites were labeled as PUR_0, PUR_WS,
PUR_WS/P, PUR_WS/MMT, and PUR_WS/HL. The formulations of PUR composites
reinforced with walnut shell fillers are given in Table 5. The schematic procedure of the
synthesis of PUR composites presents Figure 13.

Table 5. The formulations of PUR composites reinforced with walnut shell fillers.

Component
PUR_0 PUR_WS PUR_WS/P PUR_WS/MMT PUR_WS/HL

Parts by Weight (wt.%)

Stepanpol PS-2352 100
Purocyn B 160
Kosmos 75 6
Kosmos 33 0.8

Tegostab B8513 2.5
Water 0.5

Pentane/cyclopentane 11

Walnut shells 0 2 0 0 0
Walnut shells modified with perlite 0 0 2 0 0

Walnut shells modified with
montmorillonite 0 0 0 2 0

Walnut shells modified with halloysite 0 0 0 0 2
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physical and mechanical properties of PUR composites was determined. Each component 
of the PUR system was added based on the weight percentage of polyol (Stepanpol 
PS2352). The preweighted amount of polyol, blowing agent (pentane/cyclopentane), 
surfactant (Tegostab B8513), catalysts (Kosmos 33, Kosmos 75), and water were placed in 
the beaker and mechanically stirred for 60 s (2000 RPM). In the next step, the walnut shell 
filler modified with perlite/montmorillonite/halloysite was added to the mixture and 
continually stirred for another 60 s. After that, the polymeric diphenylmethane 
diisocyanate (Purocyn B) was added to the mixture and such obtained system was mixed 
vigorously for 30 s (2000 RPM). As synthesized PUR composites were freely expanded 
and cured for 24 h at room temperature. The produced PUR composites were labeled as 
PUR_0, PUR_WS, PUR_WS/P, PUR_WS/MMT, and PUR_WS/HL. The formulations of 
PUR composites reinforced with walnut shell fillers are given in Table 5. The schematic 
procedure of the synthesis of PUR composites presents Figure 13. 

Table 5. The formulations of PUR composites reinforced with walnut shell fillers. 

Component 
PUR_0 PUR_WS PUR_WS/P PUR_WS/MMT PUR_WS/HL 

Parts by Weight (wt.%) 
Stepanpol PS-2352 100 

Purocyn B 160 
Kosmos 75 6 
Kosmos 33 0.8 

Tegostab B8513 2.5 
Water 0.5 

Pentane/cyclopentane 11 
Walnut shells 0 2 0 0 0 

Walnut shells modified with perlite 0 0 2 0 0 
Walnut shells modified with 

montmorillonite 0 0 0 2 0 

Walnut shells modified with halloysite 0 0 0 0 2 

 
Figure 13. Schematic procedure of the synthesis of PUR composites reinforced with walnut shells modified with 
perlite/montmorillonite/halloysite. 
Figure 13. Schematic procedure of the synthesis of PUR composites reinforced with walnut shells modified with per-
lite/montmorillonite/halloysite.

3.3. Methods and Instruments

Morphology and cell size distribution of foams were determined based on the cellular
structure pictures of foams taken using JEOL JSM-5500 LV scanning electron microscopy
(JEOL LTD, Akishima, Japan). The average pore diameters and pore size distribution
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were determined using ImageJ software (Media Cybernetics Inc. Rockville, MD, USA).
The closed-cell content was determined according to PN-EN ISO 4590 using the helium
pycnometer AccuPyc 1340 with the FoamPyc option (Micrometrics, Norcross, GA, USA)
in S.Z.T.K. ‘TAPS’—Maciej Kowalski Company (Lodz, Poland). The chemical structure
of fillers was determined by Fourier-transform infrared spectroscopy (FTIR, Nicolet iS50
spectrometer, Thermo Fisher Scientific, Waltham, MA, USA). The average size of filler
particles was assessed with the dynamic light scattering (DLS) method, using a Zetasizer
NanoS90 instrument (Malvern Instruments Ltd., Malvern, UK). The apparent density
of foams was examined accordingly to the standard ASTM D1622, which is equivalent
to ISO 845. A three-point bending test of foams was carried out following the stan-
dard ASTM D7264, which is equivalent to ISO 178, using Zwick Z100 Testing Machine
(Zwick/Roell Group, Ulm, Germany). The compressive strength (σ10%) of foams was ex-
amined accordingly to the standard ASTM D1621, which is equivalent to ISO 844, using
Zwick Z100 Testing Machine (Zwick/Roell Group, Ulm, Germany). The impact exami-
nation was carried out accordingly to the standard ASTM D4812, which is equivalent to
ISO 180, using Zwick Z100 Testing Machine (Zwick/Roell Group, Ulm, Germany). The
dimensional stability of foams was determined accordingly to the standard ASTM D2126,
which is equivalent to ISO 2796. The thermal stability of foams was determined using
a Mettler Toledo thermogravimetric analyzer TGA/DSC1 (Columbus, OH, USA). The
burning behavior of foams was determined accordingly to the standard ISO 5660 using
the cone calorimeter apparatus in S.Z.T.K ‘TAPS’—Maciej Kowalski Company (Saugus,
Poland). The thermal conductivity of the foams was determined using the LaserComp
50 heat flow meter (HFMA, Westchester, IL, USA).

4. Conclusions

Polyurethane (PUR) composites were modified with 2 wt.% of walnut shell filler
modified with selected mineral filler—perlite, montmorillonite, and halloysite. The im-
pact of modified walnut shell fillers on selected properties of PUR composites, such as
rheological properties (dynamic viscosity, foaming behavior), mechanical properties (com-
pressive strength, flexural strength, impact strength), dynamic-mechanical behavior (glass
transition temperature, storage modulus), insulation properties (thermal conductivity),
thermal characteristic (temperature of thermal decomposition stages), and flame retardant
properties (e.g., ignition time, limiting oxygen index, heat peak release) was investigated.
Among all modified types of PUR composites, the greatest improvement was observed
for PUR composites filled with walnut shell filler functionalized with halloysite. For
example, on the addition of such modified walnut shell filler, the compressive strength
was enhanced by ~13%, flexural strength by ~12%, and impact strength by ~14%. Due
to the functionalization of walnut shell filler with thermally stable flame retardant com-
pounds, such modified PUR composites were characterized by higher temperatures of
thermal decomposition. Most importantly, PUR composites filled with flame retardant
compounds exhibited improved flame resistance characteristics—in all cases, the value
of peak heat release was reduced by ~12%, while the value of total smoke release was
reduced by ~23%. Moreover, the incorporation of walnut shell fillers modified with perlite,
montmorillonite, and halloysite improved the thermal stability of PUR composites—e.g.,
the value of char residue (measured at 600 ◦C) increased from 22.6% to 35.8%, for PUR
composites containing halloysite.
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