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Abstract: The CRISPR/Cas9 system has recently emerged as a useful gene-specific editing tool.
However, this approach occasionally results in the digestion of both the DNA target and similar
DNA sequences due to mismatch tolerance, which remains a significant drawback of current genome
editing technologies. However, our study determined that even single-base mismatches between
the target DNA and 5′-truncated sgRNAs inhibited target recognition. These results suggest that a
5′-truncated sgRNA/Cas9 complex could be used to negatively select single-base-edited targets in
microbial genomes. Moreover, we demonstrated that the 5′-truncated sgRNA method can be used
for simple and effective single-base editing, as it enables the modification of individual bases in the
DNA target, near and far from the 5′ end of truncated sgRNAs. Further, 5′-truncated sgRNAs also
allowed for efficient single-base editing when using an engineered Cas9 nuclease with an expanded
protospacer adjacent motif (PAM; 5′-NG), which may enable whole-genome single-base editing.

Keywords: single base; microbial genome editing; 5′-truncated sgRNA; Cas9; CRISPR

1. Introduction

The CRISPR/Cas9 system consists of a modular single-molecular guide RNA (sgRNA)
and a Cas9 protein capable of recognizing DNA target nucleotide sequences and sub-
sequently cleaving the double-stranded target DNA. Therefore, the effectiveness of this
technology as a genome-editing tool largely depends on the design of the sgRNAs [1,2].
Unlike CRISPR/Cas9-mediated target cleavage and non-homologous end joining (NHEJ),
which may introduce unexpected mutations [3,4], incorporating donor DNA templates
such as oligonucleotides, plasmids, and viral vectors allows for more accurate genome
editing through homology-directed repair (HDR) [5,6].

However, CRISPR/Cas9 can non-specifically cleave double-strand DNA sequences
that are similar to the desired target, which is referred to as an off-target effect [7]. Even if
there is a mutation in the protospacer (invading DNA fragments that can be processed to
become CRISPR spacers), or a mutation in the guide RNA (gRNA) sequence in CRISPR
loci, micro-organisms with CRISPR as an immune mechanism must recognize the target
and perform double-strand breaks to survive a phage invasion. Therefore, it is assumed
that the CRISPR/Cas system has evolved to allow a certain degree of homology for the
target sequence and spacer [8]. In fact, Cas9 has a tolerance of several base mismatches
and truncations [9,10]. Several studies have conducted CRISPR/Cas9-mediated microbial
genome editing via oligonucleotide-directed mutagenesis [11,12]. In Escherichia coli, double-
strand breaks of unedited chromosomal DNA can kill the cells because it lacks the NHEJ
pathway. Therefore, only edited cells can survive and be obtained, and this is called
negative selection. However, the introduction of single-base mutations into microbial
genomes by CRISPR/Cas9 is rarely reported, which is likely due to mismatch tolerance.

Given that the sgRNA forms a complex with the Cas9 protein and mediates the specific
binding between the target DNA and Cas9 nuclease [13], the target-recognizing sequence of
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the sgRNA acts as an important factor that determines target specificity and genome editing
efficiency [14,15]. However, target cleavage still occurs even if there are several mismatches
between the sgRNA and the target DNA [16,17]. Moreover, the 5′-truncated sgRNA/Cas9
complex can also cleave the target DNA despite the reduction in DNA:RNA hybrids [18,19],
and even achieve allele-specific genome editing in mammals [20]. In higher eukaryotic
genome editing using CRISPR/Cas9, the off-target effect is likely the result of mismatch
tolerance, which can generate unwanted mutations in unintended genomic regions [21].
Therefore, an engineered version of the Cas9 protein is often used to avoid double-strand
breaks. For example, deactivated Cas9 and base deaminase fusion proteins, referred to
as base editors, can induce single-base editing without double-strand breakage [22,23]. A
glycosylase base editor was recently developed to introduce transversion mutations, thus
widening the potential of base editing [24].

Nevertheless, single-base-level genome editing is rarely achieved, even in microbial
cells, which is likely due to mismatch tolerance. We recently used CRISPR/Cas9 and
Cpf1 to design a mismatched sequence in the sgRNA target recognition sequence (TRS) in
advance, to overcome mismatch tolerance, thereby enabling site-specific single-base editing
in a bacterial cell with high efficiency [25,26]. Here, we demonstrate a simple and effective
single-base microbial genome editing method that can overcome single-base mismatch
tolerance using a 5′-truncated sgRNA/Cas9 complex.

2. Results
2.1. Mismatch Intolerance between the DNA Target and 5′-Truncated sgRNA

Although the original TRS of the sgRNA in CRISPR/Cas9 consists of 20 bases, target-
mismatched [16,17] or 5′-truncated [18,19] sgRNA/Cas9 complexes can also, reportedly,
cleave the DNA target. E. coli cells in which Cas9 expression had been induced with
L-arabinose were transformed with plasmids carrying the sgRNAs with from one to three
base mismatches (M) or serially truncated 5′-nucleotides (T). The efficiency of each mis-
matched or 5′-truncated sgRNA/Cas9 complex, in recognizing and cutting the galK target
(498AGGCTGTAACTGCGGGATCA517), was compared by counting the number of surviv-
ing colonies on Luria–Bertani (LB) agar containing the appropriate amount of spectino-
mycin. A decrease in the number of surviving colonies indicates that the CRISPR/Cas9 sys-
tem operates and cleaves the target DNA, finally causing cell death. Less than 104 CFU/µg
sgRNA plasmid DNA were observed when one or two nucleotides were mismatched
(T/M = 0/1, and 0/2) or deleted (T/M = 1/0, and 2/0) from the sgRNAs (Figure 1a).
However, a large number of colonies survived (>107 CFU/µg) when three nucleotides
were mismatched (T/M = 0/3) or truncated (T/M = 3/0) from the sgRNA. These results
indicate that mismatch or truncation tolerance for the galK target is effective up to two base
mismatches (T/M = 0/2) or two nucleotide truncations (T/M = 2/0) in the sgRNAs.

Next, we tested whether sgRNA/Cas9 could cut the galK target when the sgRNA
had both a 5′-truncation (T) and a single-base mismatch (M) relative to the target. The
number of surviving colonies of T/M = 0/1, 1/1, and 3/1 did not change compared
to T/M = 0/0, 1/0, and 3/0, respectively. However, the number of surviving colonies
increased significantly (106~107 CFU/µg) when T/M = 2/1. These results demonstrate
that an additional single mismatch prevents the 5′-truncated sgRNA/Cas9 complex from
recognizing and cleaving the DNA target. Based on these results, we hypothesized that
this 5′-truncated sgRNA/Cas9 complex could be used to negatively select targets with
single-base modifications (Figure 1b).
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Figure 1. Surviving colonies using 5′-truncated and/or mismatched sgRNA plasmids. (A) Number of surviving colonies
using sgRNAs carrying the target-matched target recognition sequence (TRS) (1), one to three mismatches (2), 5′- nucleotide
truncations (3), and both 5′-nucleotide truncations and single-base mismatches (4). Each bar represents the standard
deviation of three independent experiments. (B) The target was cleaved by the target-matched (1), -mismatched (2), and
5′-truncated (3) sgRNA/Cas9 complex due to mismatch and truncation tolerance. The 5′-truncated and single-mismatched
sgRNA/Cas9 complex cannot cleave the single-base-edited target due to the increased mismatch number (4). Finally,
single-base-edited cells could be obtained via negative selection with truncated sgRNA (5). The red lines indicate the TRS.

2.2. Negative Selection of Single-Base-Edited Targets by 5′-Truncated sgRNAs

Plasmids carrying 5′-truncated sgRNAs and single-base mutagenic oligonucleotides
such as galKT504A (generating TGA stop codon; causing C168X in GalK protein), galKC510A
(TGA; C170X), xylBG643A (TAA; E215X), and xylBA652T (TAA; K218X) were combinato-
rially electroporated into E. coli cells overexpressing Cas9 and lambda Bet proteins. The
sequence information of plasmids and mutagenic oligonucleotides are listed in Supple-
mentary Tables S1 and S3, respectively. Two different targets (5′-proximal and 5′-distal) in
both the galK and xylB genes were tested for single-base editing (Figure 2a). If single-point
mutations causing premature translational termination are properly introduced into the
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galactokinase (Gene ID: 945358 (galK)) or xylulokinase (Gene ID: 948133 (xylB)) genes in
the genome, single-base-edited cells cannot ferment D-galactose or D-xylose, therefore
white colonies on MacConkey agar plates are produced. The unedited cells can ferment
D-galactose or D-xylose, thus red colonies are produced on MacConkey agar plates due to
the lowered pH caused by D-galactose or D-xylose fermentation metabolites. Consequently,
the ratio of white colonies compared to the total colonies can be used as an indicator of
CRISPR/Cas9-mediated single-base editing efficiency. In the case of galKT504A single-base
editing, less than 5% of white colonies were obtained when untruncated sgRNA was used.
However, white colony ratios increased to 31% and 80% when 1 or 2 nucleotides were
5′-truncated, respectively (Figure 2b). Another instance of galK 5′-distal single-base editing
(galKC510A) resulted in 4%, 24%, and 83% when untruncated, 1-nucleotide truncated, and
2-nucleotides-truncated sgRNAs were used, respectively.

In the case of the xylB target, 5′-proximal xylBG643A and 5′-distal xylBA652T were
tested using 5′-untruncated, 1-nucleotide-truncated, and 2-nucleotides-truncated sgRNAs.
Although 18–25% of white colonies were already obtained using untruncated sgRNAs,
the white colony ratios increased significantly as the number of truncated nucleotides (up
to two) at the sgRNA 5′ end increased. The increase in the white colony ratio according
to the increase in the number of truncated nucleotides of sgRNA was observed in both
galK and xylB gene point mutation experiments. Lastly, few or no white colonies were
obtained when the sgRNAs with three truncated 5′-nucleotides were used, and the number
of surviving cells, which is the sum of white colonies (edited) and red colonies (not edited),
increased to 108 CFU/µg. These findings indicate that the truncation of two nucleotides
at the 5′ end of the sgRNAs renders optimal results for negative selection in microbial
single-base genome editing.

2.3. Editing of Multiple Single-Base Positions Using 5′-Truncated sgRNAs

We next investigated whether sgRNA 5′ truncation could effectively enable the modi-
fication of multiple single-base positions in the target sequence, as well as whether each
given base could be converted into any of three alternative bases (e.g., A to either C, G, or
T). Based on the results described above, the sgRNAs with two 5’ truncations and various
mutagenic oligonucleotides were electroporated into E. coli cells with highly expressed
Cas9 and lambda Bet proteins. There were 30 single-base edits (=10 targets × 3 mutagenic
oligonucleotides) in galK and 24 single-base edits (=8 targets × 3 mutagenic oligonu-
cleotides) in xylB. The efficiency of single-base editing was determined via direct Sanger
sequencing of the edited DNA targets of four randomly selected colonies grown on the LB
spectinomycin agar plate. The Sanger sequences of edited targets are in Supplementary
Figures S2 and S3.

With the exception of one galK target (G513C), the editing of 30 single-base alterations
at ten different locations failed when 5′-untruncated sgRNA was used (pHK459). In
contrast, 19 base alterations out of 30 different cases (19/30 = 63%) were successful when an
sgRNA with two 5′ truncated nucleotides was used (pHL153). Regarding 503G, 504T, 506A,
507C, and 514A in the galK target, any given nucleotide could be successfully converted to
any of the three other bases (Figure 3a). In the case of 510C, 512G, and 513G certain changes
occurred at higher frequencies. In contrast, no alterations were observed in the 501C and
508T bases among the four randomly selected colonies. Regarding base editing types,
transversion alterations (14/20 = 70%) had a slightly higher editing rate than transition
changes (5/10 = 50%).

In the case of the xylB target, eight base alterations out of 24 cases were successful
using a 5′-untruncated sgRNA (pHL169). When a sgRNA with two 5′ truncations (pHL167)
was used, 15 base changes out of 24 cases were successfully obtained with an even higher
rate of mutation success (n/4) among the four selected colonies. Transversion base editing
(11/16 = 68%) occurred more frequently compared to transition editing (4/8 = 50%) in the
xylB target (Figure 3b).
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Figure 2. Efficiency of single-base editing by truncated sgRNA/Cas9-mediated negative selection. (A) Target sequences
and design of truncated sgRNAs for the negative selection of edited targets in galK and xylB. Asterisk represent single point
mutations. (B) Efficiency of single-base editing in galK and xylB target using 5′-untruncated, 1 nucleotide-, 2 nucleotide-,
and 3 nucleotide-truncated sgRNAs. Each bar represents the standard deviation of three independent experiments.
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Figure 3. Efficiency of truncated sgRNA-mediated single-base editing in randomly selected colonies. Location of mutation
sites and results of single-base editing of various bases in galK (A) and xylB (B) targets. Single-base genome editing efficiency
divided by mutation types (right). The numbers in the colored boxes and parentheses indicate the frequency and success of
single-base genome editing, respectively. * Four single-base edits generate a G:U wobble-base pairing. Underlined bases
indicate a transition mutation. Notably, there were twice as many transversion cases than transition alteration cases.

2.4. Truncation Tolerance of sgRNA for Cas9-NG with Expanded PAM

Next, we tested the negative selection of the 5′-truncated sgRNA/Cas9-NG complex
during oligonucleotide-directed microbial genome editing to expand the target range in
the bacterial genome. In the case of the T504A alteration in the galK gene, 5′-untruncated, 1
nucleotide-, and 2 nucleotide-truncated sgRNAs resulted in a 9%, 17%, and 31% occurrence
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of white colonies in the MacConkey D-galactose agar plate, respectively. In contrast, using
a 3 nucleotide-truncated sgRNA resulted in an 85% white colony rate with an increased
number of surviving cells (~106/µg DNA) (Figure 4a). No white colonies were observed
when a 4 nucleotide-truncated sgRNA was used. In the case of C510A in the galK gene, 78%
of white colonies with many surviving colonies (~106/µg DNA) were similarly obtained
using a 3 nucleotide-truncated sgRNA. Similarly, in the cases of G643T and A652T in
the xylB gene, 3 nucleotide-truncated sgRNAs resulted in white colony rates of 74% and
66%, respectively, in MacConkey D-xylose agar plates. These results indicate that the
5′-truncation of three nucleotides in a sgRNA is required for Cas9-NG-mediated negative
selection of single-base edited targets in the microbial genome (Figure 4b).

Figure 4. Efficiency of single-base editing with truncated sgRNA/Cas9-NG-mediated negative selection. (A) Editing
efficiency of the galK and xylB mutation using 5′-untruncated, 1 nucleotide-, 2 nucleotide-, and 3 nucleotide-truncated
sgRNAs. (B) 5′-truncation of three nucleotides in the sgRNA is optimum for Cas9-NG-mediated negative selection of single-
base edited targets in the microbial genome. Each bar represents the standard deviation of three independent experiments.
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3. Discussion

Off-target effects are a major limitation of current genome-editing methods based on
the cleavage of a target gene using CRISPR/Cas9 [7], as Cas9 often cuts the target DNA
even without perfect RNA:DNA base pairing between the sgRNA and the DNA target.
Therefore, to protect the microbial cells from phage invasion, CRISPR/Cas9 presumably
evolved to cut the target DNA sequence even if mutations occurred in foreign genes
(e.g., phage or plasmid mutations) or in the crRNA spacer. We also speculated that indel-
mediated 5′-truncation of crRNA could also be interpreted as a kind of mismatch (i.e.,
between the target DNA or the crRNA) that the immune system must handle [8].

According to our findings, target recognition becomes poor when both truncation
and mismatch occur at the same time (Figure 1a). CRISPR/Cas9 was used as a negative
selection tool for single-base mutations in the microbial genome. When CRISPR/Cas9
negative selection is performed using 5′-truncated sgRNAs, cells with unedited DNA
targets in the genome are recognized as targets through truncation tolerance, and are killed
through double-strand cutting. Edited cells survive because truncation and mismatch are
jointly incorporated, and are therefore not recognized as a target (Figure 1b).

The results of the 5′-truncation experiments demonstrated that negative selection is
not possible in E. coli cells with 3 nucleotide-truncated sgRNA in CRISPR/Cas9 (Figure 2b).
Ricci et al. reported that more than four mismatches from the 5′-end of the target sterically
inhibited the interaction between the target and gRNA, and therefore the conformational
activation of Cas9 could not be achieved according to structural simulations [9]. Moreover,
based on crystal structure analyses, nucleotides at the 5′-end of gRNA can bind to the
RuvC domain in a Cas9 protein via hydrogen bonding and hydrophobic interactions [27].
It is assumed that mismatch can prevent a conformational change in the Cas9 protein to an
active state by opening the RNA:DNA hybrid; however, truncation may not play a role
as a conformational trigger of the nuclease domain because of the disappearance of the
5′-nucleotides interacting with RuvC.

One important advantage of the 5′-truncated sgRNA method is that it can be used to
edit several bases in the target by using a sgRNA plasmid. Regardless of the editing types
(transition/transversion) and editing locations in the target (PAM-distal/proximal), several
DNA targets in the galK and xylB genes could be modified with single-base precision
(Figure 3). T504C and T642C transition mutations were obtained in the galK and xylB
genes, respectively, indicating that G:U base pairings can be negatively selected using
the 2 nucleotide-truncated sgRNA method. However, we failed to edit T508 and T648
located 10 nucleotides away from the PAM sequence on the galK and xylB targets among
the four randomly selected colonies. Single-base editing was attempted in the ypdA and
yjhF genes to assess whether the location of the mutation site (10 nucleotides from PAM)
was not properly edited. As a result, single-base editing was successful at the 10 nucleotide
positions in the ypdA and yjhF targets (Supplementary Figure S1).

Although it is possible to edit multiple base types and locations in the target using
the 5′-truncation method, it is not possible to edit the entire microbial genome due to the
limitations of PAM (5′-NGG) in the Cas9 protein. We tested the 5′-truncation method on
Cas9-NG nuclease with an expanded PAM (5′-NG) to edit the entire microbial genome
(Figure 4a). Unexpectedly, in the case of the Cas9-NG protein, the sgRNA with three 5′

truncations were the most efficient for the negative selection of single-base-edited targets in
both the galK and xylB genes. Additionally, we observed an increased cell survival (106/µg
DNA) when 3 nucleotide-truncated sgRNA/Cas9-NG was used for negative selection. This
was likely due to the different effects on in vivo nuclease activity compared with those of 2
nucleotide-truncated sgRNA/Cas9.

Genome editing that changes two or three bases without changing the amino acid
codon has been thought to be somewhat adequate. However, synonymous codons induce
alterations in the translation elongation rate due to ribosome stalling during protein
synthesis. This allows for a protein with altered conformation or specificity for the substrate
to be synthesized in the cell [28,29]. In contrast, the 5′-truncation method can be used to
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accurately edit not only codons, but also regulatory genes in the genomes of microbial
strains in the desired direction, or repair them to the desired sequence. Therefore, this
approach can be used to engineer customized and precise recombinant microbial strains.

4. Materials and Methods
4.1. Strains and Culture Conditions

The E. coli strains used in this study are listed in Supplementary Table S1. Each strain
was cultured in LB broth at 30 or 37 ◦C depending on their plasmid ori sequence. E. coli
DH5α was used as a cloning host for the construction of the sgRNA plasmids. E. coli
MG1655 was constructed to harbor the cas9 [26] or cas9-NG gene in their chromosomes.
The construction of an E. coli strain carrying the cas9-NG gene in the chromosome is
described below. When necessary, 50, 25, and 75 µg mL−1 of ampicillin, kanamycin, and
spectinomycin were added to the culture medium.

4.2. Genomic Integration of cas9-NG

To integrate the cas9-NG-KmR cassette in the E. coli genome, we inserted the cas9-NG-
KmR cassette using a previously described recombineering technique [30]. The cas9 gene
was codon-optimized using the Codon Optimization Tool (https://sg.idtdna.com/pages/
tools/codon-optimization-tool, accessed on 1 June 2021) to carry seven point mutations
(encoding R1335V, L1111R, D1135V, G1218R, E1219F, A1322R, and T1337R) and to be
chemically synthesized (Integrated DNA Technologies, Coralville, IA, USA). Briefly, the
cas9-NG-KmR cassette was fused using an overlap polymerase chain reaction (PCR) with
5′ fragments of the cas9 gene (3 kb), chemically synthesized 3′ fragments of the cas9-NG
gene (837 bp), and a kanamycin resistance marker. The purified PCR fragments were
electroporated into L-arabinose-induced E. coli MG1655 harboring pKD46 to make E. coli
HK1159 (∆araBAD::PBAD-cas9-NG-KmR). Subsequently, plasmid pKD46 was cured out of
the strain by incubation at 42 ◦C, and the successful incorporation of the cas9-NG gene was
confirmed via Sanger sequencing.

4.3. Plasmid Construction

Supplementary Table S1 summarizes the 5′-truncated sgRNA plasmids used for single-
base editing. The sgRNA expression plasmid vectors were constructed by targeting the
galK and xylB in E. coli for single-base genome editing. Two DNA fragments containing
a spectinomycin resistance gene or the sgRNA gene were amplified with primers, listed
in Supplementary Table S2, using pHK459 [31] and pHL003 [26] as a template. All of the
sgRNA plasmids were generated via Gibson assembly in the same direction.

4.4. Base Editing in Galk and xylB

pHK463, which expresses λ red Bet protein, was used to aid ssDNA mediated recom-
bination [26]. E. coli HK1059 and HK1159 harboring pHK463 were grown in ampicillin-
containing (50 µg mL−1) LB medium at 30 ◦C. The L-arabinose was added when OD600
reached 0.4 to overexpress Cas9 nuclease and λ red Bet protein, which facilitates
oligonucleotide-directed mutagenesis [32]. After 3 h, the cells were washed twice with
10% glycerol, aliquoted, and stored at −80 ◦C for subsequent electroporation of mutagenic
oligonucleotides and sgRNA plasmids. Mutagenic oligonucleotides (Supplementary Table
S3) were designed to introduce single-base editing (T504A or C510A in galK, G643T or
A652T in xylB). Each introduced a premature stop codon in galK and xylB. For the negative
selection of mutant cells harboring single-base substitutions, 5′-truncated sgRNA plasmids
were designed.

Each mutagenic oligonucleotide (100 pmoles) with sgRNA plasmids (200 ng) was
electroporated in E. coli HK1059 and HK1159 cells harboring pHK463 to introduce single-
base edits, as well as for CRISPR/Cas9-mediated negative selection. Electroporation was
performed at 25 µF, 200 Ω, and 1.8 kV using a 0.1 cm electroporation cuvette. Afterward,
the cells were immediately transferred to 950 mL SOC and incubated at 37 ◦C and 180 rpm

https://sg.idtdna.com/pages/tools/codon-optimization-tool
https://sg.idtdna.com/pages/tools/codon-optimization-tool
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for 1 h for recovery before being spread on MacConkey agar containing D-galactose (0.5%,
CAS No. 59-23-4) or D-xylose (0.5%, CAS No. 58-86-6) and spectinomycin (75 µg mL−1).
The cells were then incubated for 16 h at 37 ◦C. The genome editing efficiencies of oligo-
directed galK and xylB mutagenesis followed by CRISPR/Cas9 negative selection were
calculated by counting the white and red colonies expressing D-galactose- or D-xylose-
fermenting phenotypes. Cell survival was also calculated by counting the total colonies
on MacConkey (with D-galactose or D-xylose), or LB-agar-containing spectinomycin, to
confirm whether target digestion by the CRISPR/Cas9 system was efficient.

4.5. Multiple Single-Base Genome Edits

Ten targets in galK and eight targets in xylB were selected to confirm editing efficiency
depending on the mutation site within the N20 target sequence. The single-base mutagenic
oligonucleotides for each target are listed in Supplementary Table S3. The sgRNA plas-
mids for these targets were the same as those used for base editing in galK and xylB. For
position-based single-base editing experiments, each single-base mutagenic oligonucleotide
(100 pmoles) and the corresponding sgRNA plasmids (200 ng), were electroporated into
L-arabinose-induced HK1059 cells harboring pHK463. Electroporated samples were spread
on LB agar plates containing spectinomycin (75 µg mL−1). After 16 h at 37 ◦C, four colonies
(per electroporation) were randomly selected, and Sanger sequencing was carried out to
confirm the desired base editing in the galK and xylB targets using the primers listed in
Supplementary Table S3.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22126457/s1.
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