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Abstract: BMI-1 is a key component of stem cells, which are essential for normal organ development
and cell phenotype maintenance. BMI-1 expression is deregulated in cancer, resulting in the alteration
of chromatin and gene transcription repression. The cellular signaling pathway that governs BMI-1
action in the ovarian carcinogenesis sequences is incompletely deciphered. In this study, we set out
to analyze the immunohistochemical (IHC) BMI-1 expression in two different groups: endometriosis-
related ovarian carcinoma (EOC) and non-endometriotic ovarian carcinoma (NEOC), aiming to
identify the differences in its tissue profile. Methods: BMI-1 IHC expression has been individually
quantified in epithelial and in stromal components by using adapted scores systems. Statistical
analysis was performed to analyze the relationship between BMI-1 epithelial and stromal profile in
each group and between groups and its correlation with classical clinicopathological characteristics.
Results: BMI-1 expression in epithelial tumor cells was mostly low or negative in the EOC group, and
predominantly positive in the NEOC group. Moreover, the stromal BMI-1 expression was variable
in the EOC group, whereas in the NEOC group, stromal BMI-1 expression was mainly strong. We
noted statistically significant differences between the epithelial and stromal BMI-1 profiles in each
group and between the two ovarian carcinoma (OC) groups. Conclusions: Our study provides solid
evidence for a different BMI-1 expression in EOC and NEOC, corresponding to the differences in
their etiopathogeny. The reported differences in the BMI-1 expression of EOC and NEOC need to be
further validated in a larger and homogenous cohort of study.

Keywords: ovarian cancer; endometriosis; BMI-1; epithelial tumor cells; stroma

1. Introduction

Ovarian cancer (OC) is a gynecological malignancy that commonly originates from the
ovaries, fallopian tubes, and peritoneum [1] and is considered as the most lethal malignancy
with a high rate of chemoresistance and relapses. Regarding their histology, 90% of ovarian
tumors are of the epithelial type [2].

Endometriosis represents a precursor lesion for certain types of epithelial OC, be-
ing related to microenvironment changes (such as estrogen production and dependency,
progesterone resistance, and inflammation), which lead to genetic alterations and/or ge-
netic susceptibilities that favour endometriosis-associated ovarian carcinogenesis [2–4]. It
has been demonstrated that ovarian endometriosis, ovarian atypical endometriosis, and
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endometriosis-related OC (EOC) share the same genetic alterations and express clonality,
while the ovarian malignant endometriosis-associated phenotype is promoted by chronic
inflammation, which provides permanent mutations and nonpermanent cytokine pro-
duction [2]. The different clinicopathological features and distinct mutational statuses
justify the classification of OC into EOC, represented mainly by clear cell and endometrioid
subtypes, and non-endometriotic OC (NEOC) [5].

OC is commonly diagnosed in advanced stages III and IV when the tumor has a
high potential of metastasis [6]. Therefore, the early detection of OC by using different
biomarkers is an important clinical desideration. Concomitantly, the researchers’ interest
is directed towards a deep insight into the genetic and molecular substrate of ovarian
carcinogenesis, aiming not only to understand the sequence of carcinogenic events, but
also to identify new potential prognostic factors and therapeutic targets. The exclusive
recent list of potential candidate biomarkers includes molecules expressed by the cancer
stem and stem-like cells [7], BMI-1 protein being one of them [8,9]. BMI-1 protein, a stem-
like marker, represents a homologue of the Drosophila polycomb group of proteins, and
its role is the regulation of homeotic genes expression by transcription repression [10].
The BMI-1 gene has been initially isolated as an oncogene, which cooperates with c-
Myc in lymphoma experimental models [11]. It belongs to the Polycomb-group (PcG) of
proteins, which are involved in axial pattern establishment, hematopoiesis, cementogenesis,
and senescence [11].

Considering BMI-1’s involvement in cellular proliferation and tumor progression, this gene
has been identified, as expected, in a large variety of human tumors, such as: lymphoma [12–14],
brain [15], prostate [16], oropharynx and nasopharynx [10,17,18], breast [19,20], bladder [11],
gastric [21], pancreas [22], esophagus [23], lungs [24,25], head and neck cancers [26],
malignant melanoma [27], pleomorphic adenoma [28], and also displaying a prognosis
value in mielodysplastic syndromes [29] and in gallbladder cancer [30]. Although its action
has been initially thought to be achieved by p16 suppressor gene repression, subsequent
studies have demonstrated another specific mechanism of action by intercellular adhesion
pathway modulation [31].

Limited information is available about BMI-1 in OC, as few studies address this topic,
mainly providing experimental evidences [10,32–41]. BMI-1 increased expression mirrors
an early and maybe reversible event in carcinogenesis [10], suggestive for an invasive and
aggressive phenotype during tumor development [10,42]. It is demonstrated that BMI-1
regulates cell cycle and promotes cell proliferation, which has self-renewal and differentia-
tion potential [9], acts as a potential modulator of cellular adhesion in endometriotic tumor
cells, and alters endometrial stromal cells by changing microenvironment interactions in
OC [43]. Several results support its potential value as an independent predictor for poor
outcomes [39] and as a possible new therapeutic target in chemoresistant OC [7,9,33,40,41].

Currently, there is a high interest in a better understanding and characterization of
EOC, in an attempt to provide a different clinical and therapeutic management compared
to that of NEOC. In this regard, the purpose of our study was to evaluate the immunohisto-
chemical (IHC) BMI-1 expression in two different groups of OC (associated or not with
endometriosis), aiming to identify the differences in its tissue profile. The novelty of this
research consisted in a double assessment of BMI-1, in tumor epithelial cells and stromal
cells, following the potentiation relationship of these two cell types in tumor progression.
Nevertheless, the BMI-1 expression was correlated with clinicopathological data that offer
a solid functional image of the tumor progression.

2. Results
2.1. BMI-1 Expression—Qualitative Assessment

The qualitative evaluation showed, at a glance, a heterogeneous expression in both
groups, without a specific pattern for each group.

A double BMI-1 staining was found: a nuclear and cytoplasmic/membrane immu-
noexpression in EOC group. Strong expression of epithelial cells was observed in cases
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with poor prognosis, such as high-grade serous and endometrioid carcinomas (HGSCs
and HGECs), as well in clear cell ovarian carcinomas (COCs). A negative BMI-1 stroma
expression in the endometrioid phenotype of EOC group was found, while positive stroma
was dominant in the serous phenotype, clear cell and mixed subtypes. Relevant aspects of
BMI-1 expression in EOC are presented in Figure 1.

In the NEOC group, the intensity of BMI-1 was predominantly moderate or strong
in epithelial (nuclear or cytoplasmic/membrane immunoexpression) and stromal cells.
Moderate and strong nuclear expression and weaker cytoplasmic expression was observed
in cases with a serous phenotype and a more aggressive course, such as HGSC, while
the endometrioid phenotype preserved a strong, diffuse, membrane BMI-1 staining. In
undifferentiated carcinomas, BMI-1 expression was heterogeneous, displaying a weak
cytoplasmic staining. Differences between BMI-1 expression in variable types of NEOC are
illustrated in Figure 2.

We also noted the lack of BMI-1 expression in normal ovary or ovarian surface, and
its positivity in the normal tubal surface epithelium.

2.2. BMI Expression—Semi-Quantitative Assessment

In the whole group of study, without division into EOC and NEOC categories, the BMI-
1 semi-quantitative assessment showed the following: a high expression in 31 cases (65.96%)
and a low expression in 16 cases (34.04%), in tumor cells, along with immunopositivity
in 34 cases (72.34%), and immunonegativity in 13 cases (27.65%) in tumor stroma. The
statistical analysis revealed significant correlations between BMI-1 expression in epithelial
tumor cells (low/high) versus tumor stroma (negative/positive) (p = 0.01).
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 Figure 1. (a–f) Histologic features and BMI-1 expression in EOC group in different ovarian tumor subtypes: (a,b) HGSC:
(a) papillary growth, enlarged and irregular nuclei, prominent nucleoli, high cellular size and shape (hematoxylin and
eosin–H&E, magnification 10×), (b) strong BMI-1 nuclear staining in epithelial tumor cells of HGSC (magnification
10×); (c,d) HGEC: (c) crowded back-to-back glands, lined by atypical columnar epithelium, and smooth luminal borders
(H&E, magnification 10×), (d) weak BMI-1 cytoplasmic staining in epithelial tumor cells of HGEC (magnification 10×);
(e,f) COC: (e) papillary and tubulocystic pattern, combined with clear and eosinophilic cells and stromal hyalinization
(H&E, magnification 10×), (f) strong BMI-1 cytoplasmic staining of tumor cells and stroma in COC (magnification 10×).
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Figure 2. (a–h) Histologic features and BMI-1 expression in NEOC group in different ovarian tumor subtypes: (a,b) MOC: 
(a) atypical mucin-producing tumor cells with an infiltrative pattern of invasion (H&E, magnification 10×), (b) negative 
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nuclear atypia, dense fibrous stroma, and inflammation around the tumor nests (H&E, magnification 10×), (d) strong BMI-
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nuclear atypia in LGSC (H&E, magnification 10×), (f) moderate BMI-1 cytoplasmic staining of tumor cells and stroma in 
LGSC (magnification 10×); (g,h) LGEC: (g) papillary and glandular differentiation in LGEC (H&E, magnification 10×), (h) 
strong BMI-1 cytoplasmic staining of tumor cells and stroma in LGEC (magnification 10×). 
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Figure 2. (a–h) Histologic features and BMI-1 expression in NEOC group in different ovarian tumor subtypes: (a,b) MOC:
(a) atypical mucin-producing tumor cells with an infiltrative pattern of invasion (H&E, magnification 10×), (b) negative
BMI-1 staining in tumor stroma of MOC (magnification 10x); (c,d) HGSC: (c) variation in cellular size and shape, marked
nuclear atypia, dense fibrous stroma, and inflammation around the tumor nests (H&E, magnification 10×), (d) strong BMI-1
cytoplasmic staining of tumor stroma in HGSC (magnification 10×); (e,f) LGSC: (e) micropapillary growth with minimal
nuclear atypia in LGSC (H&E, magnification 10×), (f) moderate BMI-1 cytoplasmic staining of tumor cells and stroma in
LGSC (magnification 10×); (g,h) LGEC: (g) papillary and glandular differentiation in LGEC (H&E, magnification 10×),
(h) strong BMI-1 cytoplasmic staining of tumor cells and stroma in LGEC (magnification 10×).

The semi-quantitative expression of BMI-1 showed a different profile in the two
analyzed groups.

BMI-1 expression in epithelial tumor cells was mostly low or negative in the EOC
group and predominantly positive in NEOC group. On the other hand, the cases of the EOC
group expressed positive and negative stromal BMI-1 immunoreactions approximately
equally, whereas the stromal BMI-1 expression was mainly strong in the NEOC group
(Table 1). We noted statistically significant differences between the BMI-1 epithelial and
stromal profiles in each group (Table 1).

Comparing the epithelial and stromal BMI-1 expressions between the EOC and NEOC
groups, we obtained statistically significant differences only for the epithelial component
(p = 0.0002), not for the stromal one (p = 0.06).

2.3. Relationship between BMI-1 Epithelial and Stromal Expression, and Clinicopathological
Parameters in EOC

The results of the statistical analysis revealed a significant relationship between BMI-1
expression in tumor cells (low/high) and tumor grade (well and moderately differentiated
versus poorly differentiated) (p = 0.04). On the other hand, stromal BMI-1 expression was
significantly correlated with the median value of cancer antigen 125 (CA 125) (p = 0.03).
No other significant differences were registered (Table 2).
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Table 1. Correlations between the epithelial and stromal BMI-1 expression in the EOC and the NEOC groups.

BMI-1

EOC NEOC

High Score/
Positive Reaction

Low Score/
Negative Reaction p Value High Score/

Positive Reaction
Low Score/

Negative Reaction p Value

Epithelial
tumor cells 5 (26.31%) 14 (73.68%)

0.04
26 (92.85%) 2 (7.14%)

0.001

Stromal cells 11 (57.89%) 8 (42.10%) 23 (82.14%) 5 (17.85%)

Table 2. Correlations between BMI-1 expression in tumoral cells and clinicopathological parameters—EOC group.

Clinicopathological
Characteristics #

Tumor Cells BMI-1

p Value

Stromal BMI-1

p ValueLow Score High Score Negative
Reaction

Positive
Reaction

# % # % # % # %

Age

<55 age 8 5 62.5 3 37.5
0.34

4 50 4 50
0.55

≥55 age 11 9 81.82 2 18.18 4 36.36 7 63.64

Tumor stage

1 4 4 100 0 0

0.48

1 25 3 75

0.552 6 4 66.66 2 33.33 3 50 3 50

3 8 5 62.50 3 37.50 3 37.50 5 62.50

4 1 1 100 0 0 1 100 0 0

Tumor grade

I/II 7 7 100 0 0
0.04

4 57.14 3 42.85
0.31

III 12 7 58.33 5 41.66 4 33.33 8 66.66

Histological subtype

LGSC 0 0 0 0 0

0.78

0 0 0 0

0.93

LGEC 0 0 0 0 0 0 0 0 0

COC 4 3 75 1 25 1 25 3 75

MOC 0 0 0 0 0 0 0 0 0

HGSC 3 1 33.33 2 66.66 1 33.33 2 66.66

HGEC 8 6 75 2 25 5 62.50 3 37.50

Undifferentiated 0 0 0 0 0 0 0 0 0

Mixed 4 4 100 0 0 1 25 3 75

Type

Type I 4 3 75 1 25
0.94

1 25 3 75
0.57

Type II 15 11 73.33 4 26.67 7 46.67 8 53.33

Residual disease

NED/<1 cm 6 5 83.33 1 16.67
0.51

2 33.33 4 66.67
0.59

≥1 cm 13 9 69.23 4 30.77 6 46.15 7 53.85

CA 125—median value

<1201.5 U/mL 10 8 80 2 20
0.51

2 20 8 80
0.03

≥1201.5 U/mL 9 6 66.67 3 33.33 6 66.67 3 33.33

LGSC (low-grade serous carcinoma); LGEC (low-grade endometrioid carcinoma); COC (clear cell ovarian carcinoma); MOC (mucinous
ovarian carcinoma); HGSC (high-grade serous carcinoma); HGEC (high-grade endometrioid carcinoma); NED (no evident data about
residual tumor).
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2.4. Relationship between BMI-1 Epithelial and Stromal Expression and Clinicopathological
Parameters in NEOC

The statistical analysis showed significant correlations between BMI-1 expression in
the tumor cells (low/high), the stroma (negative/positive), and the tumor histological
subtypes (p = 0.002 and p = 0.04, respectively) (Table 3). No associations were found for the
other clinical clinicopathological parameters.

Table 3. Correlations between BMI-1 expression in tumor stroma and clinicopathological parameters—NEOC group.

Clinicopathological
Characteristics #

Tumor Cells BMI-1

p Value

Stromal BMI-1

p ValueLow Score High Score Negative
Reaction

Positive
Reaction

# % # % # % # %

Age

<55 age 14 1 7.14 13 92.86
0.30

2 14.29 12 85.71
0.62

≥55 age 14 1 7.14 13 92.86 3 21.43 11 78.57

Tumor stage

1 13 1 7.69 12 92.30

0.91

3 23.07 10 76.92

0.712 5 0 0 5 100 0 0 5 100

3 10 1 10 9 90 2 20 8 80

4 0 0 0 0 0 0 0 0 0

Tumor grade

I/II 15 0 0 15 100
0.11

3 20 12 80
0.75

III 13 2 15.38 11 84.61 2 15.38 11 84.61

Histological subtype

LGSC 4 0 0 4 100

0.002

0 0 4 100

0.04

LGEC 5 0 0 5 100 3 60 2 40

COC 5 0 0 5 100 0 0 5 100

MOC 5 1 20 4 80 1 20 4 80

HGSC 5 0 0 5 100 0 0 5 100

HGEC 3 0 0 3 100 0 0 3 100

Undifferentiated 1 1 100 0 0 1 100 0 0

Mixed 0 0 0 0 0 0 0 0 0

Type

Type I 19 1 5.26 18 94.74
0.57

4 21.05 15 78.95
0.43

Type II 9 1 11.11 8 88.89 0 0 9 100

Residual disease

NED/<1 cm 16 1 6.25 15 93.75
0.83

2 12.5 14 87.5
0.72

≥1 cm 12 1 8.33 11 91.67 1 8.33 11 91.67

CA 125—median value

<101 14 1 7.14 13 92.86
1

4 28.57 10 71.43
0.13

≥101 14 1 7.14 13 92.30 1 7.14 13 92.86

LGSC (low-grade serous carcinoma); LGEC (low-grade endometrioid carcinoma); COC (clear cell ovarian carcinoma); MOC (mucinous
ovarian carcinoma); HGSC (high-grade serous carcinoma); HGEC (high-grade endometrioid carcinoma); NED (no evident data about
residual tumor).
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3. Discussion

Numerous hypotheses regarding the mechanisms involved in OC etiopathogenesis
have been proposed over time as attempts to explain the multiple tumor phenotypes, poor
prognosis, and chemoresistance. Endometriosis represents a precursor lesion for certain
types of epithelial OC, since the identification of the same genetic alterations in both dis-
eases are demonstrated [3,4,31]. Accordingly, the corroboration of specific clinicopathologi-
cal findings with specific mutations led to the EOC and NEOC categories distinction [44].

The BMI-1 protein, involved in homeotic genes regulation by transcription inhibi-
tion [10], represents a survival factor of malignant stem cells [10], and is correlated to
hormonal receptor expression, and is considered as a prognosis factor surrogate [44,45].

BMI-1 has been identified in experimental studies of OC (cell lines, clone derivation,
and animal experiments) [32–38], both in protein and the protein-coding gene [39], and
in human ovarian tumors or ascites fluid samples [10,32,34,36,39,46,47]. Despite these
reported results, BMI-1 expression is not fully established in OC. The review of the literature
shows that less than 10 studies have addressed BMI-1’s involvement in OC, most of
them highlighting the molecular action and potential therapeutic value of this protein.
A positive correlation between BMI-1 positive expression in human epithelial OC and
elevated telomerase activity was demonstrated [46,47]. Another study, based on human
specimens and ovarian cancer cells, showed that BMI-1 expression is downregulated
by MiR-15a or MiR-16 underexpression, with subsequent significant decreases in cell
proliferation and clonal growth [40]. Therefore, BMI-1 seems to be a potential target in
OC therapy. Eloquent evidences in this direction are provided in recent papers that have
demonstrated the therapeutic activity of PTC-028 as a novel inhibitor of BMI-1 function in
OC [37] and the role of MiR-132 in cisplatin resistance and OC metastasis by the targeted
regulation of BMI-1 [41]. In terms of the number of human OC samples, the studies on
BMI-1 have been generally performed on small groups, with a median number of research
sample of 41 (range 5–179) [10,32,34,36,40,46,47]. These samples were collected from tumor
tissue [10,32,34,36,39,40,46,47], fresh ascites [34], and frozen ovarian tissues [47].

The reported data target only BMI-1 in epithelial tumor cells, showing a high ex-
pression in 80.9% of OC and its relationship with tumor aggressiveness [46]. Moreover, a
positive correlation between BMI-1 expression and advanced International Federation of
Gynecology and Obstetrics (FIGO) stages, bilaterality, higher tumor grades, and serous
morphology [42,47], and a progressive incremental number of BMI-1-positive cases in
accordance with the increase of tumor grade and stage were demonstrated, while increased
BMI-1 expression was associated with reduced patient survival [39].

This short review of data concerning the correlation between BMI-1 and OC shows
that the current knowledge is predominantly based on experimental data as the first
level of evidence regarding its role in carcinogenesis, while the results obtained by the
investigation of BMI-1 in human tissues is very scarce. Within this general context, our
study complements the knowledge on BMI-1 in OC by doing research that translates
the evidences level from the experimental area to the clinical domain by reference to the
clinicopathological characteristics of OC with different parameters for EOC and NEOC.

Our work has demonstrated high BMI-1 expression levels in the epithelial tumor cells
in 66% of OC (26% in EOC and 93% in NEOC). Moreover, our study provides valuable data
on BMI-1 profile in OC, bringing to the foreground the relationship of OC with endometrio-
sis, and the differences between the epithelial and stromal expression. This endeavor
was possible by consistent differences in the design of the patient’s cohort, comprising
47 cases of OC separated in two different tumor groups: EOC and NEOC. Thus, we have
demonstrated, for the first time, the possible correlations between epithelial and stromal
BMI-1 profiles in EOC and NEOC and several classical clinicopathological parameters.

The segregation into EOC and NEOC has been justified by the findings that certain
histological types of EOC, mainly endometrioid and clear cell carcinomas, have different
clinical features, such as younger age at diagnosis, unilaterality, identification at an earlier
stage, and a better survival rate, compared to the counterpart entities of NEOC [5]. Our



Int. J. Mol. Sci. 2021, 22, 6082 9 of 14

study supports the hypothesis of EOC development within endometriosis, showing mostly
an endometrioid (42% in EOC versus 28.57% in NEOC) or clear cell phenotype (21% in
EOC versus 18% in NEOC), and, implicitly, the quality of precursor lesion of ovarian
endometriosis. Endometriosis and EOC represent two entities with the same target organ
(ovary), the same tissue of origin (endometrial-like), and the same pathogenic mechanism
which progresses from benign to atypical and malignant phenotypes. Having these in
mind, tubal ligature or salpingectomy may be used as preventative maneuvers which may
be applied within a screening and early therapy algorithm.

An original finding in our research is the dual staining pattern, nuclear and cyto-
plasmic/membrane in both study groups, although only a nuclear staining is reported in
literature [27,41,42,48]. This immunostaining pattern may indicate a possible relocation of
protein during the transition to tumor phenotype. Moreover, it may suggest the involve-
ment of additional factors as a possible reflection of adhesion molecules interrelationship
in the context of epithelial mesenchymal transition (EMT) [27,48] or of the involvement of
variable ovarian microenvironmental factors in both EOC and NEOC.

Our study confirms the relationship between BMI-1 in epithelial tumor cells and
stroma in three instances: (i) in the general OC group (p = 0.01), (ii) in the NEOC group
(p = 0.001), and (iii) in the EOC group (p = 0.04). In parallel, the comparative analysis of BMI-
1 expression in EOC and NEOC showed a statistically significant higher expression of BMI-1
in the epithelial tumor component than in the stroma (p = 0.0002). Our results clearly show
EOC’s association with BMI-1 low expression in epithelial tumor cells without a dominant
expression profile in stromal cells, while NEOC is characterized by high BMI-1 expression
in both the epithelial and stromal types of cells. However, stromal BMI-1 expression
is reflecting EMT involvement in tumor progression and the interrelationship between
the two cellular components, which result in BMI-1 synthesis as a stromal-dependent
mechanism. Therefore, if present, stromal BMI-1 could be considered as a valuable marker
for poor survival.

To the best of our knowledge, our study provides for the first time evidence for
BMI-1 expression in human EOC. Differently from NEOC group findings, a progressive
gain of BMI-1 expression in epithelial tumor cells has been noticed in the EOC group
along with tumor grade, with statistically significant differences when we compared well
and moderately differentiated with poorly differentiated tumors. This finding indicates
a relationship between BMI-1 epithelial overexpression and a poorer prognosis in the
selected EOC cases. Currently, CA125, expressed in the embryonic development of ovaries
and re-expressed in endometriosis and ovarian neoplasms, can be used as a prognostic and
predictive biomarker related to patient survival, independent of OC treatment [48].

CA 125 shows significant different values in the two major types of OC, suggesting
that they occur as a result of different factors, following specific pathway initiations and
progressions [49]. Many studies have shown that the CA125 profiles of HGSC and HGEC
are different from other subtypes [50]. We also found a statistically significant correlation
between stromal BMI-1 and CA 125 level, suggesting that EOC may be influenced by
a microenvironment modulation specific for endometriosis-based ovarian carcinomas,
supporting the rapid growth pattern and the unfavorable prognosis in a subcategory of
cases. Thus, we may conclude that the interrelationship and reciprocal stimulation between
a tumor’s epithelial and stromal components occurs latter during the endometriosis-related
carcinogenic process, with a subsequent uptake of BMI-1 expression by stromal component,
which may be reflected in an increased CA-125 level. The aggressive behavior of these EOC
cases has a different significance from that of aggressive type I OC, probably originating
from fallopian tube epithelium. It is worth mentioning that BMI-1 was absent in the
normal ovaries or ovarian surface in the study groups, while BMI-1 expression has been
identified in the normal tubal surface epithelium; this finding comports with the hypothesis
of some OCs development from the fallopian tube, providing another support for this
pathogenic mechanism.
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On the other hand, in the NEOC group, we have shown statistically significant
differences between BMI-1 immunopositivity in the tumor’s epithelial cells, stromal cells,
and histological subtypes. In our opinion, these results may be considered as solid evidence
for the association of BMI-1 with high grade OC phenotypes and, consequently, with
tumor aggressiveness.

Overall, our study reveals a different BMI-1 profile in the EOC an NEOC groups, thus
underlying the differences in their etiopathogeny. We are aware of the limitations of our
study due to the small size of the study groups and their heterogeneity in histological types,
as the selection criteria have been strictly applied. Despite these limitations, our results
open promising perspectives for differentiation of EOC from NEOC that need to be further
validated in a larger and homogenous cohort of study. An interesting research item can be
directed to the high-grade serous phenotype of OC that may be further subdivided into
subcategories according to their affiliation to the EOC or to NEOC groups.

4. Materials and Methods
4.1. Patients

Our study group included 47 cases of OC, diagnosed between 2006 and 2017 and
treated in several hospitals of Iasi, Romania: “Sf. Spiridon” County Clinical Emergency
Hospital, “Cuza Vodă” and “Elena Doamna” Obstetrics and Gynecological Hospitals,
and Oncology Regional Institute. All cases were histopathologically reassessed by two
pathologists to ascertain the OC histological subtype and then divided into two groups:
EOC and NEOC. The study has been approved by the Ethics Committee of “Grigore
T. Popa” University of Medicine and Pharmacy, Iaşi, based on the patients’ informed
consent (12378/June 2015). All subjects who provided ovarian tissue had given written
and informed consent prior the surgery.

4.1.1. Clinicopathological and Tumor Serum Marker Profile of the Study Cohort

At the time of the diagnosis, the age of the patients ranged between 37 and 76 years
old: 22 patients were younger (<55 years old) and 25 patients were older (≥55 years old).

Based on the standards of the FIGO staging, 17 cases were staged as FIGO stage I,
11 cases as FIGO stage II, 18 cases as FIGO stage III, and 1 case FIGO stage IV. According
to tumor grade, 13 cases were graded as G1 (well differentiated), 9 cases as G2 (moder-
ately differentiated), and 25 cases as G3 (poorly differentiated or undifferentiated). The
distribution of OC histological variants was as follows: LGSC—4 cases; LGEC—5 cases;
COC—9 cases; MOC—5 cases; HGSC—8 cases; HGEC—11 cases; undifferentiated—1 case;
and mixed tumor (serous, endometrioid, and clear cells phenotypes)—4 cases. According
to the pathogenic classification, the cases have been divided in low-grade (type I; 23 cases)
and high-grade (type II; 24 cases). The histopathological exam revealed the tumor extension
(residual tumor after primary surgery) in 25 cases (residual tumor≥ 1 cm), with 13 patients
diagnosed with a residual tumor < 1 cm and 9 cases without evident data about a residual
tumor. Preoperatory CA125 levels higher than 35 U/mL were found in all cases comprised
in the study group, ranging between 46–4163 U/mL.

4.1.2. Clinicopathological and Tumor Serum Marker Profile of the EOC and NEOC Groups

In the whole group, 19 of 47 (40%) patients belonged to the EOC group and 28 patients
(60%) belonged to the NEOC group.

Cases included in the EOC group were characterized by the presence of associate
endometriotic lesions consisting of the endometriosis area in the form of an endometriotic
cyst lined with endometrial epithelium and endometrial stroma, as well as evidence of
hemosiderin deposits and chronic hemorrhage or proliferative endometriosis foci with a
well-developed glandular profile.

The mean age of patients was 59.10 ± 8.66 years in the EOC group and 56.57 ± 2.64 years
in the NEOC group. The EOC group comprised the following histological types: COC—4 cases;
HGSC—3 cases; HGEC—8 cases; mixed tumors—4 cases; and none of LGSC, LGEC, MOC,
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or undifferentiated carcinoma cases were classified as EOC. The histological types in NEOC
group were: LGSC—4 cases; LGEC—5 cases; COC—5 cases; HGEC—3 cases; MOC—5
cases; HGSC—5 cases; and undifferentiated—1 case. The median value of the preoperatory
CA 125 level in the EOC group was 1201.5 U/mL, while a median value of 101 U/mL was
found in the NEOC group.

4.2. Immunohistochemistry (IHC)

The immunohistochemical staining for the identification of Antigens has been achieved
using BenchMark XT automatic system (Ventana Medical System, Inc., Tucson, AZ, USA),
according to protocols that needed standardization for different types of antibodies. The
sections obtained from the selected paraffin-embedded blocks were dewaxed in xylene,
rehydrated in ethanol, and rinsed in distillated water. The antigen retrieval was made
by using the Heat-Induced Epitope Retrieval (HIER) procedure, with an antigen retrieval
solution of pH 9 using CC1 solution (Ventana Medical System, Tucson, AZ, USA), consist-
ing of a combination of ethylenediaminetetraacetic and boric acid diluted in Tris buffer
for 30—60 minutes. After the endogenous peroxidase blocking with 3% hydrogen per-
oxide and treatment with normal goat serum 10%, used to block the non-specific protein
bonds, the sections were incubated with the primary antibody BMI-1 (clone F6/ABCAM,
1/50 dilution, Abcam, Cambridge, MA, USA). Consequently, the incubation with Ultra-
Vision Quanto Detection System Horseradish peroxidase (HRP) (Igs; Ventana Medical
Systems) has been performed. Antigen-antibody reaction has been visualized using 3,3′-
Diaminobenzidine as a chromogen (UltraView, Ventana Medical Systems, Tucson, AZ,
USA). The counterstaining of the sections was done with Mayer’s Hematoxylin. After
counterstaining, the slides have been washed with liquid soap in order to eliminate the
oily film, they have been rinsed with taping water and have been also bathed twice in dis-
tilled water. Negative controls have been used for results interpretation, in which primary
antibodies have been skipped and replaced with distilled water and positive controls have
been considered as endothelial cells and stromal fibroblasts immunostaining.

4.3. Semi-Quantitative Assessment

BMI-1 expression has been individually quantified in the epithelial and in the stromal
components. The semi-quantitative assessment of the BMI-1 in tumor cells was done
by using adapted scores based on literature reports [27,51] that took into account the
staining intensity (I) and the percentage of positive cells (P). BMI-1 showed a double
immunostaining, nuclear, and cytoplasmic/membrane [27,51]. The intensity of BMI-1
immunoreaction was scored as: 0—absent, 1—weak, 2—moderate, and 3—strong. The
percentage of BMI-1 positive cells was scored as follows: 1—< 10%, 2—10–50%, 3—> 50%.
The final BMI-1 score was obtained by multiplying P by I. BMI-1 score values < 3 were
considered as a low score, and score values ≥ 3 were considered as a high score.

For the semi-quantitative assessment of stromal BMI-1, we used a standard 2-point
scale scoring system. The immunoreaction was considered negative when ≤ 10% of the tu-
mor stromal area had a positive immunostaining of BMI-1, and positive when > 10% of the
stromal area showed BMI-1 immunostaining, regardless of the level of staining intensity.

BMI-1 expression has been independently evaluated and scored by three histopatholo-
gists with experience in immunohistochemistry interpretation and scoring differences have
been revised in the evaluation panel in order to reach a consensus.

4.4. Statistical Analysis

Statistical analysis was carried out with Statistical Package for the Social Sciences
(SPSS) v. 19 program (SPSS Inc., IBM Corporation, Chicago, IL, USA). A Chi-square (χ2)
test was performed to analyze the differences in BMI-1 epithelial and stromal profile in
each group and between groups, and its relationship with classical clinicopathological
characteristics (age, tumor stage, grade, histological subtype, tumorigenic dualistic tumor
types, residual disease, and preoperatory CA 125 level). Yates’ correction was applied
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when the number of cases in a subgroup was lower than five. Statistical significance was
considered when p < 0.05.

5. Conclusions

Our study provides solid evidence for a different BMI-1 expression in EOC and
NEOC, corresponding to the differences in their etiopathogeny. The EOCs were largely
characterized by a low BMI-1 expression in epithelial tumor cells, without a dominant
expression profile in stromal cells. Epithelial BMI-1 is progressively increased alongside the
tumor grade and strong stromal BMI-1 may be correlated to microenvironment modulation,
supporting the rapid growth pattern and the recognized poor prognosis in a subcategory of
EOC cases. The NEOCs were characterized by high BMI-1 expression in both the epithelial
and stromal types of cells; therefore, BMI-1 expression could be regarded as an indicator
of aggressiveness of this type of malignancies in general, and for HGSC in particular.
Additionally, BMI-1 expression limited to the normal tubal surface epithelium and its lack
in normal germinal/surface ovarian epithelium may support the hypothesis that many
OCs are originating from the fallopian tube epithelium.

Nevertheless, the reported differences in BMI-1 expression in EOC and NEOC need to
be further validated in a larger and homogenous cohort of study.
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