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Abstract: The synthesis of new phenothiazine derivatives, analogs of Methylene Blue, is of par-
ticular interest in the design of new drugs, as well as in the development of a new generation
of agents for photodynamic therapy. In this study, two new derivatives of phenothiazine, i.e.,
3,7-bis(4-aminophenylamino)phenothiazin-5-ium chloride dihydrochloride (PTZ1) and 3,7-bis(4-
sulfophenylamino)phenothiazin-5-ium chloride (PTZ2), are synthesized for the first time and char-
acterized by NMR, IR spectroscopy, HRMS and elemental analysis. The interaction of the obtained
compounds PTZ1 and PTZ2 with salmon sperm DNA is investigated. It is shown by UV-Vis spec-
troscopy and DFT calculations that substituents in arylamine fragments play a crucial role in dimer
formation and interaction with DNA. In the case of PTZ1, two amine groups promote H-aggregate
formation and DNA interactions through groove binding and intercalation. In the case of PTZ2, sul-
fanilic acid fragments prevent any dimer formation and DNA binding due to electrostatic repulsion.
DNA interaction mechanisms are studied and confirmed by UV-vis and fluorescence spectroscopy
in comparison with Methylene Blue. The obtained results open significant opportunities for the
development of new drugs and photodynamic agents.

Keywords: methylene blue; phenothiazine; 3,7-bis(N-phenylamino)phenothiazin-5-iums; DNA;
intercalation; dimerization

1. Introduction

The study of drug-DNA interactions plays a key role in pharmacology, since small
molecules capable of binding genomic DNA can become effective anti-cancer, antibiotic
and antiviral therapeutic agents [1]. Three models of drug interactions exist with the DNA
double helix [1–3]. First, positively charged molecule fragments can bind to negatively
charged DNA phosphate groups through electrostatic interactions. This type of interaction
usually occurs on the outer side of the helix. Second, drug molecules can bind to nucleic
acid bases in the major and/or minor groove of the DNA helix through hydrogen bonds
and van der Waals interactions. The third example of interaction with DNA is intercalation.
which is π-stacking between nucleobases and molecule aromatic fragments. In this case, a
flat heteroaromatic fragment is located between DNA base pairs, and binds perpendicu-
larly to the helix axis. It is well established that intercalating fluorescent dyes allow the
probing of DNA molecules. Intercalation is also the key feature of clinically used antitumor
drugs. Therefore, studying the interactions of intercalative small molecules with DNA
opens a significant opportunity in higher generation diagnostic probes and DNA-directed
therapeutics design [4].
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Methylene Blue (MB), a phenothiazine derivative, is a well-studied dye and photosen-
sitizer used in photodynamic therapy for the treatment of cancer [5–7]. The mechanisms
of interaction between MB and DNA have been studied in detail, which include electro-
static interaction (due to the positive charge of the molecule), minor groove binding, and
intercalation [8–10]. Fluorescently active DNA intercalators are in demand as probes for
monitoring reactions with DNA for research purposes. However, intercalation is often a
limiting factor in drug development, since it may affect important processes in DNA, such
as replication, transcription, and repair, which makes intercalators potent mutagens [11].
Thus, the ability to control the interaction of organic compounds with DNA is an indispens-
able part of modern drugs design. Another factor in the development of drugs, as well as
photodynamic agents, is their aggregation ability. It is known that MB forms H-aggregates,
which negatively affects its efficiency as a photodynamic agent, reducing the yield of singlet
oxygen [12].

There are many reports on the synthesis of new phenothiazine derivatives, MB analogs,
for the needs of modern medicine, including the design of new drugs, as well as the
development of new generation photodynamic agents [13–16]. There are several reports on
the synthesis of 3,7-bis(aryl-amino)phenothiazine derivatives [17–20]. Some of these report
on the low cytotoxicity [20] and antibacterial activity of these compounds [19]. However,
there are no data on their interaction with DNA. It turned out in a study of the effect of
aromatic substituents of phenothiazine on aggregation ability that arylamine substituents
at positions 3 and 7 of phenothiazine can inhibit aggregation ability. [21].

In the present work, 3,7-bis(aryl-amino)phenothiazine derivatives containing two pri-
mary amine (3,7-bis((4-aminophenyl)amino)phenothiazin-5-ium chloride dihydrochloride
dihydrochloride PTZ1) and sulfo groups (3,7-bis((4-sulfophenyl)amino)phenothiazin-5-
ium chloride PTZ2) are synthesized. The effect of substituents in the arylamine fragment
of 3,7-bis(aryl-amino)phenothiazine derivatives on their aggregation properties and inter-
action with DNA is studied.

2. Results and Discussion
2.1. Synthesis of PTZ1, PTZ2

There are many reports in the literature on the synthesis of new MB derivatives,
including arylamine derivatives. The introduction of aniline and its derivatives at positions
3 and 7 of phenothiazine provides a conjugated system, structurally similar to emeraldine,
with unique physicochemical properties [18]. Arylamine derivatives of phenothiazine
have been used in colorimetric [22], electrochemical sensors [23,24], catalysis [17], and
as antibacterial agents [25]. It is possible to design supramolecular systems for directed
self-assembly into binary associates by varying the substituents in the arylamine fragment
of phenothiazine [26]. The structural diversity of these derivatives remains low despite
their high potential. The main approaches to the introduction of arylamine fragments
into the structure of phenothiazine are the Buchwald-Hartwig reaction [18,27,28] and the
oxidation of phenothiazine to phenothiazin-5-ium cation followed by nucleophilic addition
of aromatic amines (Scheme 1) [17,21,25,29].
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Scheme 1. The main approaches to the introduction of arylamine fragments into the structure of phenothiazine.

For the Buchwald-Hartwig reaction, substituted at the nitrogen atom (position 10,
Scheme 1), phenothiazine derivatives are used as a starting compound which prevents the
formation of the cationic form. Therefore, this method does not suit us. A simple two-stage
method for the preparation of 3,7-bis(aryl-amino)phenothiazine derivatives (Scheme 2) was
implemented for the synthesis of target compounds PTZ1 and PTZ2, namely, the oxidation
of phenothiazine by molecular iodine to phenothiazin-5-ium tetraiodide (PTZI4) followed
by nucleophilic addition of aromatic amines. The resulting compound PTZa was involved
in hydrolysis reaction with concentrated hydrochloric acid to obtain the target compound
PTZ1. The hydrochloric acid treatment also resulted in the replacement of the iodide anion
with chloride.

The structure and composition of all obtained phenothiazine derivatives were confirmed
by a series of physical methods, namely, 1H and 13C NMR spectroscopy, IR spectroscopy, high
resolution mass spectrometry (HRMS), and elemental analysis (Figures S1–S12).

The synthesis of the target compounds PTZa, PTZ1, PTZ2 is evidenced in the 1H
NMR spectra by the signals of the aromatic protons of the phenothiazin-5-ium fragment,
namely, doublet of protons H1 and H9 with chemical shift 8.05 ppm (PTZa), 8.11 ppm
(PTZ2), doublet of protons H2 and H8 with chemical shift in the region of 7.68–7.50
ppm and a singlet of protons H4 and H6 in the region of 7.68–7.50 ppm. Vicinal proton–
proton coupling constants of phenothiazin-5-ium fragment are 3JHH = 9.3 Hz, while for the
aromatic substituents 3JHH is always less than 9 Hz [17,26,30], which makes it possible to
identify the signals of the protons of the phenothiazin-5-ium fragment in 1H NMR spectra.
In the 1H and 13C NMR spectra of the target compound PTZ1, a PTZa hydrolysis product,
no signals of protons and carbons of methyl fragments of acetamide groups are observed.
In 1H NMR spectra of PTZ1, signals of the aromatic protons upfield shifted to 6.61–7.84
ppm due to the electron donor effect of NH2 groups, caused by partial deprotonation with
solvent. Signals of protons of NH groups also shifted to 8.49 ppm. A broad singlet is
also observed in the region of 5.3 ppm, which can be attributed to the signals of NH3+
groups’ protons.
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Scheme 2. Synthetic route for the preparation of PTZa, PTZ1, PTZ2.

In the IR spectra of PTZa, PTZ1, PTZ2, absorption bands corresponding to the
phenothiazine-5-ium fragment are observed in regions 1568–1580 cm−1 (C-N), 1360–
1377 cm−1 (C=S+), 1115−1125 cm−1 (C-N) и675−685 cm−1 (C-S). For the compound
PTZa with an acetanilide fragments, there is a band at 1160 cm–1, which corresponds
to the stretching vibrations of C=O bonds. This band is absent in the IR spectrum of the
compound PTZ1, which indicates complete hydrolysis of acetamide fragments. PTZ1 is
characterized by several broad bands in the region of 3000–2900 cm−1, corresponding to
bending vibrations of the N-H bond of the NH3+ fragment. The PTZ2 compound with
sulfanilic acid fragments is characterized by absorption bands with maxima at 1142, 1115,
1029, 1002 cm–1, which corresponds to the vibrations of the sulfanilic acid fragment.

In high-resolution mass spectra (HRMS) of compounds PTZa, PTZ1, PTZ2, the main
peaks correspond to the molecular ions of these compounds within an accuracy of 0.0005
m/z, which indicates a high purity of the target compounds.

2.2. Aggregation Properties—Dimer Formation

The aggregation of cationic dye molecules leads to changes in their photophysical
properties. Aggregation of phenothiazine derivatives can be used for targeted design
of materials (binary co-crystals, π-complexes) [31–33]. However, this can also lead to
undesirable effects, such as a decrease in the yield of singlet oxygen [12]. Previously,
MB aggregation processes with the formation of H and J aggregates were studied in
detail [34,35]. In this regard, we first studied the aggregation properties of compounds
PTZ1 and PTZ2 in comparison with MB (Figure 1).
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We found the conditions for obtaining monomeric forms, i.e., PTZ1 was dissolved in a 
Tris-HCl buffer solution containing 1 vol.% of DMSO. The monomeric structure of the 
product is indicated by a red shift of the absorption band of PTZ1 (up to 669 nm). To 
confirm the formation of PTZ1 H-aggregates, quantum-mechanical calculations were per-
formed in Orca software (BP86/def2-SVP,def2/J). The geometries of the three types of con-
formers were determined (Figure 2), as well as the geometry of the H-dimer. The dimer 
formed by π-stacking of type A conformers is characterized by the lowest energy 
(−3195.1675 Hartrees). The distance between the planes of the heterocycles is 3.5 Å (Figure 
3). The geometry of the H-dimer of PTZ1 is similar to that of the H-dimer of MB [21]. 

Figure 1. UV-Vis absorption spectra of MB, PTZ1, PTZ2 ([MB] = 1.38 × 10−5 M, [PTZ1] = 6.9 ×
10−5 M, [PTZ2] = 2.0 × 10−5 M). (A–C): 10mM Tris-HCl buffer, (D): 10mM Tris-HCl buffer with 1%
DMSO.

It is known that MB has two aggregate forms in solution, i.e., monomer (λmax = 664 nm)
and dimer (λmax = 613 nm) (Figure 1A) [34]. The PTZ1 compound (10 mM Tris-HCl buffer)
showed a broad absorption band with λmax = 630 nm, with a low extinction coefficient
which indicates self-association of the compound into H-dimers such as MB and other
binary systems, based on phenothiazine derivatives described in the literature [36]. We
found the conditions for obtaining monomeric forms, i.e., PTZ1 was dissolved in a Tris-HCl
buffer solution containing 1 vol.% of DMSO. The monomeric structure of the product is
indicated by a red shift of the absorption band of PTZ1 (up to 669 nm). To confirm the
formation of PTZ1 H-aggregates, quantum-mechanical calculations were performed in
Orca software (BP86/def2-SVP, def2/J). The geometries of the three types of conformers
were determined (Figure 2), as well as the geometry of the H-dimer. The dimer formed
by π-stacking of type A conformers is characterized by the lowest energy (−3195.1675
Hartrees). The distance between the planes of the heterocycles is 3.5 Å (Figure 3). The
geometry of the H-dimer of PTZ1 is similar to that of the H-dimer of MB [21].

There is a single absorption band with λmax = 669 nm in the UV-Vis spectrum of
the compound PTZ2. In spite of varying concentrations, the molar extinction coefficient
remains constant and is approximately 40,000 M−1 × cm−1. This indicates that PTZ2 does
not form associates in an aqueous solution. This effect is achieved due to the electrostatic
repulsion of sulfonic acid fragments.

Thus, the effect of substituents in the aromatic fragment of phenothiazine-5-ium
derivatives (PTZ1, PTZ2) on their aggregation properties was studied by UV-Visible spec-
troscopy. The compound PTZ1 containing two p-phenylenediamine fragments forms
H-dimers such as MB, while PTZ2 does not form any associates in solution due to the
electrostatic repulsion of sulfonic acid groups.
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2.3. Interaction with DNA

It is known that many phenothiazine derivatives, including MB, are DNA intercala-
tors [37] due to the flat geometry and positive charge of the phenothiazin-5-ium fragment.
In this regard, the interaction of the synthesized derivatives of PTZ1 and PTZ2 with model
salmon sperm DNA was studied by UV-Vis and fluorescence spectroscopy. The studies
were carried out in comparison with the MB.
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2.3.1. UV-Vis Spectroscopy

Initially, the interaction of the compounds PTZ1 and PTZ2 with salmon sperm DNA
was studied by UV-Vis spectroscopy in 10mM Tris-HCl buffer (pH = 7.4). To determine
the type of interaction and binding constants, the compounds PTZ1, PTZ2, and MB were
titrated with DNA solution. The interaction was monitored in the long-wavelength region
of the spectrum (500–800 nm), where only dyes absorb (Figure 4).
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Figure 4. UV-vis absorption spectra of MB, PTZ1, PTZ2 ([MB] = 1.38 × 10−5 M, [PTZ1] = 6.9 ×
10−5 M, [PTZ2] = 2.0× 10−5 M) in presence of DNA ([DNA] 4.75× 10−6 M to 4.75× 10−4 M). (A–C):
10mM Tris-HCl buffer, (D): 10mM Tris-HCl buffer with 1% of DMSO.

In the observed range of [MB]/[DNA] concentration ratios from 3 to 0.3 (DNA con-
centration in nucleotide base pairs), an increase in DNA concentration leads to a decrease
in MB absorption (hypochromic effect) without a shift of absorption band maximum
(Figure 4A). This process is due to the DNA minor groove binding of MB. As shown in the
literature [8,38], higher DNA concentrations ([MB]/[DNA] < 0.14) lead to hypochromic
effect with bathochromic shift, which indicates a strong intermolecular interaction, includ-
ing effective overlap of the p-electron cloud with polynucleotide base pairs typical for
“intercalation ligand-DNA” complexation.

We determined the binding constant by a graphical method (Figure S13) according
to the Benesi—Hildebrand equation [39] (Kb = 1.67 × 104 M−1) which is in agreement
with data obtained using this method [40]. The binding constant was also determined
using Bindfit (K’b = 2.42 × 104 M−1, stoichiometry 1:1) [41–43]. We chose two methods
for determining the dye–DNA binding constants: (1) a graphical method based on the
Benesi-Hildebrand equation as a traditional method for dyes of a number of phenothiazine
derivatives and (2) a modern automated method using Bindfit application based on per-
forming a non-linear regression on titration data via a python program on its server. The
results obtained by the two methods correlate with each other.
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Further, the interaction between salmon sperm DNA with monomeric and dimeric
forms of PTZ1 was studied. A bathochromic shift and hyperchromic effect are observed
when DNA is added to a solution of dimeric forms of PTZ1 (Figure 4C). It is interesting
that the interaction of the compound PTZ1 with DNA prevents dimer formation. Similar
effects were reported in the literature [44]. The phenothiazine derivative containing a
bispiperazine linker in the absence of DNA is characterized by λmax = 620 nm, while in
the presence of DNA or sodium dodecyl sulfate (an agent that prevents dimerization),
λmax = 676 nm. In the observed range of DNA concentrations, no isosbestic point is
observed which indicates several processes, i.e., dimer decomposition and the interaction
of monomers with DNA.

The study of the interaction of monomeric forms of PTZ1 with DNA by spectropho-
tometric titration revealed two main ranges of [PTZ1]/[DNA] concentration ratios, indi-
cating the interaction of the dye with DNA similar to MB [8,38] (Figure 4D): (1) only a
hypochromic effect is observed at [PTZ1]/[DNA] from 10 to 1.75, (2) and a bathochromic
shift and a hyperchromic effect are observed (hypochromic in relation to free form of the
dye) at [PTZ1]/[DNA] from 1.75 to 0.8. The absorption spectra (1) are characterized by
the presence of an isosbestic point at 742 nm, which indicates the presence of one type of
binding (interaction). Therefore, the binding constant by the Benesi—Hildebrand equation
(Figure S14) can be obtained, which is 1.59 × 104 M−1. The constant was also determined
using Bindfit (K’b = 3.99 × 104 M−1, stoichiometry 1:1). Both constants are close to results
obtained for MB. The second process (2) is characterized by a bathochromic shift with
λmax = 684 nm. Based on the similarity of the processes and the values of the MB and PTZ1
binding constants, it can be assumed that process (2) is associated with the intercalation of
PTZ1 into DNA.

With the addition of DNA to the negatively charged PTZ2 derivative, no significant
changes were observed in the absorption spectra, which indicates the absence of interaction
of the compound PTZ2 with salmon sperm DNA.

In summary, the effect of substituents in the aromatic fragment in arylamine deriva-
tives of phenothiazine-5-ium on their interaction with DNA by UV-Vis spectroscopy was
investigated. In the case of PTZ1, the presence of primary amino groups leads to efficient
binding to DNA of dimeric and monomeric forms of PTZ1. The interaction of PTZ1 dimers
with DNA leads to dimer decomposition which results in bathochromic shift and hyper-
chromic effect in the absorption spectra. In the case of interaction of PTZ1 monomers with
DNA, hyperchromic effect with bathochromic shift was observed. The spectral properties
of the interaction, as well as the binding constants of PTZ1 with DNA, are similar to the
characteristics of the interaction of MB with DNA which indicates similar mechanisms of
interaction of dyes with DNA. PTZ1-DNA binding constant is 3.99 × 104 M−1 (Bindfit). In
the case of compound PTZ2 containing sulfonic acid fragments in its structure, the absence
of interaction of the dye with DNA was shown, which is due to the electrostatic repulsion
of sulfonic acid fragments from DNA phosphate groups.

2.3.2. Fluorescence Spectroscopy

One of the most convenient and reliable methods for determining the mechanism of
the interaction of organic dyes with DNA is fluorescence spectroscopy. The interaction of
MB with DNA, resulting in quenching of the fluorescence intensity of the dye relative to its
free form, is described in detail in the literature [45].

Initially, the fluorescence spectra of compounds PTZ1 and PTZ2 were recorded
([PTZ1] = 2.37 × 10−5 M, [PTZ2] = 1.18 × 10−5 M). Moreover, the obtained compounds
have a low fluorescence intensity. In this regard, it was not possible to determine the
interaction constant by fluorescence titration. Based on the dye/DNA concentration ra-
tios for the UV-vis spectroscopy titration for PTZ1, two key characteristic concentration
ratios were chosen: [dye]/[DNA] > 2, where only a hypochromic effect was observed, and
[dye]/[DNA] < 2, where a bathochromic shift was observed (Figure 5).
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For PTZ1 at a concentration ratio of [PTZ1]/[DNA] = 15, no changes in the fluores-
cence spectrum are observed, while for [PTZ1]/[DNA] = 1.5, fluorescence quenching is
observed (Figure 5A). The most pronounced effect is observed when [PTZ1]/[DNA] < 1
(Figure 5B).

To confirm the intercalation process of compound PTZ1 into the DNA helix, an
experiment was carried out with ferrocyanide ions, which are known as “fluorescence
quenchers” of free dye molecules in solution [45]. Fluorescence quenching is based on
charge transfer complex formation between a dye molecule in an excited state and a
ferrocyanide ion acting as an electron donor [46,47]. This experiment has already been
described in the literature for MB [48]. The study of fluorescence quenching is a reliable
verification of dye molecules availability for fluorescence quenchers [49–51]. When the
dye binds in DNA groove, it remains available for the quencher in solution. In the case
of intercalation, the dye located between the pairs of nucleic bases is shielded from the
solvent and, therefore, is inaccessible to the quencher [52]. We chose the concentration
ratio [PTZ1]/[DNA] = 0.2 based on the results obtained by electron spectroscopy and
the proposed mechanism of intercalation in this concentration range. The addition of
K4(Fe(CN)6) to a solution of free dye PTZ1 results in significant decrease of fluorescence
intensity (Figure 5D), while the emission intensity of the PTZ1-DNA complex, both in
the presence and in the absence of a quencher, practically does not change. Thus, the
mechanism of intercalation of the compound PTZ1 into DNA helix was confirmed.

In the case of PTZ2, with the concentration ratios [PTZ2]/[DNA] = 8 and [PTZ2]/[DNA]
= 0.84, no changes in the fluorescence intensity were observed (Figure 5C). The data ob-
tained by UV-Vis spectroscopy are in agreement with the results of fluorescence spec-
troscopy.

In summary, fluorescence spectroscopy experiments confirmed that substituents in
aromatic fragments at positions 3 and 7 in phenothiazin-5-ium significantly affect the
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interaction of the dye with DNA. Fluorescence spectroscopy data are in agreement with
the results of UV-Vis spectroscopy data.

3. Materials and Methods
3.1. General Experimental Information

All reagents and solvents (Sigma-Aldrich, USA) were used directly as purchased or
purified according to the standard procedures. The 1H and 13C-NMR spectra were recorded
on a Bruker Avance 400 spectrometer (Bruker Corp., Billerica, MA, USA) (400 MHz for H-
atoms) for 3–5% solutions in DMSO-d6. The residual solvent peaks were used as an internal
standard. Elemental analysis was performed on the Perkin-Elmer 2400 Series II instruments
(Perkin Elmer, Waltham, MA, USA). The FTIR ATR spectra were recorded on the Spectrum
400 FT-IR spectrometer (Perkin Elmer, Seer Green, Lantrisant, UK) with a Diamond KRS-5
attenuated total internal reflectance attachment (resolution 0.5 cm−1, accumulation of 64
scans, recording time 16 s in the wavelength range 400–4000 cm−1). HRMS mass spectra
were obtained on a quadrupole time-of-flight (t, qTOF) AB Sciex Triple TOF 5600 mass
spectrometer (AB SCIEX PTE. Ltd., Singapore) using a turbo-ion spray source (nebulizer
gas nitrogen, a positive ionization polarity, needle voltage 5500 V). Recording of the spectra
was performed in “TOF MS” mode with collision energy 10 eV, de-clustering potentially
100 eV and with a resolution of more than 30,000 full-width half-maximum. Samples with
the analyte concentration of 5 µmol/L were prepared by dissolving the test compounds
in the mixture of methanol (HPLC-UV Grade, LabScan). Melting points were determined
using the Boetius Block apparatus (VEB Kombinat Nagema, Radebeul, Germany).

The UV-vis measurements were performed with a Shimadzu UV-3600 instrument (Ky-
oto, Japan). Quartz cuvettes with an optical path length of 10 mm were used. Absorption
spectra were recorded after 1 h of incubation at 25 ◦C.

Fluorescence spectra were recorded on a Fluorolog 3 luminescent spectrometer (Horiba
Jobin Yvon, Longjumeau, France). The excitation wavelength was selected as 650 nm. The
emission scan range was 665–670 nm. Excitation and emission slits were 5 nm. Quartz
cuvettes with an optical path length of 10 mm were used. Fluorescence spectra were
automatically corrected by the Fluorescence program. The experiment was carried out at
298 K. Solutions of the investigated systems were measured after incubating for an hour at
room temperature.

DFT calculations were performed with Orca (version number: 4.2.1) using BP86
functional and def2-SVP, def2/J basis set [53–55].

3.2. Synthesis of PTZ1 and PTZ2

PTZa, PTZ1 were synthesized according to reported methods with minor modifica-
tions [30].

3.2.1. 3,7-Bis((4-acetamidophenyl)amino)phenothiazin-5-ium iodide (PTZa)

A solution of p-amino-acetanilide (0.579 g, 3.86 mmol) in methanol (20 mL) was added
to a suspension of phenothiazin-5-ium tetraiodide (PTZI4) (0.300 g, 0.425 mmol). The
mixture was vigorously stirred at room temperature for 24 h. Then 15 mL of methanol was
evaporated and precipitate was formed by sedimentation with diethyl ether. The obtained
precipitate was filtered off, washed with diethyl ether and dried under vacuum.

Product yield 0.150 g (56%), m. p.: 259 ◦C; 1H-NMR (DMSO-d6, δ, ppm, J/Hz): 2.08 (s,
6H, CH3), 7.39 (d, 4H, 3JHH = 8.4 Hz), 7.50–7.68 (m, 4H), 7.72 (d, 4H, 3JHH = 8.3 Hz), 8.05 (d,
2H, 3JHH = 9.3 Hz), 10.15–10.21 (m, 2H, NH); 13C-NMR (DMSO-d6, δ, ppm): 169.04, 168.87,
151.80, 139.70, 139.23, 138.92, 138.34, 137.16, 135.56, 132.64, 128.32, 127.98, 126.66, 126.32,
124.06, 123.91, 122.20, 121.43, 120.45, 120.34, 114.86, 106.95, 49.07; FTIR ATR (ν, cm−1): 2934
(acetanilide fragment), 1660 (acetanilide fragment), 1587 (C-N, phenothiazinium fragment),
1507, 1388 (phenothiazinium fragment), 1120 (C-N); Elemental analysis. The calculated
values for C28H24IN5O2S were as follows: C, 54.11; H, 3.89; I, 20.42; N, 11.27; S, 5.16; found:
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C, 54.18; H, 3.93; I, 20.56; N, 11.34; S, 5.12; HRMS: calculated [M−I−]+: m/z = 494.1645,
found [M−I−]+: m/z = 494.1650.

3.2.2. 3,7-Bis((4-aminophenyl)amino)phenothiazin-5-ium chloride dihydrochloride (PTZ1)

The compound PTZa (0.610 g, 1 mmol) was dissolved in the mixture of propan-2-ol
(20 mL) and concentrated hydrochloric acid (20 mL) and was refluxed for 60 h. Then the
solvent was evaporated. The precipitate formed was filtered off, washed with 2 M HCl
and dried under vacuum.

Product yield 0.146 g (93%), d. p.: 259 ◦C; 1H-NMR (DMSO-d6, δ, ppm, J/Hz): 5.36 (br.
s., NH3

+), 6.61–6.72 (m, 8H), 7.04–7.10 (m, 4H), 7.77 (d, 2H, 3JHH = 8.0 Hz), 8.49 (s, 2H, NH);
13C-NMR (DMSO-d6, δ, ppm): 146.06, 129.09, 128.81, 127.99, 126.05, 124.30, 124.21, 123.97,
123.91, 121.09, 118.08, 116.03; FTIR ATR (ν, cm−1): 1595, 1491, 1377 (phenothiazinium
fragment), 1125(C-N); Elemental analysis. The calculated values for C24H22Cl3N5S were
as follows: C, 55.55; H, 4.27; Cl, 20.5; N, 13.5; S, 6.18; found: C, 55.59; H, 4.34; Cl, 20.43; N,
13.44; S, 6.2; HRMS: calculated [M−2HCl−Cl−]+: m/z = 410.1434, found [M−2HCl−Cl−]+:
m/z = 410.1439.

3.2.3. 3,7-Bis((4-sulfophenyl)amino)phenothiazin-5-ium chloride (PTZ2)

A solution of 4-aminobenzenesulfonic acid sodium salt (0.829 g, 4.25 mmol) in
water was added to a suspension of phenothiazine-5-ium tetraiodide (PTZI4) (0.300 g,
0.425 mmol). The mixture was vigorously stirred at room temperature for 48 h. Precipitate
was collected and washed with diethyl ester. Then concentrated hydrochloric acid was
added to residue, and the obtained mixture was vigorously stirred at room temperature
for 10 h. The precipitate formed was filtered off, washed with 2 M HCl and dried under
vacuum.

Product yield 0.150 g (60%), m. p.: >300 ◦C; 1H-NMR (DMSO-d6, δ, ppm, J/Hz): 7.41
(d, 4H, 3JHH = 8.2 Hz), 7.57 (d, 2H, 3JHH = 9.3 Hz), 7.67 (s, 2H), 7.73 (d, 4H, 3JHH = 8.1 Hz),
8.11 (d, 2H, 3JHH = 9.3 Hz), 11.10 (s, 2H, NH); 13C-NMR (DMSO-d6, δ, ppm): 151.83, 146.84,
139.15, 137.94, 137.50, 136.16, 127.68, 123.19, 122.43, 107.40; FTIR ATR (ν, cm−1): 1574 (C-N,
phenothiazinium fragment), 1332 (C=S+, phenothiazinium fragment), 1261 (C-N, sulfanilic
acid fragment), 1142 (SO3), 1115 (SO3), 1029 (sulfanilic acid fragment), 1002 (sulfanilic acid
fragment), 810 (phenothiazinium fragment), 683 (C-S); Elemental analysis. The calculated
values for C24H18ClN3O6S3 were as follows: C, 50.04; H, 3.15; Cl, 6.15; N, 7.29; O, 16.66;
S, 16.70; found: C, 50.05; H, 3.14; Cl, 6.17; N, 7.30; O, 16.65; S, 16.69; HRMS: calculated
[M−Cl−]+: m/z = 540.0352, found [M−Cl−]+: m/z = 540.0357.

3.3. DNA Binding Studies

The studies were conducted in 10 mM Tris-HCl (pH = 7.4) buffer at a temperature of
25 ◦C. Minimum amount of dimethyl sulfoxide (1%) was employed to maintain monomeric
form of PTZ1 during experiment. The concentration of the salmon sperm DNA (Sigma,
USA) stock solution was determined from the reported molar absorptivity at 260 nm
(6600 M−1 cm−1). Spectroscopic studies were conducted by maintaining the concentrations
of the compounds at a constant value (for UV-Vis spectroscopic studies: [MB] = 1.38 ×
10−5 M, [PTZ1] = 6.9 × 10−5 M, [PTZ2] = 2.0 × 10−5 M; for fluorescence spectroscopic
studies: [PTZ1] = 2.37 × 10−5 M, [PTZ2] = 1.18 × 10−5 M) while varying the concentration
of DNA.

Fluorescence quenching study by ferrocyanide ions were performed using 7.91 ×
10−5 M stock buffer solution of K4(Fe(CN)6)) (final concentration in cuvette 7.91 × 10−6 M).

4. Conclusions

Two new 3,7-bis(aryl-amino)phenothiazine derivatives containing two primary amine
or two sulfo groups were synthesized. It was shown by UV-Vis fluorescence spectroscopy
that substituents in the arylamine fragment (located in the 3 and 7 positions of the phenoth-
iazine fragment) play a crucial role in aggregation properties and interaction with DNA.
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Therefore, it is possible to control these properties by rational choice of the substituents in
the arylamine fragment. For the PTZ1 derivative containing amine fragments, the forma-
tion of H-aggregates with λmax = 630 nm was demonstrated by UV-Visible spectroscopy,
and confirmed by DFT calculations (BP86/def2-SVP, def2/J), i.e., the energy of the H-
dimer was less than the energy of distant molecules. Interaction with DNA leads to dimer
decomposition which results in hyperchromic effect and a bathochromic shift of 39 nm
(λmax = 669 nm). The interaction of monomeric forms of PTZ1 with DNA (groove binding
and intercalation) was studied. In the case of the PTZ2 derivative containing sulfonic
acid fragments, no aggregation and DNA binding is registered, which is explained by the
electrostatic repulsion of sulfonic acid fragments. The obtained results open significant
opportunities for the development of new drugs and photodynamic agents.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22115847/s1.
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