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Abstract: Today, the use of polymer electrolyte membranes (PEMs) possessing ionic liquids (ILs)
in middle and high temperature polymer electrolyte membrane fuel cells (MT-PEMFCs and HT-
PEMFCs) have been increased. ILs are the organic salts, and they are typically liquid at the temper-
ature lower than 100 ◦C with high conductivity and thermal stability. The membranes containing
ILs can conduct protons through the PEMs at elevated temperatures (more than 80 ◦C), unlike the
Nafion-based membranes. A wide range of ILs have been identified, including chiral ILs, bio-ILs,
basic ILs, energetic ILs, metallic ILs, and neutral ILs, that, from among them, functionalized ionic
liquids (FILs) include a lot of ion exchange groups in their structure that improve and accelerate
proton conduction through the polymeric membrane. In spite of positive features of using ILs, the
leaching of ILs from the membranes during the operation of fuel cell is the main downside of these
organic salts, which leads to reducing the performance of the membranes; however, there are some
ways to diminish leaching from the membranes. The aim of this review is to provide an overview of
these issues by evaluating key studies that have been undertaken in the last years in order to present
objective and comprehensive updated information that presents the progress that has been made in
this field. Significant information regarding the utilization of ILs in MT-PEMFCs and HT-PEMFCs,
ILs structure, properties, and synthesis is given. Moreover, leaching of ILs as a challenging demerit
and the possible methods to tackle this problem are approached in this paper. The present review
will be of interest to chemists, electrochemists, environmentalists, and any other researchers working
on sustainable energy production field.

Keywords: middle and high temperature polymer electrolyte membrane fuel cells; polymer elec-
trolyte membranes; ionic liquids; proton conductivity; leaching

1. Introduction

Today, individuals have a special interest in applying renewable sources of energy,
such as solar, wind, biogas, geothermal, biomass, low-impact hydroelectricity, emerging
technologies-wave, tidal power, and fuel cells [1–5]. From among them fuel cells have been
widely used [5–8]. In fact, there are a growing number of reasons behind the widespread
use of this sort of device [5–9]. The most crucial reason is that fuel cell is considered as
an eco-friendly process which does not harm to the nature, and it does not produce any
contamination [5,10]. In contrast, nonrenewable sources of energy (generally combustion
of fossil fuels) cause serious environmental issues, including global warming, air pollution,
acid rains, and ozone depletion [10–13]. Furthermore, they can also result in several major
health problems, like cancer, cardiovascular disease, and respiratory problems [14–17].
Consequently, humans should care about their future and next generation since the re-
sources of the earth (especially energy) are limited and irreversible [18,19]. Fuel cells can be
a great environmentally friendly alternative instead of fossil fuels which are able to convert
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chemical energy into electrical one [20–22]. A wide range of fuel cells have been utilized
depending on the kinds of electrolytes, operational conditions (temperature and humidifi-
cation), as well as technological and design factors, such as polymer electrolyte membrane
fuel cell (PEMFC), solid oxide fuel cell (SOFC), molten carbonate fuel cell (MCFC), alkaline
fuel cell (AFC), direct methanol fuel cell (DMFC), and phosphoric acid fuel cell (PAFC)
(Figure 1) [22,23]. These days, research findings confirm that PEMFC can have a good
potential for using in lab, semi-industrial, and even industrial scales [23,24]. Owing to
PEMFC high effectiveness and efficiency, favorable power density, and quick startup, it has
been noticeably employed in various subjects, including transportation, portable gadgets,
and stationary power production [25,26]. Besides, in each PEMFC, hydrogen and oxygen
(or air) generally react with one another as fuel and oxidizer agents, respectively, and,
finally, the products of this reaction are heat, water, and electricity [10,27]. It is clear that
this type of electrochemical device would be a very promising candidate for sustainable
energy production. PEM is the most important part of each PEMFC [23,26,28]. Actually,
PEM plays an essential role in transporting protons through the ion exchange membrane
from anodic section to cathodic one, and its proper performance in this matter can be a
decisive factor in PEMFC efficiency (Figure 2) [29–31].
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management in the moisture and aqueous-free conditions [23,45]. A wide range of poly-
mers have been used for this goal, but, thanks to the tunable properties of Nafion (the 
most common types of perfluorosulfonic acid (PSFA) ionomers), it is widely-used [46–48]. 
Research findings confirm that there are a lot of benefits to the usage of Nafion membranes 
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special polymeric membrane has several drawbacks, of which the most impractical char-
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it is believed that the most sensible cause for this phenomenon is because of the evapora-
tion of water from Nafion membrane [51,52]. The range of operation temperature for 
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In fact, proton conduction through the membrane according to the operating condi-
tions can be different [32,33]. Usually, the vehicle and Grotthuss mechanisms are valid and
accepted to express proton conducting among scientists [34,35]. These two mechanisms are
defined depending on two decisive operating factors: humidity and temperature [35,36].
Generally, the vehicle mechanism is employed at low temperature and high moisture con-
ditions [37]. In this pattern, water plays a vital role in transporting protons from one side to
another side of membrane [38]. Due to the fact that water carries the protons through the
membrane (like an automobile), this mechanism is known as a vehicle [39]. For instance,
proton transportation within Nafion membrane is carried out by this mechanism [40].
Water and sulfonate (SO3

−) groups provide the suitable condition for conducting hydrogen
ions across the Nafion membrane [40]. On the other hand, at elevated temperature and low
humidification, using Grotthuss mechanism is valid, which is also recognized as proton
hopping mechanism [41]. Here, water cannot act as ion transporter since the temperature
is too high, and water will be evaporated [42]. Hence, in this pattern, protons are moved
via forming and deforming hydrogen bonds [43]. In general, every PEMFC has the same
body structure, which is called membrane electrode assembly (MEA) [44]. PEM, anode,
and cathode catalyst layers, anode and cathode gas diffusion layers, and gaskets are placed
in MEA, and each part has its own responsibility [23]. Since PEMFC has some negative
features, it has been unable to be used on industrial scale [45]. It can be mentioned that
these PEMFC demerits are related to the too much expense of PEM (Nafion is a case in
point) and catalyst, facing serious problems in the case of water management in the mois-
ture and aqueous-free conditions [23,45]. A wide range of polymers have been used for
this goal, but, thanks to the tunable properties of Nafion (the most common types of perflu-
orosulfonic acid (PSFA) ionomers), it is widely-used [46–48]. Research findings confirm
that there are a lot of benefits to the usage of Nafion membranes at lower temperatures
and under hydrous situations, such as great proton conductivity and excellent mechanical,
thermal, chemical, and oxidative stability [49]. However, this special polymeric membrane
has several drawbacks, of which the most impractical character would be that Nafion can
only be used conveniently at low temperatures, and, in order to conduct protons through
this sort of polymer, the presence of water is vital [49,50]. Actually, in the range of water
boiling temperature, the quick dehydration is unavoidable, which can have several adverse
impacts upon fuel cell performance, including diminishing conductivity, and, in some
instances, it leads to immutable variations in the microstructure of membrane [51]. There
might be a number of reasons behind the considerable reduction of the proton conductivity
of the Nafion membrane [49,50]. Nonetheless, it is believed that the most sensible cause for
this phenomenon is because of the evaporation of water from Nafion membrane [51,52].
The range of operation temperature for Nafion membrane is too limited, and it has a
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positive efficiency just between 60 and 80 ◦C, but higher temperatures are desirable due
to the several reasons [23]. Researchers argue that the one that really stands out is that
the exploitation of PEMFC at elevated temperatures can bring about accelerating the elec-
trochemical reactions at anode and cathode (quicker electrode kinetics) [53]. Moreover,
another reason is that utilization of PEMFC in this condition can be really profitable as it is
possible to use hydrogen as fuel with lower purity [53]. Additionally, using the other fuels,
such as biogas, natural gas, and methanol, are feasible [10,53]. Furthermore, the applica-
tion of PEMFC at more than 80 ◦C could reduce the carbon monoxide (CO) poisoning at
electrodes which it is one of the most challenging problems for low temperature polymer
electrolyte membrane fuel cells (LT-PEMFCs) [53–55]. It also can result in facilitating heat
and water management [10]. A wide range of investigations have been conducted by
researchers for finding new other electrolyte materials that can be used at middle and
high temperatures and under aqueous-free conditions to retain suitable proton conduc-
tivity, thermal stability, and mechanical resistance [23,53,56,57]. Dehydration in PEMFC
is the biggest problem here because all of these materials can work under fully moisture
condition [23]. A lot of efforts have been done so far to improve this important problem,
such as incorporation of inorganic and organic nanoparticles (NPs), nanosheets, nanotubes,
and fillers, e.g., ZrO2, TiO2, SiO2, P2O5, Fe2TiO5, BaZrO3, Zeolite NPs, aluminosilicate,
graphene oxide (GO), zirconium phosphate, titanium dioxide nanotube, nanowire, and
heteropolyacid, as well as the use of sulfonated hydrocarbon polymers, e.g., sulfonated
poly(ether ether) ketone (SPEEK) and sulfonated polyimide (SPI) [53,58–69]. Even though
these enhancements could result in some advantages about obtaining MT-PEMFC and
HT-PEMFC, they require water in order to pass protons through the PEM. Thus, these
ways cannot be regarded as successful method to gain HT-PEMFC [70]. The alteration of
water with none or less volatile solvents is an innovative way to exploit PEM at middle and
elevated temperatures [23,44]. Utilization of phosphoric acid (PA) can be a good alternative
instead of using water as it is a low volatile solvent and independent from humidity [44].
Moreover, the use of PA brings about enhancing proton conductivity remarkably [44,71].
However, it has demerits, such as acid leaching and degradation of membrane (decreasing
mechanical stability) [71]. ILs can be good candidates as additives into the PEM in order to
use at middle and elevated temperatures without humidification [72]. The focus of this
paper is to provide such a review, presented in a systematic and comprehensive way so
that the current knowledge on ILs-based membranes and details on their potential for
MT-PEMFCs and HT-PEMFCs are provided in one useful source for guiding future studies.

2. Ionic Liquids Structure and Properties

Over the last decade, ILs have attracted great attention from scientists and organiza-
tions which is sensible by increasing the number of published papers and books [73–75].
ILs are organic salts which are made-up by ions (organic cation and inorganic/organic
anions) and they are usually liquid at temperature lower than 100 ◦C [76–79]. Initially, the
word of IL was used and had the same meaning as “molten salt” [80]. However, today,
the original meaning is changed and ILs refers to organic compounds which have melting
temperature below 100 ◦C [78–80]. The reason why these organic materials are often liquid
is owing to the difference between the size of anions and cations [81]. Consequently, the
physicochemical bonds and interactions among them are not often strong [81]. In fact, the
most prominent features of ILs are negligible vapor pressure [82], high viscosity [83], wide
electrochemical window [84], low melting point [85], non-flammability [78,79], great proton
conductivity [86], high thermal stability [87], and good chemical stability [88]. Thus, consid-
ering these properties, ILs are desirable alternatives for volatile solvents which have many
adverse effects upon the nature [89]. Despite the positive features of ILs, the toxicity aspects
of these organic salts should be taken into account as an important issue [90]. A wide range
of research have been conducted so far concerning ILs toxicity and the results demonstrated
that the usage of ILs (e.g., imidazolium and pyridinium-based ILs) even at low values can
have several adverse effects upon human [91], animals [92], bacteria [93], and algae [94].
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ILs are used for several applications, such as gas separation [95], metal extraction [96], drug
delivery [97], and wastewater treatment [98], which can result in dispersion of ILs to the
ecosystem. For instance, hydrophobic ILs are utilized for wastewater treatment and they
have a good solubility in water (between 102 and 104 mg/L) [90,99,100]. Therefore, these
toxic compounds disperse into the water reservoirs, and then soils, plants, animals, and
people are affected [101,102]. Up to now, there is a number of efforts which have been done
to decrease the toxicity and negative effects of ILs on the environment [90,103]. All these
aspects were very well debated in a critical review related to the toxicity of ILs [104]. There
is a vast number of ILs and several types of them are displayed in Table S1 considering
their full and abbreviated names.

2.1. Types of ILs

Today, numerous types of ILs have been known and used in different backgrounds,
including task specific-ionic liquids (TS-ILs), room temperature-ionic liquids (RT-ILs),
chiral-ionic liquids (C-ILs), switchable polarity solvent-ILs (SPS-ILs), bio-ionic liquids
(Bio-ILs), supported ionic liquids (S-ILs), basic ionic liquids (B-ILs), energetic-ionic liquids
(E-ILs), neutral-ionic liquids (N-ILs), metallic-ionic liquids (M-ILs), poly-ionic liquids (P-
ILs), and protic-ionic liquids (Pr-ILs) [78,79,89,105–121]. Indeed, such huge variety of
ILs is mainly owing to very high diversity in the number of anions and cations and also
their own unique thermal and physicochemical features, including ionic conductivity and
the ability to mix in organic and inorganic solvents [78,79]. TS-ILs are one of the most
popular ILs as a result of their substantial characteristics [79]. These sorts of ILs can have
innumerable functional groups in their structure, for this reason they are also recognized
as functionalized ILs [78,79]. However, since these kinds of ILs contain different reactive
functional groups, synthesis of them is hard and require much more time compared with
other types [78]. Table 1 provides some information about the rest of mentioned ILs.

2.2. ILs Synthesis

Depending on the kinds of ILs and user’s requirements, there are assorted techniques
for synthesis of ILs; however, these organic compounds are generally synthesized by two
main methods [78,89]. Research findings confirm that there are two types of ILs: primary
and secondary ILs [89]. The primary ILs are produced by protonation or alkylation of a base
by an acid or haloalkane [89,122]. There are four routes to synthesize secondary ILs, includ-
ing the use of metal salt, Brønsted acid, ion exchange resin, or Lewis acid [78,89,122,123]. In
this review the synthesis of ILs by acid-base neutralization, metathesis, and alkylation reac-
tions are going to be presented as these methods are the most common ways for synthesis
of primary and secondary ILs.

2.2.1. Alkylation Reactions

Generally, this method is used for synthesis of ILs containing halide anions (Cl−, Br−,
I−, and F−). In this reaction ILs are produced through the alkylation of a base with a
haloalkane (Figure 3) [122–124]. The low cost of haloalkanes and low reaction temperature
are the main benefits of this route [122,123]. The order of haloalkane reactivity rises from
chloride to iodide (chloride < bromide < iodide) [122]. For example, 1-chlorobutane needs
more time for completion of the reaction than 2-bromobutane at the same operation condi-
tions because bromide is more reactive than chloride [122,123]. Moreover, since bromide
and iodide haloalkanes are very reactive, the reaction does not require high temperature
(e.g., 1-bromobutane and iodomethane required 35 and 0 ◦C, respectively) [122]. In the
case of iodoalkanes, the temperature should be low in order to prevent the secondary
reactions [122].
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Table 1. Different types of ILs and their characteristics.

Type of Ionic Liquid Abbreviated Name Summary and Property Applications Ref.

Chiral ionic liquids C-ILs

The best option for asymmetric induction in catalysis. Because of
the nature of C-ILs, the process of their synthesis is difficult
(needed several steps) and expensive. These kinds of ILs are
usually synthesized by asymmetric synthesis or chiral pool and
they can contain polar, axial or central chirality.

Liquid chiral chromatography, stereo selective
polymerization, synthesis of potential active
chiral compounds, liquids crystal, NMR chiral
discrimination, solvent, electrolyte, and
catalyst.

[78]

Switchable polarity solvent
ionic liquids SPS-ILs

SPS-ILs are usually synthesized by proton transfer reaction.
Additionally, SPS-ILs have acceptable resistance against wet
condition for synthesis and operation. By adjusting the value for
molecular triggers, including CO2 and CS2, the physical features
of SPS-ILs can be changed.

Solvent recovery and solute separation. [112]

Protic ionic liquids Pr-ILs

Pr-ILs can be quickly synthesized by transferring hydrogen ion
(H+) from a Brønsted acid to a Brønsted base. The process of
proton-transfer is boosted by using strong bases or acids or both
of them. These ILs have good proton conductivity, fluidity, and
low melting point.

Alkaline batteries, fuel cells, dehydration, and
choromatogeraphy (both liquid and gas). [110]

Bio-ionic liquids Bio-ILs

Bio-ILs are often produced by sustainable bio-precursors;
therefore, they are environmentally friendly, bio-degradable,
biocompatible, and non-toxic. They have high thermal (between
220 and 290ºC) stability and solubility (in methanol, Dimethyl
sulfoxide, chloroform, and water).

Biodiesel production, renewable diesel and jet
fuel, chemical compounds production (like
herbicides).

[107]

Poly- ionic liquids P-ILs

P-ILs are also known as polymerized ionic liquids. P-ILs refer to a
subclass of polyelectrolytes that feature an ionic liquid (IL) species
in each monomer repeating unit, connected through a polymeric
backbone to form a macromolecular architecture. In spite of the
high charge density of P-ILs, they usually have wide glass
transition temperature ranges.

Polymer electrolytes, batteries, fuel cells,
carbon electrodes, sensors, organic transistors,
super capacitors, catalysts, photoresists, and
corrosion inhibitors.

[106]

Energetic ionic liquids E-ILs

E-ILs have low melting point, and high thermal stability and can
be used as eco-friendly explosives. These ILs have very low vapor
pressure and structural designability. Due to the great safety and
energy, as well as low negative environmental impacts on the
eco-system of E-ILs, they can be good alternative instead of
energetic materials, such as HMX, RDX, TNT, and CL-20.

Explosives, pyrotechnics, and propellants. [109]
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Table 1. Cont.

Type of Ionic Liquid Abbreviated Name Summary and Property Applications Ref.

Neutral ionic liquids N-ILs

In these ILs, the electrostatic interactions between anions and
cations are typically very weak. Moreover, N-ILs hold low
melting point and viscosity. As a result, N-ILs are usually used as
neutral solvents.

Solvent. [78]

Metallic ionic liquids M-ILs

These types of ILs contain metal halides (e.g., (AlCl3−), (CuCl3−),
(SnCl3−), and (Al2Br7

−)). M-ILs are highly viscous in comparison
with other types of ILs. M-ILs are typically stable under moisture
and ambient conditions.

Catalyst, solvent, organometallic chemistry
hydration process, and recycling of nuclear
waste.

[105]

Basic ionic liquids B-ILs

B-ILs are regarded as eco-friendly, flexible, non-volatile, active
and selective catalysts; thus, B-ILs are good alternatives for
conventional bases (e.g., KOH, NaOH, and NaHCO3). Unlike
traditional bases, B-ILs do not suffer from environmental issue,
waste production, and corrosion.

Organic transformation (e.g., Michael addition,
aldol condensation, Knoevenagel condensation,
Henry reaction, oximation, and Michael
reaction), catalyst, and solvent.

[111]

Supported ionic liquids S-ILs

The use of S-ILs have been increased because of high cost of pure
ILs utilization. These ILs are usually benefited from silica support;
hence, the requirement for using ILs significantly reduced. The
application of S-ILs can accelerate exploitation of ILs in industrial
and commercial processes.

Solvent, catalyst, reactor systems, and
separation process. [108]
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Figure 3. Typical synthesis of the primary ILs by alkylation. Reprinted from Reference [123] under
the license CCBYNCND 3.0. Copyright 2015 Longdom.

Furthermore, iodoalkanes are photoactive, and they can easily react with sunlight; as
a result, in this case, the reactions are typically conducted in an ice bath and protected from
sunlight [122]. The use of haloalkanes comprising fluorine anion is impossible as the chem-
ical bond between fluorine and carbon is very strong; thus, using them for synthesis of ILs
are practically impossible [122]. Bao et al. [125] synthesized 1-hexyl-3-methylimidazolium
chloride ((HMIm)Cl) via alkylation reaction in order to modify thermal stability and ionic
conductivity of PEMFC. 1-methylimidazole, cyclohexane, and 1-chlorohexane were used
as base, solvent, and haloalkane, respectively. The reaction was taken place in three-neck
round bottom flask at 60 ◦C for 72 h under stirring. The resultant product was washed with
ethyl acetate to remove by-products and unreacted compounds. Eventually, (HMIm)Cl
was dried in oven at 70 ◦C overnight to evaporate the solvent. The hybrid membrane
composed of sulfonated poly(2,5-benzimidazole)/montmorillonite/(HMIm)Cl demon-
strated the maximum amount of conductivity (4.0 × 10−2 S/cm at 220 ◦C). In another
research, Fang et al. [126] synthesized two types of ILs by alkylation reaction: 1-vinyl-3-
butylimidazolium bromide ((VBI)Br) and 1-vinyl-3-methylimidazolium iodide ((VMI)I).
1-vinylimidazole, 1-bromobutane, and methyl iodide were the reactants of these two reac-
tions. Since the methyl iodide is much more reactive than 1-bromobutane, methyl iodide
required lower operating temperature and stirring time (0 ◦C and 6 h for (VMI)I, and 35 ◦C
and 12 h for (VBI)Br. After the reaction completion both products were washed with ethyl
ether for the by-products removal and then dried at room temperature for 6 h.

Alkylation reaction is used for the primary ILs synthesis, which is useful for produc-
tion of secondary ILs. As a result, this reaction is an important complementary to acid-base
neutralization and metathesis reactions.

2.2.2. Metathesis Reactions

Metathesis reaction is one of the most common and simplest methods for synthesis
of secondary ILs [122–124]. In general, the reaction takes place between a metal salt (con-
taining Ag or group I metal in the periodic table) and a primary IL to synthesize halide
free ILs (Figure 4) [123,124]. In this reaction, the IL should be separated from impurities
(by-products) via phase transfer procedure [122]. There is an anion exchange reaction
between metal salt and primary IL which leads to desired IL [89,122]. Hooshyari et al. [127]
synthesized a dicationic IL via metathesis reaction, i.e., 1,6-di(3-methylimidazolium) hex-
ane bis(hexafluorophosphate) (DC6). The synthesis of this IL consists of two steps. At
first, 1,6-di(3-methylimidazolium) hexane bis bromide was obtained by alkylation reaction
between 1,6-dibromopropane and 1-methylimidazole. Then, DC6 was synthesized by a
metathesis reaction between 1,6-di(3-methylimidazolium) hexane bis bromide (IL) and
potassium hexafluorophosphate (salt). Lin et al. [128] made 1-vinyl-3-butylimidazolium
bis(trifluoromethylsulfonyl)-imide ((VBIm)(NTf2)) by using alkylation, and metathesis reac-
tions. Firstly, 1-vinyl-3-butylimidazolium bromide ((VBIm)Br) was prepared by alkylation
reaction between N-vinylimidazole and 1-bromobutane. Then, (VBIm)(NTf2) was synthe-
sized via the metathesis reaction between (VBIm)Br, and bistrifluoromethanesulfonimide
lithium (salt).
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2.2.3. Acid-Base Neutralization

Acid-base neutralization is an effective way to synthesize secondary ILs [89]. The basis
of this reaction is the neutralization between a Brønsted acid and a Brønsted base, which
allows the production of a Pr-IL [78,123]. As highlighted in Figure 5, an anion exchange
reaction between the halide anion of the primary ILs and acid anion takes place in the pres-
ence of solvent [122,123]. Maiti et al. [129] synthesized 2,3-dimethyl-1-butyl imidazolium
dihydrogen phosphate ((MBuIm)(H2PO4)) by acid-base neutralization method. At first,
2,3-dimethyl-1-butyl imidazolium bromide was formed through the reaction between 1,2-
dimethyl imidazole and 1-bromobutane (by alkylation reaction). Finally, (MBuIm)(H2PO4)
was obtained through the acid-base neutralization reaction in the presence of 2,3-dimethyl-
1-butyl imidazolium bromide, acetonitrile, and phosphoric acid (H3PO4). Lin et al. [72]
synthesized 1-methylimidazolium trifluoromethanesulfonate ((MIm)(TfO)) via acid-base
neutralization. 1-methylimidazole, trifluoromethanesulfonic acid, and ethyl acetate were
used as Brønsted base, Brønsted acid, and solvent. For this purpose, 1-methylimidazole
was dissolved in ethyl acetate at 0 ◦C. Then, trifluoromethanesulfonic acid was added
drop-wisely to the mentioned solution, and anion exchange reaction took place between
base and acid. The resultant IL was dried in a vacuum oven in order to evaporate sol-
vent. However, metathesis and acid-base neutralization reaction have some demerits [123].
As for metathesis reaction, since halide ions are very reactive, they can easily react with
water, silver, and other chemical compounds [123]. Another disadvantage is the fact that
the number of metal salts available on the market is limited [123]. Concerning acid-base
neutralization reaction, hydroxide quaternary cations should be used in the case of weak
acids (weaker than hydrohalic acids) [123].
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2.3. ILs Applications

The widespread use of ILs in science and industry is an inevitable phenomenon owing
to tunable features of these organic salts [23,79]. Not only do these chemical compounds



Int. J. Mol. Sci. 2021, 22, 5430 10 of 31

improve the efficiency of the processes, but they also do not generate any considerable
contamination [23,78]. As a result, ILs are used for various purposes, such as electro-
chemistry, solvent, engineering, physical chemistry, gas separation, analytical chemistry,
gas separation, metal extraction, biological aid, and engineering chemistry [78]. Actually,
the exploitation of various ILs can improve the electrochemical properties of fuel cells
significantly [126,130,131]. Here, some examples of using ILs in some types of fuel cells
are shown. Elumalai et al. [132] prepared hybrid membranes containing 1-methyl-3-(3-
trimethoxysilylpropyl)imidazolium chloride (IL)-titanate nanotubes (TnT)/quaternary
ammonium functionalized polysulfone (QAPSU) in order to use in AFC. The resultant
hybrid membranes demonstrated that, owing to the synergetic effect of IL and TnT,
the addition of this hybrid compound increased hydroxyl conductivity, water content,
and ion exchange capacity (IEC). Among all hybrid membranes, the sample possess-
ing 5 wt% IL-TnT presented the highest power density (302 mW/cm2), water uptake
(15.97%), IEC (1.93 (meq/g), and conductivity (2.08·10−2 S/cm). In another research,
Elumalai et al. [133] fabricated 1-methyl-3-(3-trimethoxysilylpropyl)imidazolium chloride
(IL)-Santata Barbara amorphous-15 (SBA-15)/ quaternary polysulfone (QPSU) compos-
ite membranes via solvent casting method in order to improve the AFC performance.
It was found that the best value of open circuit potential (OCP), power density, wa-
ter absorption, IEC, and conductivity was for composite sample with 3 wt% IL-SBA-15
(0.87 V, 278 mW/cm2, 15.87%, 1.86 meq/g, and 1.89·10−2 S/cm, respectively), in which
these parameters were much better than membrane without IL (0.65 V, 160 mW/cm2,
5.73%, 0.69 meq/g, and 0.71·10−2 S/cm, respectively). In addition, ILs are widely used
in MFC processes. Hernández-Fernández and co-workers [134] produced supported
IL/polyvinylchloride (PVC) hybrid membranes for improvement of MFC efficiency. Two
types of ILs were used in that study: methyl trioctil ammonium chloride (MTOA)(Cl), and 1-
octyl-3-methylimidazolium hexafluorophosphate (OMIm)(PF6). The results displayed that
ILs-based membranes could improve proton conduction through the electrolyte. The com-
posite membrane with 50% and 70% w/w (MTOA)(Cl) showed the acceptable power of 400
and 450 mWm−3. Furthermore, the amount of chemical organic demand removal (CODR)
for the composite membrane comprising 70% w/w (MTOA)(Cl) was around 80%. More-
over, Hernández-Fernández et al. [135] also found that supported ionic liquid membranes
(SILMs) could play a crucial role in transporting of protons through the membrane in MFC
processes for treatment of effluents. Various types of SILMs (cations, and anions) were used,
and their performances were compared with commercial membranes, including Nafion®

and Ultrex®. It is worth noting that the membrane possessing methyl trioctyl ammonium
chloride (MTOA)(Cl) indicated maximum power and CODR of 103.9 mW/m3 and 89.1%,
respectively. Thus, it can be seen that the utilization of ILs would result in boosting the
performance of MFCs. ILs have been used in order to improve performance and efficiency
of PEMFCs. For example, Guerreiro da Trindade et al. [136] fabricated SPEEK based-
membranes improved by 1-butyl-3-methylimidazolium tetrafluoroborate ((BMIm)([BF4)).
Lab-made membranes were immersed into the solution possessing (BMIm)([BF4) for vari-
ous time intervals. It was revealed that the membrane which was dipped for 2 min showed
the best thermal stability among others since, at this time, SO3

− groups can interact with
(BMIm)+ cations in the best way. This sample also indicated the maximum proton con-
ductivity of 1.0 mS/cm at 100 ◦C which was 114 greater than for pure SPEEK membrane.
During the PEMFC’s exploitation, the highest values for power and current density were
0.13 W/cm2 and 0.54 A/cm2, respectively. Although (BMIm)([BF4) does not hold functional
groups, such as hydroxyl, carboxyl, sulfate, and phosphate, in its structure, it resulted in
enhancing performance of the SPEEK-based membranes especially with regard to proton
conductivity. Furthermore, Yang et al. [137] manufactured PA/Nafion hybrid membranes
which were modified by incorporation of 1-butyl-3-methylimidazolium (an ionic liquid
cation (ILC)). The incorporation of ILC led to reducing the methanol permeability of Nafion
membranes and increasing the PA doping. Moreover, the highest proton conductivity for
ILC/PA/ Nafion hybrid membranes was 10.9 mS/cm at 160 ◦C without humidification.
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It was found that the usage of PA into the hybrid samples not only improved the ther-
mal stability (up to 250 ◦C), but it also maintained the mechanical strength at reasonable
values (between 2.5 and 9.0 MPa at 160 ◦C). Therefore, it can be seen that the fabrication
of Nafion-based membranes with good potential for using at elevated temperatures is
practical by adding ILC. Ye et al. [138] prepared 1-propyl-3-methylimidazolium dihydro-
gen phosphate ((PMI)(H2PO4))/H3PO4/PBI by solution casting method in order to obtain
HT-PEMFC. The resultant membrane showed good proton conductivity of 2.0·10−3 S/cm
at 150 ◦C and under aqueous-free condition. Moreover, the performance of mentioned
composite membrane was investigated under various relative humidity situation (0%,
10%, and 20% RH) at 80 ◦C. The results demonstrated that, by increasing the humidity,
the proton conductivity of (PMI)(H2PO4)/H3PO4/PBI membrane was enhanced, and the
maximum value for proton conductivity was 1.31 mS/cm at 80 ◦C under relative humidity
of 20%. Although lower humidity is desirable for HT-PEMFCs, owing to the evaporation
of water during the separation process, humidity is an important factor for application of
PEMFCs at low and moderate temperatures. In another study, Malis et al. [139] fabricated
four composite membranes by two polymers (Nafion and poly(vinylidenefluoride-co-
hexafluoropropene)) and two ILs (1-butyl-3-methylimidazolium trifluoromethanesulfonate
((BMIm)(TfO)) and 1-ethylimidazolium trifluoromethanesulfonate ((EIm)(TfO))) via so-
lution casting technique. The proton conductivity of membranes were measured under
both humid (8%, 17%, and 22% RH) and anhydrous conditions. The proton conductivity of
membranes under anhydrous condition were enhanced by increasing the temperature and
the maximum amount of this factor was for (BMIm)(TfO)/Nafion membrane (2.25 S/m at
160 ◦C). The conductivity of (BMIm)(TfO)/Nafion membrane was also measured at 110 ◦C
under 22% RH, and it was around 8.0 S/m. Therefore, it is observed that, by decreasing
the temperature and increasing the humidity, the conductivity of composite membrane
was significantly increased.

3. Application of ILs in PEMFC at Elevated Temperatures

Due to the high ionic conductivity and negligible vapor pressure of ILs, these types of
organic salts are able to be employed at middle and elevated temperatures under anhydrous
conditions without any sensible issues [140]. Protons (H+) in this condition pass through
the membrane via Grotthuss mechanism [43]. In this review, FILs containing different
kinds of ion exchange groups, including sulfonate, sulfate, phosphate, and imide groups,
are discussed because these functional groups can provide a better functionality, affinity,
and separation performance for the PEM. Although ILs comprising halides (F−, I−, Br−,
and Cl−) have some merits, scientists are often looking for new ILs with more functionality
and reactivity. A wide range of research studies have been carried out concerning the use
of FILs in PEMFC so far, and several of them are presented in this review (Table 2).

3.1. ILs Containing Sulfonate and Sulfate Groups

It can be observed that ILs composed of sulfonate and sulfate ion exchange groups
have attracted much attention, thanks to their special thermochemical characteristics [139].
There is a vast number of FILs possessing sulfonate, as well as sulfate group, such
as 3-triethylammonium hydrogen sulfate, 1-butylimidazole hydrogen sulfate, 1-butyl-
3-methylimidazole methanesulfonate, 1-butyl-3-methylimidazolium hydrogen sulfate,
1-methylimidazolium hydrogen sulfate, imidazolium hydrogen sulfate, diethylethylam-
monium trifluoromethanesulfonate, N-ethylimidazolium trifluoromethane-sulfonate, 1-
methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazolium trifluorometh
anesulfonate, and 1-ethylimidazolium trifluoromethanesulfonate [139,141–145]. Chen et al. [141]
elaborated SPEEK-based PEMs which were modified by ILs (1-ethyl-3-methylimidazole
tetrafluoroborate (EB) or 1-butyl-3-methylimidazole methanesulfonate (BS)) and yttrium
oxide (Y2O3). The resultant membranes were prepared via casting solution method, and
the influence of the ILs and Y2O3 content on the membranes properties was investigated.
The results illustrated that the conductivity of membranes was increased by raising the
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temperature from 30 to 90 ◦C, although pristine SPEEK membrane showed a decreasing
trend by increasing temperature. The sample containing SPEEK/BS/Y2O3 displayed much
higher conductivity than SPEEK/EB/Y2O3 at 90 ◦C under both 100% and 50% relative hu-
midity (RH) (1.18·10−1 S/cm and 1.02·10−1 S/cm for SPEEK/BS/Y2O3 and 9.04·10−2 S/cm
and 8.04·10−2 S/cm for SPEEK/EB/Y2O3, respectively). Besides, it was found that incorpo-
ration of ILs and Y2O3 improved the thermal stability and water uptake of membranes. The
tensile strength for SPEEK/EB/Y2O3 and SPEEK/BS/Y2O3 was 2.61 MPa and 2.33 MPa, re-
spectively. Owing to the BS, the proton conductivity of membrane comprising BS is slightly
higher due to the presence of sulfonate group (hydrophilic functional group) in its structure.
Moreover, all membranes revealed excellent thermal stability between 250 and 350 ◦C due
to the interaction between SO3

− anions of SPEEK and ILs. The resultant composite mem-
branes demonstrated promising potential for using at middle and elevated temperatures.
Guerreiro da Trindade et al. [142] produced SPEEK/polybenzimidazole (PBI)/ILs mem-
branes by casting technique (pouring the polymeric solution in a Petri dish, then drying at
oven under vacuum). The influence of two kinds of ILs (3-triethylammonium hydrogen
sulfate ((TEA-PS)(HSO4)) and 1-butylimidazole hydrogen sulfate ((BImH)(HSO4))) on the
membrane properties was studied at high temperatures and low RH. It was noticeable that
the oxidative stability was improved by raising the PBI content, while the membrane proton
conductivity was improved by the increasing of the ILs quantity. Additionally, the com-
posite membrane with 10 wt% PBI and 5 wt% (TEA-PS)(HSO4) and 2.5 wt% (BIm)(HSO4)
showed the highest conductivity value compared to the other membranes. It was also
found that the composite membranes with 2.5 and 5 wt% (TEA-PS)(HSO4) were demon-
strated the highest thermal stability (between 300 and 400 ◦C). The composite membrane
comprising SPEEK/PBI/(TEA-PS)(HSO4) with 5 wt% (TEA-PS)(HSO4) showed the highest
OCP value (0.97 V), current density (1.83 A/cm2), and power density (0.41 W/cm2) at
100 ◦C without any reactant diffusion limitations, in comparison with other membranes
which suffered from electrode poisoning, short-circuit, and gas crossover. However, the
composite membrane containing (BImH)(HSO4) displayed lower OCP, current density and
power density compared to even pure SPEEK membrane. Guerreiro da Trindade et al. [143]
obtained SPEEK/ILs (1-butyl-3-methylimidazolium hydrogen sulfate ((BImH)(HSO4)),
1-methylimidazolium hydrogen sulfate ((MI)(HSO4)), and imidazolium hydrogen sulfate
(Im)(HSO4)) membranes by casting method. The results revealed that the highest pro-
ton conductivity was obtained for SPEEK/(MI)(HSO4) with 5 wt% of IL at two different
conditions (at 25 ◦C and 100% RH and 80 ◦C and 80% RH) equal to 120 and 150 mS/cm,
respectively. These values are much higher than the value for pristine SPEEK membrane (78
and 101 mS/cm at 25 ◦C and 100% RH and 80 ◦C and 80% RH, respectively). Furthermore,
SPEEK/(BMI)(HSO4) membrane with 5 wt% 1-butyl-3-methylimidazolium hydrogen sul-
fate exhibited the most promising results concerning current density value and power den-
sity at 100 ◦C (2.33 A/cm2 and 0.53 W/cm1, respectively). The highest amount of water up-
take (87.6%) was reported for SPEEK/(Im)(HSO4) membrane sample (1 wt% IL). Generally,
the addition of these three ILs led to improving the oxidative stability and the best improve-
ment was found for the membrane with (MI)(HSO4). Additionally, hybrid membranes
were thermally stable up to 200 ◦C. Li et al. [144] elaborated inorganic-organic composite
membranes based on SPEEK/silica/diethylethylammonium trifluoromethanesulfonate
((dema)(OTf)) via sol-gel technique for HT-PEMFC. It was observed that these hybrid com-
posite membranes indicated higher thermal stability (up to 250 ◦C) as compared with the
unmodified membrane. It was also found that using silica in the composite samples could
improve the membranes flexibility and mechanical strength. The maximum proton conduc-
tivity was reported for the membrane containing 50 wt% (dema)(OTf) (2.0 × 10−2 S/cm
at 220 ◦C under the dry environment). Lin et al. [145] produced protic ionic liquid (Pr-
IL)/silica nanomaterial/poly(styrene-co-acrylonitrile) (SAN) hybrid membranes by casting
solution-photo cross-linking method in order to utilize at elevated temperature and an-
hydrous condition. The name of IL was N-ethylimidazolium trifluoromethane-sulfonate
((EIm)(TfO)). It was noticeable that hybrid samples demonstrated high thermal stability up
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to 300 ◦C. All hybrid membranes showed reasonable flexibility, transparency, and mechani-
cal stability (the values for strong module were between 5 and 11 MPa at 120 ◦C). The use
of optimum content of silica inorganic compound allowed rising the proton conductivity
as this filler provided many networks and channels for proton conduction. The resultant
(EIm)(TfO)/silica/SAN hybrid membranes showed the maximum proton conductivity
of 1 × 10−2 S/cm at 160 ◦C under dry conditions. Lin et al. [72] prepared Pr-IL-based
composite membranes via casting solution-photo cross-linking for applying at high tem-
peratures. In that case, 1-(3-aminopropyl)-3-methylimidazolium bromide modified with
graphene oxide ((APMIm)(Br)—GO), and 1-methylimidazolium trifluoromethanesulfonate
((MIm)(TfO)) were used as dopant and proton carrier in PEM at elevated temperatures,
respectively. The resultant hybrid samples illustrated great mechanical (tensile strength)
and thermal stability (34.2 MPa and 300 ◦C, respectively). It was found that the appli-
cation of (APMIm)(Br)—GO into the membranes led to increasing proton conductivity,
and the hybrid membrane possessing 1.0 wt% (APMIm)(Br)—GO displayed the maxi-
mum proton conductivity of 1.48 × 10−2 S/cm at 160 ◦C. Furthermore, hybrid samples
containing (APMIm)(Br)—GO indicated much better retention ability of IL than pristine
one. It was also observed that, by enhancing the amount of (APMIm)(Br)—GO from 0.3
to 1.2 wt%, the tensile strength value increased from 17 to 34 MPa. Malis et al. [139] elab-
orated composite membranes based on different polymers (i.e., poly(vinylidene fluoride
(PVDF)-co-hexafluoropropene (HFP)) and Nafion) and ILs (1-butyl-3-methylimidazolium
trifluoromethanesulfonate (BMIm)(TfO) or 1-ethylimidazolium trifluoromethanesulfonate
(EIM)(TfO)) by solution casting method to use in high temperature fuel cells. The resultant
composite samples showed great performance under both hydrous and anhydrous con-
ditions. The maximum amount of conductivity under humid condition was for 8.5 S/m
at 110 ◦C and 22% RH for (EIM)(TfO)/PVDF-co-HFP composite membrane. On the
one hand, under dry conditions, the membrane proton conductivity was enhanced by
raising the temperature, and the highest value of 2.25 S/m at 160 ◦C was obtained for
(BMIm)(TfO)/Nafion composite membrane. Under humid conditions, the proton con-
ductivity of samples was reduced at temperatures higher than 100 ◦C because of the
water evaporation from membranes. Furthermore, the highest value of power density
(1.2 mW/cm2) was achieved for (BMIm)(TfO)/Nafion composite membrane. Hence, these
results revealed that (BMIm)(TfO)/Nafion composite membrane is rather promising for its
use at high temperatures without humidification.

3.2. ILs Possessing Imide Group

FILs with imide group is widely use in PEMs due to their high separation efficiency [128].
Among such ILs, one can note 1-H-3-methylimidazolium bis(trifluoromethanesulfonyl)
imide, 1-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethylimidazolium bis
(trifluoromethylsulfonyl)imide, 1-propylimidazolium bis(trifluoromethylsulfonyl)imide,
1-butylimidazolium bis(trifluoromethylsulfonyl)imide, and 1-vinyl-3-butylimidazolium
bis(trifluoromethylsulfonyl)-imide, and 1,3-di(3-methylimidazolium) propane bis
(trifluoromethylsulfonyl)imide [127,128,146–148]. For example, Lin et al. [128] fabricated
phosphoric acid-doped composite membranes using hydrophobic 1-vinyl-3-butylimidazolium
bis(trifluoromethylsulfonyl)-imide ((VBIm)(NTf2)) via casting solution method, followed
by photo cross linking (by means of UV irradiation). It was found that the phosphoric
acid uptake was initially increased (up to 137.74%) with the (VBIm)(NTf2) content in-
creasing and then reduced. The resultant samples exhibited high proton conductivity
(10−2 S/cm at 180 ◦C) and thermal stability (between 300 and 350 ◦C) under anhydrous
environment. Lin et al. also claimed that mechanical stability of membranes was im-
proved (up to 18.01 MPa) with the increasing of IL quantity owing to its hydrophobic
nature. Additionally, the highest proton conductivity (4.14×10−2 S/cm at 180 ◦C) was
reported for (VBIm)(NTf2)35-VIm35 (35 wt% (VBIm)(NTf2) and 35 wt% VIm). Hoosh-
yari et al. [148] prepared two PBI-based membranes doped by monocationic ionic liquid:
1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (PMC6), and, by dica-
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tionic ionic liquid: 1,3-di(3-methylimidazolium)propane bis(trifluoromethylsulfonyl)imide
(PDC3), in order to use at high temperature without the water presence. The membranes
containing PA/dicationic ILs showed higher value of thermal stability, proton conductivity,
and fuel cell performance than PA/monocationic composite samples. In fact, the number
of charge groups in PDC3 is much important as compared with PMC6, thus leading to
more developed functional network for the proton conduction through the membrane at
high temperatures and under anhydrous conditions. It was found that the proton conduc-
tivity of composite membranes containing PA/PBI, PA/PMC6/PBI, and PA/PDC3/PBI
demonstrated an increasing trend by increasing the temperature up to 180 ◦C. The highest
proton conductivity of 81 mS/cm at 180 ◦C was obtained for PA/PDC3/PBI composite
membrane under non-humid environment. Moreover, the composite sample composed
of dicationic IL showed a great power density of 0.44 W/cm2. In addition, the composite
membranes with PDC3 revealed higher mechanical stability than composite membranes
containing PMC6. Fatyeyeva et al. [146] elaborated polyimide (PI)/protic ionic liquid
(Pr-IL) hybrid membranes for employing in middle and elevated temperature PEMFCs.
In that study, four Pr-ILs with different cations were considered. It was noticeable that
the synthesized Pr-ILs showed an excellent thermal stability between 360 and 400 ◦C.
Moreover, it was found that the most important criteria with regard to proton conductivity
was the increase of temperature rather than the type of IL cation. Furthermore, PI/Pr-IL
composite membranes exhibited the highest proton conductivity of 10−3 S/cm at 160 ◦C.
These elaborated membranes demonstrated that incorporation of functionalized Pr-ILs
possessing imide group facilitated PEMFCs application at middle and elevated temper-
atures. Van de Ven et al. [147] prepared PBI-based membranes which were impregnated
by 1-H-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ((h-mim)(Ntf2)). The
resultant composite membranes displayed the highest value for proton conductivity of
1.86 mS/cm. Furthermore, the maximum power density of 0.039 W/cm2 was obtained at
150 ◦C. Moreover, PBI/(h-mim)(Ntf2) composite membranes demonstrated good thermal
stability at 190 ◦C. So, this composite membranes could be regarded as good candidates for
HT-PEMFC due to the presence of both (h-mim)(Ntf2) containing imide group, but also
PBI with excellent thermal stability.

3.3. ILs Comprising Phosphate Group

A wide range of FILs possessing phosphate and phosphonate groups were studied
and used on membranes with improved physical and chemical properties, such as tertiary
amine phosphate, 1-n-butylimidazolium bis(2-ethylhexyl)phosphate, 1-n-butylimidazolium
dibutylphosphate, 1-n-methylimidazolium dibutylphosphate, 1-butyl-3-ethylbenzimidazolium
dihydrogen phosphate, and 2-hydromethyl) trimethylammoniun dimethyl phosphate [149–154].
Ke et al. [149] prepared polypropylene (PP)-nonwoven (NW)/tertiary amine phosphate
(PP-NW/(N111)(H2PO4)) composite membrane via a reciprocating rolling process for HT-
PEMFC. Such lab-made membranes indicated good current density (600 mA/cm2 at 0.1 V
and 140 ◦C, and under anhydrous environment). Furthermore, performed OCP decay
acceleration test of PP-NW/(N111)(H2PO4) membranes revealed an acceptable stability.
In addition, the measured ionic conductivity of PP-NW/(N111)(H2PO4) membrane was
0.016 S/cm at 160 ◦C. Elumalai et al. [150] fabricated SPEEK/phosphonate ionic liquid
(PIL)-SBA-15 composite membranes via solution casting method. The water uptake value
of the composite samples was enhanced by increasing the concentration of PIL-SBA-15. In
addition, proton conductivity and IEC of the composite membrane with 6 wt% PIL-SBA-15
were higher than other membranes (10.2 mS/cm1 at 140 ◦C and 2.56 meq/g, respectively).
It was also found that the highest value of power density was 183 mW/cm2 at 140 ◦C.
The composite membrane comprising 6 wt% PIL-SBA-15 exhibited the most promising
results regarding proton conductivity (10.2 mS/cm at 140 ◦C) and mechanical stability
(23 MPa). The improved membrane behavior was explained by the hydrophilic nature of
phosphonate anion group (H2PO4

−). Kowsari et al. [151] produced 1-methylimidaolium
dihydrogen phosphate ((MIm)(H2PO4))-co-GO/SPI composite membranes as polymer
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electrolyte membrane to improve the PEMFC. It was found that the maximum proton con-
ductivity under both 40% and 80% RH were reported for composite membrane with 5 wt%
of (MIm)(H2PO4)-co-GO (77.2 mS/cm at 160 ◦C, and 124.3 mS/cm at 120 ◦C). It was also
found that all composite membranes showed a higher value for water uptake than the pure
SPI sample and the membrane with 5 wt% of IL-co-GO displayed maximum water uptake
of 47.3% owing to the hydrophilic nature of IL. In addition, it was shown that all samples
showed a good thermal stability up to 275 ◦C. Maiti et al. [129] fabricated GO/dihydrogen
phosphate functionalized ionic liquid (FIL-H2PO4)/Nafion composite membrane via
casting solution technique. 2,3-dimethyl-1-butyl imidazolium dihydrogen phosphate
((DMBuIm)(H2PO4)) was used as IL. The resultant composite membranes demonstrated
that the incorporation of GO/(DMBuIm)(H2PO4) as modifiers into the polymer mem-
branes allows increasing the thermal stability. It was found that the proton conductivity was
enhanced considerably by temperature and (DMBuIm)(H2PO4) content increasing. Proton con-
ductivity measurements revealed that the highest value of 0.061 S/cm at 110 ◦C was obtained
for the composite membrane. This value is 1.3 time higher than the value of commercial Nafion
membrane. Besides, the best performance was indicated for GO/(DMBuIm)(H2PO4)/Nafion
composite membrane with a power density of 0.02 W/cm2 at 110 ◦C. Dahi et al. [152] pro-
duced PI/IL composite membranes via phase inversion technique. Supported ionic liq-
uid membranes (SILM) were prepared via the Matrimid® membrane impregnation with
three Pr-ILs, including 1-n-butylimidazolium bis(2-ethylhexyl)phosphate ((C4im)(BEHP)), 1-n-
butylimidazolium dibutylphosphate ((C4im)(DBP)), and 1-n-methylimidazolium dibutylphos-
phate ((C1im)(DBP)). It was noticeable that the proton conductivity of obtained mem-
branes was increased by increasing the temperature on the contrary to Nafion mem-
branes. Moreover, the SILM containing (C4im)(DBP) exhibited the best performance
of proton conductivity—2.0·10−2 S/cm at 115 ◦C. Hernández Carrillo et al. [153] fab-
ricated poly(2,5-benzimidazole) (ABPBI)/PA/1-butyl-3-ethylbenzimidazolium dihydro-
gen phosphate (BEBzIm)(H2PO4) composite membranes. The resultant samples pre-
sented the enhanced thermal stability with the (BEBzIm)(H2PO4) addition. It was also
found that the best value for conductivity was 9.02·10−4 S/cm at 150 ◦C. The perfor-
mance of these composite membranes indicated that the use of PA/(BEBzIm)(H2PO4)
possessing a number of functional groups could improve proton conductivity and ther-
mal stability. Eguizábal et al. [154] manufactured conductive composite membranes
with Pr-IL/zeolite/PBI/PA by solution casting method. In fact, three types of Pr-ILs,
including 2-hydromethyl trimethylammoniun dimethyl phosphate (Pr-IL1), N,N-dimethyl-
N-(2-hydroxyethyl) ammonium bis(trifluoromethanesulfonyl)imide (Pr-IL2), and 1-H-3-
methylimidazolium bis(trifluoromethanesulfonyl)imide (Pr-IL3), were encapsulated into
the zeolite pores (NH4BEA and NaY). It was found that, among all composite samples,
the membrane with Pr-IL3-NaY exhibited the most promising results for HT-PEMFC
application—54 mS/cm at 200 ◦C for the membrane with 3 wt% Pr-IL3/NaY/PBI. Besides,
this membrane demonstrated much better H+/H2 transport selectivity than pure PBI, and
PBI/NaY membranes. Additionally, the composite membrane with 3 wt% Pr-IL3/NaY/PBI
showed good thermal and chemical stability necessary for the long-term membrane utiliza-
tion. Therefore, Pr-IL3/NaY/PBI/PA composite sample clearly demonstrated that it can be
the best choice for the PEMFC operation at elevated temperature.

A summary regarding the utilization of FILs into the PEMs at middle and elevated
temperatures under various humid conditions is provided in Table 2.
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Table 2. The influence of different types of FILs on PEM performance.

Type of FIL Membrane Compositions Preparation Technique Results Ref.

Sulfonate and sulfate EB/Y2O3/SPEEK
BS/Y2O3/SPEEK Solution casting

Both ILs improved thermal stability (up to 250–350 ◦C), and water
uptake of composite membranes. BS/Y2O3/SPEEK composite
membrane showed the highest conductivity at 90 ◦C and at 50%
and 100% RH. EB/Y2O3/SPEEK composite sample demonstrated
the highest mechanical stability of 2.61 MPa.

[141]

(TEA-PS)(HSO4)/PBI/SPEEK
(BImH)(HSO4)/PBI/SPEEK Solution casting

Oxidative stability, and proton conductivity were increased by
addition of PBI/IL into the membrane.
The composite membranes demonstrated good thermal stability
between 300 and 400 ◦C.
(TEA-PS)(HSO4)/PBI/SPEEK membranes with 2.5, and 5 wt% IL
showed the highest thermal stability and the highest OCP, current
density, and power density of 0.97 V, 1.83 A/cm2, and
0.41 W/cm2, respectively.

[142]

(BMI)(HSO4)/SPEEK
(MI)(HSO4)/SPEEK
(Im)(HSO4)/SPEEK

Solution casting

The thermal stability was improved up to 200 ◦C.
The usage of ILs led to enhancing oxidative stability
(MI)(HSO4)/SPEEK membrane displayed the highest proton
conductivity of 150 mS/cm.
(BMI)(HSO4)/SPEEK sample showed the highest current, and
power density of 2.33 A/cm2 and 0.53 W/cm, respectively.

[143]

(dema)(OTf)/silica/SPEEK Sol-gel

The composite membranes were studied at elevated temperature
and under anhydrous environment.
The composite membranes showed good thermal stability
(250 ◦C).
The proton conductivity was improved up to 2.0·10−2 S/cm at
220 ◦C and under the dry condition.
The results presented that the addition of silica could improve the
flexibility and mechanical properties.

[144]

(EIm)(TfO)/silica/poly(styrene-co-
acrylonitrile)

Solution casting followed by photo
cross-linking

The resultant membranes were thermally stable up to 300 ◦C.
The hybrid samples presented good mechanical stability.
The proton conductivity of hybrid membrane was 1·10−2 S/cm at
160 ◦C under anhydrous condition.

[145]
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Table 2. Cont.

Type of FIL Membrane Compositions Preparation Technique Results Ref.

(MIm)(TfO)/(APMIm)(Br)-
GO/poly(styrene-co-acrylonitrile)

Solution casting followed by photo
cross-linking

The usage of IL increased significantly thermal stability up to
400 ◦C.
The maximum proton conductivity was noted at 1.48·10−2 S/cm
at 160 ◦C.
The hybrid samples showed better retention ability of IL than
pure membrane.

[72]

(BMIm)(TfO)/Nafion
(BMIm)(TfO)/PVDF-co-HFP

(EIm)(TfO)/Nafion
(EIm)(TfO])/PVDF-co-HFP

Solution casting

The composite membranes revealed good performance under
both hydrous and anhydrous conditions.
The highest proton conductivity was obtained at 2.25 S/m at
160 ◦C with power density of 1.2 mW/cm2 for the
(BMIm)(TfO)/Nafion composite membrane.
(EIm])(TfO)/PVDF-co-HFP composite membrane displayed the
highest proton conductivity of 8.5 S/m at 110 ◦C under 22% RH.

[139]

Imide (VBIm)(NTf2)/H2PO4
−/poly(styrene-

co-acrylonitrile)
Solution casting followed by photo

cross linking

The composite sample showed proton conductivity of
4.14·102 S/cm at 180 ◦C without humidification.
The composite membrane showed good mechanical stability and
was thermally stable up to 300 ◦C.

[128]

PDC3/PA/PBI
PMC6/PA/PBI Solution casting

The composite membranes composed of PDC3 illustrated higher
proton conductivity and thermal stability than the membrane
containing PMC6.
PDC3/PA/PBI membrane showed the highest proton
conductivity of 81 mS/cm at 180 ◦C and anhydrous environment.
The composite membrane containing PDC3/PA/PBI showed
excellent power and current density (0.44 W/cm2, 0.89 A/cm2 at
180 ◦C and under anhydrous conditions, respectively).

[148]

(MIm)(TFSI)/Matrimid®

(EIm)(TFSI)/Matrimid®

(PIm)(TFSI)/Matrimid®

(BIm)(TFSI)/ Matrimid®

Phase inversion

All composite membranes were thermally stable between 360 and
400 ◦C.
The maximum proton conductivity of 10−3 S/cm was obtained at
160 ◦C.

[146]

(h-mim)(Ntf2)/PBI Solution casting

The maximum ionic conductivity was 1.86 mS/cm at 190 ◦C.
The highest power density was 0.039 W/cm2 was achieved at
150 ◦C.
The lab-made composite membrane indicated great thermal
stability up to 190 ◦C.

[147]
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Table 2. Cont.

Type of FIL Membrane Compositions Preparation Technique Results Ref.

Phosphate (N111)(H2PO4)/PP-NW Reciprocating rolling process

The composite home-made membrane presented high current
density of 600 mA/cm2 at 0.1 V, 140 ◦C, and under aqueous-free
situation.
The conductivity of composite sample was improved up to
0.016 S/cm1 at 160 ◦C.

[149]

Phosphonated IL-SBA-15/SPEEK Solution casting

Addition of composite content (PIL-SBA-15) resulted in
enhancing the water uptake.
The maximum value for power density was 183 mW/cm2 at
140 ◦C.
The membrane mechanical stability of 23 MPa was obtained.
The composite sample with 6 wt% PIL-SBA-15 demonstrated the
highest proton conductivity of 10.2 mS/cm−1 at 140 ◦C.

[150]

(MIm)(H2PO4)-co-GO/ SPI Solution casting

The maximum proton conductivity was 0.0772 S/cm at 160 ◦C.
The highest value for water uptake was 47.3% for the sample
possessing 5 wt% (MIm)(H2PO4)-co-GO.
The composite membrane was thermally stable up to 275 ◦C.

[151]

(DMBuIm)(H2PO4)/ GO/Nafion Solution casting

The thermal stability of composite membrane was boosted up to
300 ◦C.
The conductivity of membranes was risen by increasing the
temperature and content of (DMBuIm)(H2PO4).
The maximum conductivity was 0.061 S/cm1 at 110 ◦C under
non-humidification.
The best value for power density was 0.02 W cm−2 at 110 ◦C.

[129]

(C4im)(BEHP)/Matrimid®

(C4im)(DBP)/Matrimid®

(C1im)(DBP)/Matrimid®
Phase inversion

Unlike Nafion membrane, the proton conductivity of composite
samples had a direct correlation with temperature.
The composite membrane comprising (C4im)(DBP) demonstrated
the best conductivity of 2.0·10−2 S/cm at 115 ◦C.

[152]

(BEBzIm)(H2PO4)/ABPBI/PA Solution casting
The addition of (BEBzIm)(H2PO) had a strong effect on thermal
stability.
The highest conductivity was 9.02·10−4 S/cm at 150 ◦C.

[153]
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4. Leaching of ILs from the Membranes

Generally, notwithstanding the fact that the use of various types of ILs can have a
lot of benefits for PEM, including enhancement of thermal stability, improving fuel cell
performance, and proton conductivity at elevated temperature and low humidification,
the loss of ILs is the main negative point of this approach [155–157]. In fact, after some
minutes of PEM exploitation, the leakage of IL occurs and causes serious limitations
in the IL application in fuel cells [155,158]. As a result, in many studies regarding ILs-
based membranes for middle and high temperature PEMFCs, the leaching of ILs has been
investigated [156,158]. This weight loss of IL can be calculated by using the following
formula [144,156–158]:

%Loss =
Wo − Wi

Wo
× 100, (1)

where in this formula WO is membrane primary weight, and Wi is the weight of membrane
after immersion.

A wide range of research studies have been taken up so far in order to investigate
ILs leaching and how to deal with this challenging issue [155–158]. First, the selec-
tion of proper ILs in terms of their hydrophilicity and hydrophobicity, and providing
the optimum amount of them have positive impacts on the reduction of ILs leakage.
Jothi and co-workers [156] produced SPEEK/ethyl-3-methylimidazolium diethyl phos-
phate ((EMIm)(DEP)) composite membranes via solution casting method for HT-PEMC
in aqueous-free environment. It is worth noting that researchers investigated IL leaching
phenomenon from the samples containing various concentrations of doped IL in the com-
posite membranes in different regular ranges of time. The resultant SPEEK/(EMIm)(DEP)
composite membranes illustrated that the sample possessing 10 wt% IL had the minimum
leakage around 9% after 50 min of operation. Other samples comprising 30% and 50%
IL showed worse performance with 19% and 28% weight loss, respectively. Besides, the
leaching from membranes containing 10% and 30% IL reduced with time and remained
stable after 28 h. Actually, they proposed that the primary absorption of IL with the poly-
mer body have strong effect on leaching of IL. Using an extra content of ILs resulted in
insufficiently strong bonds between ILs and the polymer background, and, in turn, it can
be observed that the composite membranes possessing higher proportion of ILs had greater
leaching. Malik and co-workers [157] prepared novel composite membranes composed
of sulfonated poly(ether ketone) (SPEK)/aprotic ILs (A-ILs) to utilize for PEMFCs at mid-
dle and high temperatures by solution casting. Two imidazolium-based ILs were used,
i.e., 1-butyl-3-methyl-imidazolium trifluromethanesulfonate ((bmim)(OTf)), and 1-butyl-3-
methyl-imidazolium bis(trifluoromethanesulfonyl)imide ((bmim)(NTf2)). The IL leaching
was studied as a function of operation temperature, IL nature (hydrophilic or hydrophobic)
and content of ILs. The ILs weight loss in all composite membranes at 80 ◦C were higher
than at 25 ◦C, and the membrane with 70 wt% (bmim)(OTf) demonstrated the highest
leakage at 80 ◦C (around 55%). Moreover, owing to the hydrophilic nature of (bmim)(OTf),
the higher leaching was observed compared to the membrane with (bmim)(NTf2), which is
more hydrophobic. Additionally, the size of (NTf2) anion is larger than that one of (OTf)
anion, thus reducing the ion movement and, so, leaching from the membranes. Moreover,
in all composite membranes, increasing concentration of ILs enhanced the IL leakage. The
results showed that in order to obtain a composite membrane with the minimum leaching,
an optimal content of hydrophobic ILs is recommended. Additionally, the usage of inor-
ganic compounds (such as silica and alumina) is effective tool to diminish the IL leakage
from the membrane. Fernicola and co-workers [158] fabricated ILs/poly(vinyldenefluoride-
co-hexafluoropropylene) (PVDF-co-HFP) hybrid membranes with two types of ceramic
fillers, i.e., Al2O3 and SiO2d. In this research, N-ethylimidazolium bis(trifluoro methane
sulfonyl)imide ((EIm)(TFSI)), N-methylimidazolium bis(trifluoro methane sulfonyl)imide
((MIm)(TFSI)), and 1-methylpyrrolidinium bis(trifluoro methane sulfonyl)imide ((MPy)(TFSI))
were used. They conducted Fenton and water stability tests in order to determine the mem-
brane weight losses. The results showed that all hybrid samples suffered from the IL leak-
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age. However, the hybrid membrane containing 1-methylpyrrolidinium bis(trifluoromethan
esulfonyl)imide ((MPy)(TFSI)) without ceramic incorporation presented the smallest weight
loss (around 45%) since 1-methylpyrrolidinium is considered as a strong base which can in-
crease IL stability in membrane and decrease the hydrogen binding impacts. Furthermore,
(MPy)(TFSI)/PVDF-co-HFP possessing alumina displayed slightly better IL retention than
the membrane with silica (52% and 55%, respectively) due to the fact that Al2O3 has higher
absorbing ability than SiO2 owing to dipolar, and hydrogen interactions. Moreover, the sul-
fonation degree can be also considered as effective approach for the leakage reducing. For
example, Li and co-workers [144] elaborate SPEEK/SiO2/diethylethylammonium trifluo-
romethanesulfonate ((dema)(OTf)) inorganic-organic hybrid membranes for HT-PEMFC
via sol-gel process. They showed that the IL leaching diminished with the increase of both
the degree of sulfonation, and amount of inorganic additive (SiO2). In general, increasing of
the sulfonation degree caused increased number of hydrophilic and reactive SO3

− groups;
thus, the improved interactions between ILs and SO3

− can be noted. Additionally, the
increase of SiO2 quantity provided a number of reactive sites possessing silicon and oxygen
which have a sufficient potential to interact with ILs, and such electrostatic interactions can
reduce the leaching of ILs. Thus, the results revealed that enhancing sulfonation degree, and
the usage of inorganic compounds can play a crucial role in the reduction of ILs leaching.
Moreover, the utilization of NPs can have also significant effects on the ILs retention during
the process. Lin and coworkers [159] fabricated composite membranes comprising N-
ethylimidazolium trifluoromethanesulfonate ((EIm)(TfO))/polymerizable oil (acrylonitrile,
styrene, and divinylbenzene) 1-methyl-3-((triethoxysilyl)propyl) imidazolium chloride
((TMI)(Cl)) functionalized by silica NPs (Im-Silica) via in situ cross-linking method so as to
apply in anhydrous PEMFC. The resultant composite samples revealed that they have not
only good proton conductivity under dry environment, but they also have excellent IL reten-
tion. The pristine membrane without Im-Silica NPs showed the IL leakage around 90% after
few minutes, whereas this value was 70% for composite membrane containing 15 wt% Im-
silica NPs. It was also found that after 2 h of the membrane immersion into distilled water,
the composite sample with 15 wt% Im-silica NPs revealed the leaching of ILs around 85%,
which was better than the pristine membrane (approximately 95%). Besides, the conductiv-
ity measurements confirmed the above results, since the composite membrane possessing
15 wt% Im-silica NPs had the maximum conductivity value during first 2 h. In addition,
the application of porous inorganic compounds can be also a promising way for decreasing
the IL release. Wang and co-workers [160] prepared SPEEK/mesoporous silica/ILs for
PEMFC at elevated and under anhydrous condition by casting solution. Different ILs,
such as 1-ethylimidazolium trifluoromethanesulfonate ((EIm)(TfO)), diethylmethylammo-
nium trifluoromethane-sulfonate ((dema)(TfO)), 1-butyl-3-methylimidazolium chloride
((BMIm)(Cl)), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ((BMIm)(TfO)), and
1-butyl-3-methylimidazolium tetrafluoroborate ((BMIm)(BF4)), were used in the composite
membranes. It was found that SPEEK/mesoporous silica/(BMIm)(BF4) composite mem-
brane, including 7.5 wt% mesoporous silica and 50 wt% 1-butyl-3-methylimidazolium
tetrafluoroborate, demonstrated the maximum proton conductivity of 15 mS/cm at 200 ◦C
without humidification. In addition, all of the composite samples showed acceptable
thermal stability between 270 and 400 ◦C. In order to study the leaching of ILs from the
composite membranes, the influences of IL type was tested for the SPEEK/ILs membranes.
The obtained results indicated that SPEEK/(BMIm)(BF4) had the lowest amount of weight
loss (close to 30%). Moreover, for the ILs with the same anion ((TfO)), the order of leak-
age was as follows: (dema)(TfO) > (EIm)(TfO) > (BMIm)(TfO), thus indicating the cation
structure influence. The influence of the silica concentration (7.5% or 10%) was also in-
vestigated. It was discovered that the IL leakage is considerably reduced as compared
with SPEEK/ ILs composite membranes, whatever the silica concentration was. In fact,
the main reason of these results is the formation of bonds between silica (-OH), and ILs.
The minimum mass loss was noted for SPEEK/silica/(BMIm)(Cl) membrane with 10 wt%
silica and 30 wt% (BMIm)(Cl) due to the fact that this IL can easily enter to the silica
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pores. In another research study, Chu et al. [155] prepared polyamidoamine (PAMAM)
dendrimer-based macromolecular Pr-IL/poly(styrene-co-acrylonitrile) composite mem-
branes by in situ photo-crosslinking technique. (PAMAM G4.0-NH3

+H2PO4
−), (PAMAM

G4.0-NH3
+HSO4

−), and (PAMAM G4.0-NH3
+Tf2N−) containing functionalized anions,

such as H2PO4
−, HSO4

−, and Tf2N−, were synthesized for this purpose. It was found
that the obtained membranes demonstrated an acceptable transparency and flexibility
with good thermal stability up to 350 ◦C. Besides, the maximum proton conductivity was
reported for (PAMAM G4.0-NH3

+HSO4
−)-based membrane (1.2·10−2 S/cm at 160 ◦C

and under dry situation), which was much greater than for samples with small-molecule
Pr-ILs. Thus, the order of conductivity was (PAMAM G4.0-NH3

+HSO4
−) > (PAMAM

G4.0-NH3
+H2PO4

−) > (PAMAM G4.0-NH3
+Tf2N−). Moreover, the increased fraction

of macromolecular Pr-ILs weigh fraction also increased the membrane conductivity and
decreased the IL leaching. The membranes containing hydrophobic ILs demonstrated a
better IL retention ability than hydrophilic ones. For example, the membrane composed of
(PAMAM G4.0-NH3

+H2PO4
−) lost about 90% of IL after 60 min, while this value is only

35% for membrane possessing (PAMAM G4.0-NH3
+Tf2N−). These results revealed that ion

exchange group presence and acceptable hydrophobicity level can be key factors in order to
obtain a PEM with appropriate retention ability able to work at elevated temperature. More-
over, coating the membrane with silicon can reduce ILs leaching. Izak et al. [161] prepared
multiphase membrane containing ceramic nanofiltration module/tetrapropylammonium
tetracyanoborate ((C3H7)4N])(B(CN)4))/silicon in order to use in pervaporation process.
The membrane was modified by ((C3H7)4N)(B(CN)4) and then coated by silicon. The
resultant membrane, including ceramic nanofiltration module/IL/silicon, showed much
higher separation factor (selectivity) in comparison with ceramic nanofiltration module/IL
and empty nanofiltartion module. Furthermore, the multiphase membrane which was
coated by silicon displayed a good stability against ILs leaching. However, the perme-
ation flux was decreased for multiphase membrane containing ceramic nanofiltration
module/IL/silicon compared to empty ceramic nanofiltration module. Table 3 shows a
summary report concerning ILs leaching and methods for its reducing.
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Table 3. A summary report with regard to ILs leakage and several techniques for its diminishing.

Membrane Types of Investigations Concerning IL
Leaching Observations Ref.

(EMIm)(DEP)/SPEEK Influence of the IL content.

The results confirmed that the enhancement of both IL content and operation
temperature resulted in increasing the proton conductivity, in which the maximum
conductivity was 3.16·10−3 Scm−1 at 145 ◦C for membrane with 50 wt% IL.
However, increasing the IL content showed opposite impact on the leaching of IL from
the membranes, and the membrane sample with 10 wt% (EMIm)(DEP) demonstrated
the least IL leaching.
The order of leaching after 48 h immersion was: SPEEK/IL-50% = 28% >
SPEEK/IL-30% = 19.11% > SPEEK/IL-10% = 9.20%.
The main reason is that the large amount of IL cannot be well bonded with polymer
body. Moreover, it is stated that the primary absorption of IL on the polymer matrix is
important, and, at lower IL concentrations, this interaction is stronger.

[156]

(bmim)(OTf)/SPEK
(bmim)(NTf2)/SPEK

Influence of the operation temperature,
hydrophilicity or hydrophobicity nature, and

content of ILs.

The results revealed the rising the temperature brought about increasing the leakage.
In addition, IL with hydrophilic nature ((bmim)(OTf)) demonstrated more leakage
from membrane than hydrophobic one ((bmim)(NTf2)) in that hydrophilic compounds
easily wash with water due to their nature affinity.
Moreover, enhancing the concentration of ILs caused increasing the leakage.

[157]

(EIm)(TFSI)/PVDF-co-HFP
(MIm)(TFSI)/PVDF-co-HFP
(MPy)(TFSI)/PVDF-co-HFP

Utilization of inorganic compounds (Al2O3 or
SiO2) and various cations.

(MPy)(TFSI)/PVDF-co-HFP composite membrane (with 60 wt% (MPy)(TFSI)) showed
the least IL leakage among all membranes containing ILs (the order of ILs leakage is:
(EIm)(TFSI) > (MIm)(TFSI) > (MPy)(TFSI)).
Basically, the main reason is that (MPy) cation is stronger base than two others.
Therefore, this IL can be more stable and less affected by water.
Furthermore, the results showed that the addition of inorganic compounds (Al2O3 or
SiO2) could reduce the leakage of ILs from the samples.
The composite membrane comprising (MPy)(TFSI)/Al2O3 showed a better retention
ability of IL than (MPy)(TFSI)/SiO2 because Al2O3 demonstrated much absorbent
features with organic compounds, thanks to the hydrogen bondings.

[158]

(dema)(OTf)/SiO2/SPEEK Influence of the sulfonation degree and silica
addition of silica.

The results illustrated that, by increasing the sulfonation degree, IL leaching were
decreased from the membranes. The main reason is that the existence of electrostatic
interaction between ILs cation and sulfonic groups (on the structure of SPEEK) can
diminish the leaching of ILs from the membranes.
Nonetheless, further enhancement of sulfonation degree (more than 83%) led to
increasing the leakage of ILs from the membrane owing to rising the hydrophilicity.
Besides, adding silica decreased the leaching because this inorganic compound holds
reactive sites which have great ability to interact with IL.

[144]
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Table 3. Cont.

Membrane Types of Investigations Concerning IL
Leaching Observations Ref.

(EIm)(TfO)/(TMI)(Cl)-silica
NPs/polymerizable oil Using SiO2 NPs.

Due to the fact that SiO2 NPs are nanoscaled, they can be easily dispersed into the
membrane and could react with IL; hence, the composite samples comprising NPs
indicated much better retention ability than pristine ones.
The results showed that the membranes without SiO2 NPs dramatically lost ILs (almost
90 wt%) after 10 min immersion in water, while the sample with 1 wt% SiO2 NPs
demonstrated better result after 10 min (approximately 70 wt% IL weight loss).

[159]

(EIm)(TfO)/mesoporous silica/SPEEK
(dema)(TfO)/mesoporous

silica/SPEEK
(BMIm)(TfO)/mesoporous

silica/SPEEK
(BMIm)(Cl)/mesoporous silica/SPEEK

(BMIm)(BF4)/mesoporous
silica/SPEEK

Influence of mesoporous silica and different
types of IL cations.

Employing porous silica decreased the weight loss of ILs because not only does silica
hold a number of reactive sites in its structure, but it also provides large pores which
can trap ILs.
Additionally, among three ILs with the same anion ((TfO)), the order of leaching was:
(dema)(Tfo) > (EIm)(Tfo) > (BMIm)(Tfo) and the minimum IL weight loss was for the
hybrid membrane composed of (BMIm) cation, in which this result revealed that the
type of cation has a direct influence on leaching.

[160]

PAMAM G4.0-NH3
+H2PO4

− PAMAM
G4.0-NH3

+HSO4
− PAMAM

G4.0-NH3
+Tf2N−

Influence of the nature of ILs.

The hydrophilic ILs-based membranes ((PAMAM G4.0-NH3
+HSO4

−)) > PAMAM
G4.0-NH3

+H2PO4
−)) showed a better conductivity, whereas the hydrophobic one

((PAMAM G4.0-NH3
+Tf2N−)) had better stability with regard to leakage phenomenon.

The composite membrane possessing (PAMAM G4.0-NH3
+Tf2N−) lost only 35 wt% of

IL after 120 min, while the membrane containing (PAMAM G4.0-NH3
+H2PO4

−)
showed worse IL leaching in the same condition (around 90 wt%).

[155]

Ceramic nanofiltration
module/((C3H7)4N)(B(CN)4))/silicon Influence of coating silicon.

The multiphase membrane containing ceramic nanofiltration
module/((C3H7)4N)(B(CN)4)) was coated by silicon showed the highest seperation
factor of 177.
Moreover, coating the silicon led to increasing the stability of ILs in the structure of
membrane (more than 9 months).
The modified membrane showed low permeation flux (3.86 g/m2h).

[161]
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5. Conclusions and Prospects

Today, PEMFC is recognized as a very promising source of sustainable energy. This
kind of electrochemical device includes MEA, which is made by several parts, such as PEM,
anode, and cathode catalyst layer; gas diffusion layer; bipolar plate; and gasket. Among
all of them, PEM has a great potential to improve the efficiency of PEMFC. In the last
decade, a wide range of modifications have been done on PEM in order to make them
usable at middle and elevated temperatures under different humid conditions, such as
using nanoparticles, sulfonated hydrocarbon polymers, and PA. These methods have their
own limitations, including water evaporation, dehydration, and decreasing mechanical
stability. The usage of ILs is a way to overcome these drawbacks since ILs are organic salts
with negligible vapor pressure, excellent proton conductivity, and thermal stability. A wide
range of ILs have been identified, including FILs possessing different ion exchange groups,
such as sulfonate, sulfate, imide, and phosphate. The usage of FILs resulted in increasing
the proton conductivity, thermal, and chemical stability of membranes in comparison
with the pristine ones. However, membranes did suffer from leakage of ILs during the
process. There are some techniques that allow us to reduce the ILs leakage, such as the
application of hydrophobic ILs, inorganic compounds, inorganic NPs, and mesoporous
fillers, as well as providing optimum operation condition. Despite researchers’ efforts and
the number of articles published, currently, the usage of ionic liquids-based membranes for
middle and high temperature-polymer electrolyte membrane fuel cells still remains limited.
Nevertheless, promising findings have been reported. As a short-term future prospect,
the use of composite membranes containing different types of ILs in various separation
processes will be increased owing to tunable properties of ILs. As for long-term future
prospects, it is considered that researchers are going to overcome leaching during the
separation process which will lead to enhancement of the membrane operation life-time.
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Abbreviations

AFC Alkaline fuel cell
A-ILs Aprotic ILs
B-ILs Basic ionic liquids
Bio-ILs Bio-ionic liquids
C-ILs Chiral ionic liquids
CO Carbon monoxide
CODR Chemical organic demand removal
DMFC Direct methanol fuel cell
E-ILs Energetic ionic liquids
FIL Functionalized ionic liquid
GO Graphene oxide
HFP Hexafluoropropylene
HT-PEMFC High temperature proton exchange membrane fuel cell
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IEC Ion exchange capacity
ILC Ionic liquid cation
ILs Ionic liquids
LT-PEMFC Low temperature polymer electrolyte membrane fuel cell
MCFC Molten carbonate fuel cell
MEA Membrane electrode assembly
MFC Microbial fuel cell
M-ILs Metallic ionic liquids
MT-PEMFC Middle temperature proton exchange membrane fuel cell
N-Ils Neutral ionic liquids
NPs Nanoparticles
OCP Open circuit potential
PA Phosphoric acid
PAFC Phosphoric acid fuel cell
PAMAM Polyamidoamine
PBI Polybenzimidazole
PEM Polymer electrolyte membrane
PEMFC Proton exchange membrane fuel cell
PFSA Perfluorosulfonic acid
PI Polyimide
P-Ils Poly-ionic liquids
Pr-Ils Protic ionic liquids
PVC Polyvinylchloride
PVDF Polyvinyldenefluoride
QAPSU Quaternary ammonium functionalized polysulfone
QPSU Quaternary polysulfone
RH Relative humidity
RT-ILs Room temperature ionic liquids
SAN Poly (styrene-co-acrylonitrile)
SBA-15 Santata Barbara amorphous-15
SILMs Supported ionic liquid membranes
S-ILs Supported ionic liquids
SOFC Solid oxide fuel cell
SPEEK Sulfonated poly (ether ether) ketone
SPEK Sulfonated poly (ether ketone)
SPI Sulfonated polyimide
SPS-ILs Switchable polarity solvent-ILs
TnT Titanate nanotubes
TS-ILs Task specific-ionic liquids
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103. Latała, A.; Stepnowski, P.; Nędzi, M.; Mrozik, W. Marine toxicity assessment of imidazolium ionic liquids: Acute effects on the
Baltic algae Oocystis submarina and Cyclotella meneghiniana. Aquat. Toxicol. 2005, 73, 91–98. [CrossRef] [PubMed]

104. Petkovic, M.; Seddon, K.R.; Rebelo, L.P.N.; Pereira, C.S. Ionic Liquids: A Pathway to environmental acceptability. Chem. Soc. Rev.
2011, 40, 1383–1403. [CrossRef]

105. Lin, I.J.; Vasam, C.S. Metal-containing ionic liquids and ionic liquid crystals based on imidazolium moiety. J. Organomet. Chem.
2005, 690, 3498–3512. [CrossRef]

106. Yuan, J.; Mecerreyes, D.; Antonietti, M. Poly(ionic liquid)s: An update. Prog. Polym. Sci. 2013, 38, 1009–1036. [CrossRef]
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