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Abstract: Dopamine is a neurotransmitter that mediates neuropsychological functions of the central
nervous system (CNS). Recent studies have shown the modulatory effect of dopamine on the cells of
innate and adaptive immune systems, including Th17 cells, which play a critical role in inflammatory
diseases of the CNS. This article reviews the literature data on the role of dopamine in the regulation
of neuroinflammation in multiple sclerosis (MS). The influence of dopaminergic receptor targeting on
experimental autoimmune encephalomyelitis (EAE) and MS pathogenesis, as well as the therapeutic
potential of dopaminergic drugs as add-on pathogenetic therapy of MS, is discussed.
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1. Introduction

Multiple sclerosis (MS) is the most common demyelinating disease of the central
nervous system [1]. Despite the progress made in recent years in the development of new
methods of MS therapy, the treatment of MS patients remains one of the main problems of
clinical neurology. The existing highly effective targeted therapy can reduce the activity
of the disease [2]. At the same time, the treatment with second- or third-line disease-
modifying drugs is associated with severe side effects because of the immunosuppressive
impact of such therapy [3,4]. It is important to note that the ingress of the monoclonal
antibodies in the CNS could be limited by the blood–brain barrier [5]. Therefore, they
cannot directly affect the immune response in the CNS, while the neuroinflammation seems
to proceed at least partially independently of immune processes in the periphery [6].

In this regard, the modulation of immune cell functions in the CNS, without affecting
peripheral immune response, is considered a promising direction of pathogenetic therapy of
CNS autoimmune diseases. Biogenic amines, such as serotonin, dopamine, norepinephrine,
and epinephrine, are direct mediators of neuroimmune interaction. The studies in recent
decades have shown that neurotransmitters regulate not only CNS functions but also have
immunomodulatory effects. Cells in both the innate and adaptive immune systems have
been found to express dopamine, norepinephrine, and serotonin receptors and produce
biogenic amines. In addition, autocrine regulatory effects of dopamine on immune cells
were demonstrated [7]. The data on the influence of dopamine, norepinephrine, and
serotonin on experimental autoimmune encephalomyelitis (EAE) and MS course allow one
to propose the therapeutic prospective of their receptor targeting in MS [7–10].

In this brief report, we overview the literature and own data on dopamine’s role in
the regulation of neuroimmune interaction in EAE and MS. The therapeutic potential of
dopaminergic receptor targeting in MS is discussed.
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2. The Involvement of Dopamine in the Development of Clinical Symptoms in MS

Among the neurotransmitters involved in the regulation of neuroimmune interaction
in MS, dopamine is one of the most well studied. Dopamine is most widely represented
in the brain and modulates different CNS functions. The involvement of dopamine in
depression, cognitive impairments, and fatigue in MS was shown [11–14]. In addition,
dopamine has been shown to modulate the gut–brain axis, which plays an important role in
the development of autoimmunity, psychiatric disorders, and neuroinflammation [15–17].
It is important to note that depression is one of the most common symptoms in MS and
may aggravate its course, which could be explained by similar pathogenetic mechanisms
of MS and depression, including an enhanced Th17 immune response [18,19]. Conversely,
the clinical efficacy of “controlled stress” therapies, such as treatment with antidepressants,
lifestyle modification, and coping strategies in MS, was shown [10,20,21].

It can be assumed that other neuropsychological symptoms of MS, such as cognitive
impairment and fatigue, may also aggravate MS course [11,12,22]. Thus, Alvarenga-Filho
et al. reported that plasma levels of IL-6 and TNF-α were higher in relapsing–remitting MS
patients with fatigue than in the control group (relapsing–remitting MS patients without
fatigue) [22]. They also found a positive association between IL-6 and TNF-α concentrations
and fatigue severity. The cytokine production by anti-CD3/anti-CD28-stimulated PBMCs
(IL-6, TNF-α, IFN-γ, IL-17, IL-22, and GM-CSF), as well as CD4+ and CD8+ T cells (IL-17
and IFN-γ), was higher in MS patients with fatigue [22]. The production of Th17 cell
differentiation cytokines IL-6, TNF-α, IL-1β, and IL-23 by LPS-activated monocytes also
was higher in MS patients with fatigue. Again, they found a correlation between the severity
of fatigue and TNF-α, IL-6, IL-17, IL-22, and GM-CSF production by stimulated T cells
and IL-6, IL-1β, and IL-23 production by LPS-activated monocytes [22]. At the same time,
combined exercise training reduces fatigue severity, pro-inflammatory cytokine production
and regulates dopamine-mediated immunomodulation of T cells in relapsing–remitting
MS patients [23].

On the other hand, secondary dysregulation of catecholamines in MS due to neu-
roinflammation and structural damage of catecholamine-dependent pathways within the
brain was shown [18,24,25]. In particular, Carandini et al. showed that axonal damage
imbalances dopamine and norepinephrine neurotransmission in relapsing–remitting MS
patients [18]. They also showed a central role of the dopamine mesocorticolimbic pathway
in fatigue in MS [18]. Carotenuto et al. reported the altered functional connectivity in the
dopaminergic network in MS patients compared to healthy subjects [25].

Although the concentration of biogenic amines in peripheral blood is not stable and
can depend on the different factors, the change of dopamine plasma level in MS was also
reported. It was shown that the plasma dopamine level in relapsing–remitting MS patients
during relapse was lower than in MS patients during clinical remission or in healthy
subjects [26]. Escribano et al. also showed the decreased level of dopamine in patients with
MS [27].

Thus, dopaminergic system disturbance may affect MS pathogenesis by the influence
on neuropsychological symptoms (development or reduction) followed by modulation of
neuroinflammation and, therefore, creating one of the ‘vicious circles’ of MS (Figure 1).
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Figure 1. The possible role of dopamine in the development of clinical symptoms and autoimmune
inflammation in MS. The dopaminergic system disturbance causes MS neuropsychological symptoms,
which may aggravate MS course by the induction of pro-inflammatory cytokine production. MS
exacerbation may induce a disturbance of dopamine metabolism and increase neuropsychological
symptom severity.

3. The Role of Dopamine in Regulation of Neuroimmune Interaction in MS

The Th17 immune response is known to be involved in the pathogenesis of sev-
eral autoimmune diseases, including MS [28]. Th17 cells produce pro-inflammatory cy-
tokines such as interleukin (IL)-17, IL-21, IL-22, granulocyte- and granulocyte-macrophage
colony-stimulating factors (G-CSF and GM-CSF). The pathogenetic role of Th17 cells in
MS pathogenesis could be explained by their ability to transmigrate into CNS through the
blood–brain barrier by expressing chemokine receptor 6 (CCR6 [CD196]) and producing
IL-17 and IL-22 [29,30]. The presence of Th17 cells and IL-17 in the foci of EAE and MS,
as well as an increase in the number of Th17 cells in blood and IL-17 production by ac-
tivated peripheral blood mononuclear cells (PBMCs) in vitro, was demonstrated in MS
patients during relapse compared with MS patients in clinical remission or with healthy
subjects [26]. Mice knocked out by IL-17A or IL-23 have been shown to be resistant to EAE.
The same effect on EAE development has IL-17 or IL-23 neutralization [31–33]. Finally, the
role of Th17 cells on MS pathogenesis is confirmed by the influence of disease-modifying
drugs on Th17 functions [34].

Recent studies have shown the ability of dopamine to modulate Th17 cell function.
According to literature data, dopamine has various effects on Th17 cells. According to differ-
ent reports, dopamine may either increase or reduce IL-17 production in MS [35]. Possibly,
this could depend on the micro-environmental conditions and dopamine concentration.
Depending on the concentration, dopamine may activate different dopaminergic receptors,
which have different affinity and functions [35]. It is well known that there are at least five
subtypes of dopamine receptors (D1–D5). D1- and D5-dopaminergic receptors (D1-like fam-
ily) are coupled to Gαs and activate adenylate cyclase enzyme, increasing the level of cyclic
adenosine monophosphate (cAMP). By contrast, D2-, D3-, and D4-dopaminergic receptors
(D2-like family) are coupled to Gαi and inhibit adenylate cyclase enzyme, decreasing the
cAMP level [36].

However, the involvement of dopaminergic receptors in modulation of Th17 cell
function is not sufficiently investigated. According to our previous studies, the inhibitory
effect of dopamine on Th17 cells could be mediated by the D2-like dopaminergic recep-
tor activation. Thus, it has been shown, that D2-like dopaminergic receptor antagonist
sulpiride abolishes dopamine-mediated IL-17 suppression in PBMC culture obtained
from relapsing–remitting MS patients, while D1-like dopaminergic receptor antagonist
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SCH23390, conversely, further reduces dopamine-mediated inhibition of IL-17 produc-
tion [26]. It has also been shown that SCH23390 exerts a direct inhibitory effect on IL-17,
IFN-γ, and GM-CSF production by anti-CD3 and anti-CD28-activated CD4+ T cells in
relapsing–remitting MS patients, while sulpiride has no effect on cytokine production [37].
These data correspond with data from Huang et al., who showed the inhibitory effect
of D2-like dopaminergic receptor agonist quinpirole on the expression of Th17- and Th1-
specific transcription factors (ROR-γt and T-bet, respectively) as well as IL-17, IL-22, IFN-γ,
and IL-2 mRNA expression in concanavalin A-activated T-lymphocytes obtained from
mesenteric lymph nodes of mice. Conversely, quinpirole increased FOXP3 and TGF-β
mRNA expression, which indicates the different effect of D2-like dopaminergic receptor
activation in pro-inflammatory Th1/Th17 cells and anti-inflammatory Treg cells [38]. In
line with these data, Cosentino et al. reported the inhibitory effect of dopamine on human
CD4+ and CD8+ Treg cells through D1-like dopaminergic receptor [39,40].

Huang and coauthors also found that activation of D2-like dopaminergic receptor by
quinpirole decreased intracellular cAMP content and reduced the phosphorylated cAMP-
response element-binding (CREB) level in T cells. The D2-like dopaminergic receptor
antagonist haloperidol blocked the effects of quinpirole. These data suggest that D2-like
dopaminergic receptor modulate the cAMP-protein kinase A (PKA)-CREB pathway and
regulate Th17 cell function (Figure 2) [38].
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Figure 2. The role of dopamine and D2-like dopaminergic receptor in modulation of Th17 cell function. D2-like DR—D2-
like dopaminergic receptor; CA—adenylyl cyclase; cAMP—cyclic adenosine monophosphate; PKA—protein kinase A;
CREB—cAMP response element-binding protein.

The effect of the D2-like receptor agonist on Th17 cells was observed also in vivo in
mice with EAE. The study by Lieberknecht et al. showed that treatment of EAE mice
with a pramipexole (D2- and D3-dopaminergic receptor agonist) reduced IL-17 production
in lymph nodes and prevented clinical signs of the disease [41]. In this regard, D2-like
dopaminergic receptor attracts attention as a new therapeutic target in MS. However, the
molecular mechanisms that mediated D2-like dopaminergic receptor on Th17 cells need to
be clarified.

It is important to discuss the effect of dopamine on mononuclear phagocytes, in-
cluding dendritic cells and macrophages. The etiology and triggering mechanisms of the
autoimmune inflammation in MS are still unclear. Dendritic cells and macrophages are
professional antigen-presenting cells and play a central role in innate immune system
functioning. Both types of these cells are present in the CNS. Depending on the phenotype,
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dendritic cells and macrophages can support autoimmune inflammation and immunologi-
cal tolerance to self-antigens [42–44]. It is important to note that resident macrophages of
the CNS form microglia are capable of producing cytokines, presenting antigens’ underly-
ing mechanisms of neuroinflammation and MS progression [43,45]. It has been shown that
in both acute and chronic foci of demyelination in MS, macrophages are more abundant to
T- and B-lymphocytes [46–48].

In the demyelination lesions, macrophages can comprise cell populations: resident
glial cells of the CNS and macrophages that penetrate the blood–brain barrier from the
periphery to the CNS (infiltrating macrophages). According to literature data, the activation
of microglial cells mediates the early neuroinflammation stage [49]. Conversely, infiltrating
macrophages mediate the effector phase of demyelination [50]. It is important to note that
in healthy brain tissue, there are no infiltrating macrophages [43].

The influence of dopamine on dendritic cells that induce Th17 immune response has
been shown. In a study by Nakano et al., it was shown that blockade of D1-like dopaminer-
gic receptor by specific antagonists (SCH23390, SKF83566 or LE300) on human dendritic
cells inhibited their ability to induce Th17-immune response. Conversely, blockade of D2-
like dopaminergic receptor by L750667, sulpiride, or nemonapride (D2-like dopaminergic
receptor antagonists) enhanced dendritic cells-mediated Th17-cell differentiation. They also
found that treatment with SCH23390 had a preventive and curative effect on EAE in mice,
while D2-like dopaminergic receptor antagonist (L750667) increased the EAE severity [51].
The results of Prado et al. and Osorio-Barrios et al. studies confirm the anti-inflammatory
effect of D1-like receptor (D5-receptor) deficiency on dendritic-cell-induced Th17 immune
response in EAE mice [52–54].

The ability of dopamine to modulate macrophages and microglia function has also
been shown [55]. In particular, dopamine has been shown to inhibit the production of
IL-6 and IL-1β through NF-kB pathway suppression in LPS-activated murine microglial
cells. However, authors did not find any effect of agonists/antagonists of D1- and D2-like
dopaminergic receptor on dopamine-mediated microglial cell suppression [56].

Another study reported the influence of dopamine on macrophages through NLRP3-
inflammasome modulation. The treatment of macrophages with dopamine reduced NLRP3-
dependent caspase-1 activation as well as IL-1β and IL-18 production by microglial cells
upon stimulation with LPS and adenosine triphosphate (ATP). The D1-dopaminergic
receptor also has been shown to be involved in dopamine-mediated NLRP3 inflammasome
inhibition. Thus, knockdown of D1-dopaminergic receptor in macrophages significantly
blunted the inhibitory effect of dopamine on inflammasome activation, while agonist of
D1-dopaminergic receptor A-68930 had the same effect with dopamine on macrophages
(Figure 3) [57]. These data suggest the dual role of D1-like dopaminergic receptor in the
modulation of the innate immunity.

In addition, the influence of atypical antipsychotic agents (such as quetiapine, risperi-
done, and clozapine) on EAE course through modulation of macrophages/microglia also
has been shown [58–60]. However, these therapeutic agents affect not only dopaminergic
receptors.

Taken together, these data suggest the critical role of the dopaminergic system in the
control of neuroinflammatory processes. It can be proposed that dopamine may affect
EAE and MS pathogenesis by mechanisms that are not mutually exclusive: by influencing
neuroinflammation through the regulation of the severity of neuropsychological symptoms
or by direct impact on the cells of both adaptive and innate immune systems, including
resident immune cells of CNS.



Int. J. Mol. Sci. 2021, 22, 5313 6 of 11

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 11 
 

 

the CNS form microglia are capable of producing cytokines, presenting antigens’ under-

lying mechanisms of neuroinflammation and MS progression [43,45]. It has been shown 

that in both acute and chronic foci of demyelination in MS, macrophages are more abun-

dant to T- and B-lymphocytes [46–48].  

In the demyelination lesions, macrophages can comprise cell populations: resident 

glial cells of the CNS and macrophages that penetrate the blood–brain barrier from the 

periphery to the CNS (infiltrating macrophages). According to literature data, the activa-

tion of microglial cells mediates the early neuroinflammation stage [49]. Conversely, in-

filtrating macrophages mediate the effector phase of demyelination [50]. It is important to 

note that in healthy brain tissue, there are no infiltrating macrophages [43]. 

The influence of dopamine on dendritic cells that induce Th17 immune response has 

been shown. In a study by Nakano et al., it was shown that blockade of D1-like dopamin-

ergic receptor by specific antagonists (SCH23390, SKF83566 or LE300) on human dendritic 

cells inhibited their ability to induce Th17-immune response. Conversely, blockade of D2-

like dopaminergic receptor by L750667, sulpiride, or nemonapride (D2-like dopaminergic 

receptor antagonists) enhanced dendritic cells-mediated Th17-cell differentiation. They 

also found that treatment with SCH23390 had a preventive and curative effect on EAE in 

mice, while D2-like dopaminergic receptor antagonist (L750667) increased the EAE sever-

ity [51]. The results of Prado et al. and Osorio-Barrios et al. studies confirm the anti-in-

flammatory effect of D1-like receptor (D5-receptor) deficiency on dendritic-cell-induced 

Th17 immune response in EAE mice [52–54]. 

The ability of dopamine to modulate macrophages and microglia function has also 

been shown [55]. In particular, dopamine has been shown to inhibit the production of IL-

6 and IL-1β through NF-kB pathway suppression in LPS-activated murine microglial cells. 

However, authors did not find any effect of agonists/antagonists of D1- and D2-like dopa-

minergic receptor on dopamine-mediated microglial cell suppression [56].  

Another study reported the influence of dopamine on macrophages through NLRP3-

inflammasome modulation. The treatment of macrophages with dopamine reduced 

NLRP3-dependent caspase-1 activation as well as IL-1β and IL-18 production by micro-

glial cells upon stimulation with LPS and adenosine triphosphate (ATP). The D1-dopa-

minergic receptor also has been shown to be involved in dopamine-mediated NLRP3 in-

flammasome inhibition. Thus, knockdown of D1-dopaminergic receptor in macrophages 

significantly blunted the inhibitory effect of dopamine on inflammasome activation, while 

agonist of D1-dopaminergic receptor A-68930 had the same effect with dopamine on mac-

rophages (Figure 3) [57]. These data suggest the dual role of D1-like dopaminergic receptor 

in the modulation of the innate immunity. 

 
Figure 3. The influence of dopamine on macrophages and microglial cell function. D1DR—D1-dopaminergi receptor;
CA—adenylyl cyclase; cAMP—cyclic adenosine monophosphate; PKA—protein kinase A; LPS—lipopolysaccharide; ATP—
adenosintriphosphat.

4. The Prospects of Dopaminergic Therapeutics in MS Treatment

The in vitro anti-inflammatory effect of dopaminergic therapeutics has been confirmed
in vivo. The data on the influence of dopamine/dopaminergic receptor targeting on
EAE/MS pathogenesis and course are presented in detail in Table 1.

Table 1. The effect of dopaminergic receptor targeting on EAE/MS pathogenesis and course.

Disease Cell Type The Effect of Dopaminergic Receptor Targeting Authors

EAE Splenic
lymphocytes

D2-like dopaminergic receptor agonist bromocriptine has
a preventive and curative effect on EAE in mice. The
treatment with bromocriptine reduces prolactin serum
level and splenic lymphocyte proliferation upon Con A
stimulation.

Riskind et al., 1991 [61]

EAE Not investigated
The treatment with D2-like dopaminergic receptor agonist
bromocriptine reduces prolactin plasma level and clinical
symptoms of acute and chronic EAE.

Dijkstra et al., 1993 [62]

EAE Dendritic cells
T cells

D1-like dopaminergic receptor antagonist (SCH23390) has
a preventive and curative effect on EAE in mice. D2-like
dopaminergic receptor antagonist (L750667) enhances
EAE severity. The spleen cells from SCH23390-treated
mice produce less IL-17 than the PBS-treated mice.
Dendritic cells treated with SCH23390 and transferred to
mice have the same effect compared with the direct
influence of SCH23390 on EAE.

Nakano et al., 2008 [51]

EAE Dendritic cells

D5-dopaminergic receptor deficiency on dendritic cells
impair LPS-induced IL-12 production and IL-23 mRNA
expression and attenuate CD4+ T-cell activation.
D5-dopaminergic receptor deficient mice show a delayed
onset of the EAE and reduced disease severity compared
with WT mice. Transfer of D5-dopaminergic receptor
deficiency dendritic cells to EAE mice lessens the
infiltration of Th17 cells in the CNS.

Prado et al., 2012 [52]
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Table 1. Cont.

Disease Cell Type The Effect of Dopaminergic Receptor Targeting Authors

EAE Peripheral
lymphoid tissue

The treatment with a D2- and D3-dopaminergic receptors
agonist pramipexole reduces IL-17, IL-1β and TNF-α
production in lymph nodes and prevents clinical signs of
the EAE in mice.

Lieberknecht et al., 2017
[41]

EAE Dendritic cells

Transfer of D5-dopaminergic-receptor-deficient dendritic
cells to EAE mice reduces EAE manifestation and
decreases the infiltration of IL-17+, IFN-γ+IL-17+ and
GM-CSF+IFN-γ+IL-17+CD4+ T cells at the peak of the
disease.

Prado et al., 2018 [53]

EAE CD4+ T cells

D5-dopaminergic receptor signaling in naive CD4+ T cells
potentiates T cell activation with the acquisition of
Th17-phenotype favoring EAE development.
D5-dopaminergic receptor signaling in Treg cells
contributes to their suppressive activity.

Osorio-Barrios et al., 2018
[54]

RRMS
Progressive

MS
Not investigated

No evidence of clinical efficacy of bromocriptine therapy
in MS. After one year of treatment, 14 of the 15 patients
showed disease progression.

Bissay et al., 1994 [63]

RRMS
PBMCs

CD4+ T cells
CD8+ T cells

Dopamine (at 10−6 M) enhances IL-17 and IL-21 but
suppresses IL-10 and TGF-β production by PHA-activated
PBMCs in RRMS patients and enhances IL-17 production
by anti-CD3/anti-CD28-antibody-activated CD4+ and
CD8+ T cells in RRMS patients.

Ferreira et al., 2014 [64]

RRMS CD3+ T cells

Dopamine (at 10−6 M) enhances IL-6, IL-17, IL-21, and
IL-22 but suppresses IL-10 production by
anti-CD3/anti-CD28-antibody-activated CD3+ T cells in
RRMS patients.

Alvarenga-Filho et al.,
2016 [23]

RRMS PBMCs

Dopamine (at 10−5 M) suppresses IL-17 and IFN-γ
production by anti-CD3/anti-CD28 microbead-activated
PBMCs in RRMS patients and healthy subjects. Blockade
of D1-like dopaminergic receptor with SCH23390
enhances the inhibitory effect of dopamine on IL-17
production, while blockade of D2-like dopaminergic
receptor with sulpiride conversely reduces it.

Melnikov et al., 2016 [26]

RRMS CD4+ T cells

Dopamine (at 10−5 M) suppresses IL-17 and IFN-γ
production by anti-CD3/anti-CD28 microbead-activated
CD4+ T cells in RRMS patients and healthy subjects.
Blockade of D2-like dopaminergic receptor with sulpiride
reduces dopamine-mediated IL-17 suppression in MS
patients. Blockade of D1-like dopaminergic receptor with
SCH23390 reduces IL-17 and GM-CSF production by
activated CD4+ T cells in MS patients and in healthy
subjects.

Melnikov et al., 2020 [37]

In this regard, the repurposing of dopaminergic drugs is one of the most promising
directions in the development of new therapeutic approaches in MS [8,9,35]. However,
the existing data were obtained primarily in in vitro studies or EAE (an animal model of
MS), while the effect of dopaminergic system targeting on MS is not sufficiently studied. In
one pilot study (Bissay et al. [63]), the influence of D2-like dopaminergic receptor agonist
bromocriptine on relapsing–remitting and progressive MS courses was tested. However, no
clinical benefits of such therapy were observed [63]. It should be noted that patients who
participated in these studies had not been treated with disease-modifying drugs [63]. It can
be proposed that dopaminergic therapy may be more effective as an add-on to first-line
disease-modifying drugs (interferon-β or glatiramer acetate). In line with this suggestion,
Green et al. reported that a combination of clozapine and glatiramer acetate therapy was
more effective in EAE treatment than using clozapine or glatiramer acetate alone [60].
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Secondly, in Bissay’s study, patients with progressive MS were included. However,
the MS progression is mediated by neurodegeneration, partly independent of autoimmune
inflammation [65], while dopamine presumably affects inflammatory processes. Finally,
this study contains just fifteen MS patients. Thus, the effect of bromocriptine on MS course
needs to be clarified.

5. Conclusions

Taken together, the results of more than twenty years of studies suggest the potential
prospect of dopaminergic therapeutics for the treatment of CNS demyelinating diseases.
However, confirmation of the clinical efficacy of such therapeutics still needs to be clarified.
Several reasons necessitate the development of such a therapeutic. About 30 percent
of MS patients do not respond to first-line disease-modifying drugs, so it is required to
switch over to more effective therapeutics [66]. At the same time, the treatment with the
second- or third-line therapy may cause severe side effects. In addition, the cost of such
treatment may be high. It is possible to propose that using dopaminergic therapeutics as
add-on pathogenetic MS treatment will control disease course without treatment escalation.
However, efficacy of such therapeutics needs to be confirmed in clinical trials.
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