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Abstract: Retinal aging is the result of accumulating molecular and cellular damage with a manifest
decline in visual functions. Somatostatin (SST) and pituitary adenylate cyclase-activating polypeptide
(PACAP) have been implicated in neuroprotection through regulating disparate aspects of neuronal
activity (survival, proliferation and renewal). The aim of the present study was to validate a transgenic
model for SST-expressing amacrine cells and to investigate the chronic effect of PACAP on the aging
of SSTergic and dopaminergic cells of the retina. SST-tdTomato transgenic mice that were 6, 12 and
18 months old were treated intravitreally with 100 pmol of PACAP every 3 months. The density of
SST and dopaminergic amacrine cells was assessed in whole-mounted retinas. Cells displaying the
transgenic red fluorescence were identified as SST-immunopositive amacrine cells. By comparing the
three age groups. PACAP treatment was shown to induce a moderate elevation of cell densities in
both the SST and dopaminergic cell populations in the 12- and 18-month-old animals. By contrast,
the control untreated and saline-treated retinas showed a minor cell loss. In conclusion, we report
a reliable transgenic model for examining SSTergic amacrine cells. The fundamental novelty of
this study is that PACAP could increase the cell density in matured retinal tissue, anticipating new
therapeutic potential in age-related pathological processes.
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1. Introduction

Aging is the result of the accumulation of a wide variety of molecular and cellular
damage over time [1], sharing common hallmarks with a range of diabetic as well as
ischemic complications. Cardiovascular disease, inflammation and oxidative stress are
major pathophysiological links among them [2,3].

Neuropeptides have an essential role in retinal physiology, as they affect information
processing through multiple retinal peptidergic pathways [4–6]. The neuropeptides so-
matostatin (SST) and pituitary adenylate cyclase-activating polypeptide (PACAP) have
various effects in many retinal physiological and pathological conditions [5,7–9]. These
two neuromodulators share similarities in their functional relevance and structural pa-
rameters. Both peptides were isolated from hypothalamic tissue in the twentieth century
and have two biologically active isoforms (SST—SST-14 and SST-28; PACAP—PACAP1-38
and PACAP1-27). Their pleiotropic cellular effects are exerted by widely distributed hep-
tahelical transmembrane G-protein-coupled receptors (SST—SST1, SST2A, SST2B, SST3,
SST4 and SST5; PACAP—PAC1-R, VPAC1-R and VPAC2-R) in the central and peripheral
nervous system [10–18]. In the mouse retina, sparse SST immunoreactive cells have been
reported as amacrine cells in the inner nuclear layer (INL) and displaced amacrine cells in
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the ganglion cell layer (GCL) [9], while cell bodies in the GCL, in addition to some amacrine
cells and horizontal cells, show PACAP immunopositivity [19]. These two peptides were
also studied in connection to a number of retinal pathologies such as the aging process and
in diabetic retinopathy. PACAP treatments have exerted morphological, physiological and
neurochemical protection in several disease models [20–23]. In an experimental model of
diabetes, the synthetic somatostatin analogue octreotide (OCT) and PACAP exerted their
neuroprotective effects by inhibiting vascular endothelial growth factor (VEGF) expres-
sion and retinal cell apoptosis [24]. In streptozotocin-induced diabetic retinopathy, the
intravitreal injection of PACAP ameliorated structural changes in the retina (by affecting
normal dopaminergic amacrine cell numbers compared to the untreated group) [21]. In the
vitreous bodies of patients with diabetic retinopathy, significantly lower concentrations
of SST were reported than in the controls [25]. A somatostatin deficit has been proven to
trigger apoptosis and glial activation during diabetic retinopathy [26,27]. Some aspects of
the diabetic complications show similarities with the symptoms of aging [28]. Age-related
retinal functional and structural changes in the retina are well described in the aging human
population worldwide. Neuropeptides and/or their analogs could offer an opportunity for
treatments in certain retinal pathological conditions [7,29]. Previous studies have described
that endogenous PACAP deficiency accelerated age-related retinal degeneration [22]. On
the other hand, in the pathophysiology of age-related macular degeneration, OCT treat-
ment stabilized visual acuity [30]. Ischemia is a major cause of visual impairments and is
involved in the pathogenesis of many retinal diseases, such as diabetic retinopathy and age-
related macular degeneration [31]. The anti-ischemic potential of both PACAP and OCT has
been described in various disease models. Metabolomics analysis showed their protective
effects in ischemia, where both PACAP and OCT ameliorated ischemia-induced oxidative
stress, decreased cell death and downregulated VEGF overexpression [29]. With these
facts in mind, these neuropeptides should be taken into account as therapeutic agents for
decelerating age-related visual impairments [7,29]. Although our previous study described
accelerated age-related retinal degeneration in PACAP-KO mice [22], and OCT treatment
was demonstrated to stabilize visual acuity in age-related macular degeneration [30], the
paucity of information on the relation between PACAP and retinal aging is striking.

In the present study, we aimed to investigate the chronic effect of PACAP treatment
in the aging retina with particular regard to SST-expressing retinal cells. We found that
multiple PACAP injections caused increased cell densities in the SSTergic amacrine cell
population, suggesting synergistic regulation between these neuropeptides.

2. Results
2.1. Validation of SST-tdTomato Mouse Retina Engineered to Detect SST-Expressing Cells

In Figure 1a, red fluorescent protein-expressing cells are shown in the whole-mounted
control retina. Their pattern seemed to display a very similar distribution to that of
the tyrosine hydroxylase (TH)-expressing dopaminergic amacrine cells (Figure 1b). To
confirm the specificity for SST-expressing cells, SST immunostaining was performed.
Doubled labeling showed that the red transgenic fluorescent cell population and green
immunohistochemistry-driven fluorescent signal overlapped (Figure 1c). Furthermore,
co-labeling with anti-TH antibody revealed that the red fluorescent protein-expressing and
TH-immunopositive cell populations were entirely distinct (Figure 1d).
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Figure 1. SST and TH immunohistochemistry in retinal whole mounts and sections in 6-month-old 

mouse retina. tdTomato-expressing cells (a) and TH-immunopositive neurons (b) in retinal whole 

mount. Co-localization of anti-SST antibody (labeled with AF 488-green) and red autofluorescent 

cells appeared as yellow in the merged image (c). Co-localization was not observed between SST 

cells (red) and TH immunopositive cells (green) (d). INL—Inner nuclear layer; IPL—Inner plexi-

form layer. Scale bar in (a) is valid for (b). 

2.2. Quantitative Analysis: PACAP Treatment Caused an Increase in Cell Density 

In accordance with the available literature, a higher SST cell density was observed in 

the peripheral regions than in the central retina in the control tissues. At the same time, 

TH-positive cells displayed an evenly distributed pattern over the whole retina in all the 

examined groups (Figures 2–4) (TH—[32,33]; SST—[9,34]). Besides the somatosta-

tin-containing amacrine cell population, a few glia-like cells appeared in the oldest age 

group of the treated animals. 

  

Figure 1. SST and TH immunohistochemistry in retinal whole mounts and sections in 6-month-old
mouse retina. tdTomato-expressing cells (a) and TH-immunopositive neurons (b) in retinal whole
mount. Co-localization of anti-SST antibody (labeled with AF 488-green) and red autofluorescent
cells appeared as yellow in the merged image (c). Co-localization was not observed between SST
cells (red) and TH immunopositive cells (green) (d). INL—Inner nuclear layer; IPL—Inner plexiform
layer. Scale bar in (a) is valid for (b).

2.2. Quantitative Analysis: PACAP Treatment Caused an Increase in Cell Density

In accordance with the available literature, a higher SST cell density was observed
in the peripheral regions than in the central retina in the control tissues. At the same
time, TH-positive cells displayed an evenly distributed pattern over the whole retina in all
the examined groups (Figures 2–4) (TH—[32,33]; SST—[9,34]). Besides the somatostatin-
containing amacrine cell population, a few glia-like cells appeared in the oldest age group
of the treated animals.

Three experimental groups were designed to examine the long-term effects of PACAP
injection on cell density: non-treated, saline-treated and PACAP-treated groups. The results
of the quantitative analysis are presented in Table 1 and Figure 5.

To the best of our knowledge, multiple intravitreal injections caused no harm to the
animals, as no significant difference was found between the non-injected and saline-injected
retinas. Therefore, we opted to use the latter group as a control (sham manipulated). In
the control retinas, neither the SST- nor the TH-positive cells displayed a statistically
significant difference in central retinal cell density as the aging process progressed. In
regard to PACAP treatments, a single injection caused no changes in SST or dopaminergic
cell densities in the 6-month-old retinas (Figure 5a–d). In the 12-month-old group, a slight
increase was observed in both cell populations. By contrast, in the 18-month-old retinas,
which received PACAP treatment five times, a noticeable elevation was found, but with
less statistical power. Notably, the peripheral area was rather strongly affected by PACAP,
where an approximately 1.5-fold and a 1.7-fold increase were detected (Figure 5c,d), while
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Figure 3. Distributions of SST (red) and TH (green) cells are shown in central (a,b) and peripheral (c,d) retina of 12-month-
old mice. An increase in the density of both cell populations is clearly seen in the PACAP-treated (b,d) whole mount
compared to saline-treated (a,c) retina. Scale bar is identical for all pictures.
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Figure 4. Distributions of SST (red) and TH (green) cells are shown in central (a,b) and peripheral (c,d) retina of 18-month-
old mice. The increase in the SST and TH cell density is even more enhanced in the PACAP-treated (b,d) whole mount
compared to saline-treated (a,c) retina. The arrows point to tdTomato-expressing glia-like cells. Scale bar is identical for
all pictures.

Table 1. Summary of SST and TH cell densities in central and peripheral areas of 6- 12- and 18-month-old retinas. Values
are expressed as means ± SEM (n = 4).

SST Cell Density (Cell/mm2)

Central Retina Peripheral Retina

6 m 12 m 18 m 6 m 12 m 18 m

Non-treated group 46.0 ± 12.3 22.5 ± 5.2 27.8 ± 6.1 64.0 ± 12.5 71.2 ± 6.8 64.9 ± 16.9
Saline-treated group 30.4 ± 6.0 16.3 ± 2.7 22.9 ± 2.7 88.8 ± 17.0 80.7 ± 7.5 75.1 ± 11.9

PACAP-treated group 27.9 ± 4.5 27.3 ± 3.7 31.5 ± 3.9 85.9 ± 11.3 89.5 ± 13.5 113.6 ± 20.3

TH Cell Density (Cell/mm2)

Central Retina Peripheral Retina

6 m 12 m 18 m 6 m 12 m 18 m

Non-treated group 50.1 ± 5.2 35.4 ± 2.2 43.5 ± 4.2 41.2 ± 4.8 37.7 ± 1.9 43.8 ± 3.2
Saline-treated group 52.1 ± 1.5 32.9 ± 1.5 49.0 ± 3.7 51.8 ± 2.3 37.9 ± 1.7 44.3 ± 3.1

PACAP-treated group 49.4 ± 1.9 42.1 ± 4.5 58.4 ± 5.1 54.9 ± 2.4 43.9 ± 3.9 74.7 ± 9.4
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Figure 5. The SST (a,c)- and TH (b,d)-positive cell densities in central (a,b) and peripheral retinas (c,d)
in different groups. Data presented as mean ± SEM, where * means p < 0.05 and ** means p < 0.01,
compared to the cell densities of the 6-month-old PACAP-treated group.

3. Discussion

With time, the accumulation of age-related changes leads to progressively impaired
function in the aging retina. The natural biological process of aging is responsible for
neuronal cell loss in the retinal tissue [35]. The neuromodulator functions of PACAP
and SST in the retina have been described in numerous mammalian species, such as
the rat (SST—[36–38]; PACAP—[19]), humans (SST—[39]; PACAP—[40]) and the mouse
(SST—[9]; PACAP—[41]). Due to their retinal presence under physiological circumstances,
neuropeptide-based therapeutic strategies have been extensively researched for numerous
vision-threatening diseases.

Very few studies have investigated the role of PACAP in the aging process, however,
despite the accumulating evidence for its neuroprotective potential. PACAP-knockout
mice have been reported to develop pre-senile amyloidosis and impaired articular carti-
lage formation [42,43]. In PACAP-knockout retinas, altered dendritic sprouting has been
described [22]. Our results represent a novel, unique approach in demonstrating that
intravitreal PACAP treatment has a beneficial long-lasting effect on age-related neuronal
cell loss.

The retinal area generally increases with age, and this enlargement could lead to a
reduction in cell density [44,45]. At the 12-month time point, the non-treated and saline-
injected controls showed small, statistically insignificant losses in SST-positive cell densities.
At the same time, in the PACAP-treated retinas, we found normal cell densities in central
areas and, simultaneously, increased cell densities at the periphery. In the oldest treated
groups, both cell types showed higher cell densities in both central and peripheral retinal
areas, while the cell densities in the non-treated group decreased. In both groups, we
noticed glia-like cells in the central area, which were present in higher numbers in the
PACAP-treated retinas. The glial cells could, in theory, contribute to neuroprotection and
help to maintain tissue homeostasis [46,47]. The increased glial cell activation could also
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be a specific reaction to the homeostatic disturbances occurring during the aging process.
Their upregulation by PACAP may promote higher neuronal cell densities in these groups.
PACAP receptor expression was reported on various immune cell populations representing
distinct patterns. The observation suggests a link between the appearance of glia-like cells
and the repeated PACAP injections [48].

One possible explanation for the increased cell numbers is the promotion of neuronal
stem cell activation and/or differentiation. In the adult retina, a small population of
proliferating stem cells resides in the marginal zone of the ciliary body [49]. Although
normally resting, they can be activated by exogenous growth factors or injuries [50,51]. Our
findings suggest that PACAP might be a candidate for stimulating retinal stem/progenitor
cells, opening a new avenue for future studies. Another prominent feature of PACAP-
mediated processes that compensates for cell loss is the well-known anti-apoptotic effect.
It was described in cortical neuronal cultures, where it relies on the activation of cAMP
response element-binding protein (CREB)-mediated gene expression and action potential
firing [52]. The PACAP-induced phosphorylation effect on CREB has also been described
in the retina [53]. The CREB family controls neuronal survival in many neuronal subtypes
through the regulation of the transcription of certain survival factors (such as Bcl-2), while
the disruption of CREB has been shown to result in neurodegenerative processes in the
central nervous system [54–56].

Furthermore, our findings raise the possibility that the effects of PACAP and SST are
cumulative. Speculatively, this may have significant clinical implications in the future. The
potency of these peptides is based on their receptor signaling through multiple cellular path-
ways. The underlying molecular processes of SST- and PACAP-receptor signaling include
the inhibition of proapoptotic molecules (e.g., caspase-3, caspase-8, FasL and calpain-2),
meaning that they could be very well suited for reducing the harmful effects of diabetic
retinopathy [21,57–59]. SST eyedrops have helped in the prevention of neurodegeneration
and b-wave abnormalities in streptozotocin-induced diabetic retinopathy [58]. In optic
nerve crush-induced retinal ganglion cell apoptosis, PACAP treatment upregulates Bcl-2
expression and inhibits caspase-3 expression [53]. Intraocular PACAP injection attenuates
proapoptotic signals (p-p38MAPK and caspase-3, -8 and -12) and promotes anti-apoptotic
factors (p-Akt, p-ERK1, p-ERK2, PKC and Bcl-2) in experimental diabetic retinopathy [21].
The signal transduction pathways activated by SST and PACAP are convergent, and share
identical members, which raises the possibility that they may enhance each other. The
long-lasting neuroprotective effects of PACAP on SST-containing neuronal cells support
the potential therapeutic effectiveness of neuropeptides in counteracting the aging process.
The results highlight the importance of further understanding corroborative neuropeptide
pathway mechanisms, and our present study represents a significant step in that direction.

4. Materials and Methods
4.1. Animals and PACAP Treatment

Experiments were performed on 6-, 12- and 18-month-old C57Bl/6J TdTomato trans-
genic mice (n = 4 in each age group and condition) that were purchased from the Institute
of Experimental Medicine of the Hungarian Academy of Sciences. The mice were gen-
erated by crossing the homozygote SST/iresFlpo (Tm3) mouse line with homozygote
GT(ROSA)26Sor_CAG/FSF_TdTomato animals. These transgenic mice express enhanced
red fluorescent protein (TdTomato) in somatostatin-containing cells. The construct was
validated by PCR tests. The animals were housed under identical conditions: with water
and food ad libitum, in a temperature- and light-controlled room (12/12 h light/dark cycles,
23 ◦C). The animal housing and experimental procedures were reviewed and approved
by the ethics committee of the University of Pécs (BAI/35/51-58/2016). Under isoflurane
anesthesia, 1.5 µL of 0.3 µg/µL (100 pmol) PACAP1-38 (Bio Basic Canada Inc., Markham,
ON, Canada) was injected intravitreally with a Hamilton syringe (a 10 µL microsyringe).
The left eye served as a control, and it received the same volume of vehicle treatment (0.9%
saline solution). The intervals between the treatments were 3 months, which means that
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the numbers of injections varied with age group: one for the 6-month group, three for the
12-month group and five for the 18-month group.

4.2. Immunohistochemistry on Retinal Whole Mounts

After animals were sacrificed by an overdose of isoflurane anesthetic, the eyes were
immediately dissected. The retinas were fixed in freshly prepared 4% PFA for 2 h at
room temperature. The samples were rinsed in phosphate buffered saline (PBS) and
then incubated in 1%TritonX-ABS for an hour. The retinas were incubated with anti-
TH antibody (rabbit, 1:1000; Abcam, Cambridge, UK) for 72 h at 4 ◦C in an incubator–
rotator (Enviro Genie, Bohemia, NY, USA). After intensive washes with 1% Triton-PBS,
the retinas were incubated with the secondary antibody (goat-anti-rabbit, AlexaFluor-488,
1:1000; ThermoFisher Scientific, Budapest, Hungary) overnight at 4 ◦C in the incubator–
rotator. Samples were washed with 1% TritonX-PBS and mounted with Fluoromount-G
(ThermoFisher Scientific, Budapest, Hungary). Photographs were taken with an Olympus
Fluorview FV-1000 Laser Confocal Scanning Microscope (Olympus, Tokyo, Japan). The
density (cells/mm2) of SST autofluorescent and TH-positive cells was assessed in the
central and peripheral areas. Quantitative data were obtained using an image analysis
program (Fiji is just Image J 1.52p, NIH Bethesda, MD, USA). The values of the cell densities
are expressed as means ± SEM. Statistical comparisons were made using nonparametric
Mann–Whitney analysis.

4.3. Immunohistochemistry on Retinal Sections

Eyecups were fixed in 4% PFA for 2 h at room temperature. The specimens were
cryoprotected in 15% and 30% sucrose solutions at 4 ◦C. Cryo-sections were incubated with
anti-STT (rabbit, 1:1000; BMA Biomedicals, Augst, Switzerland) and anti-TH (rabbit, 1:1000;
Abcam, Cambridge, UK) antibodies overnight, followed by the corresponding secondary
fluorescent antibodies (goat-anti-rabbit, AlexaFluor-488; Life Technologies, ThermoFisher
Scientific, Budapest, Hungary; 1:1000) for 2 h. For the controls, we omitted the primary
antibodies from the incubation steps, which resulted in non-staining. Photographs were
taken with an Olympus Fluorview FV-1000 Laser Confocal Scanning Microscope (Olympus,
Tokyo, Japan), using the same settings for one marker.
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