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Abstract: Ferroptosis has been described recently as an iron-dependent cell death driven by peroxida-
tion of membrane lipids. It is involved in the pathogenesis of a number of diverse diseases. From the
other side, the induction of ferroptosis can be used to kill tumor cells as a novel therapeutic approach.
Because of the broad clinical relevance, a comprehensive understanding of the ferroptosis-controlling
protein network is necessary. Noteworthy, several proteins from this network are flavoenzymes. This
review is an attempt to present the ferroptosis-related flavoproteins in light of their involvement
in anti-ferroptotic and pro-ferroptotic roles. When available, the data on the structural stability of
mutants and cofactor-free apoenzymes are discussed. The stability of the flavoproteins could be an
important component of the cellular death processes.
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1. Introduction

Human flavoproteome encompasses slightly more than one hundred enzymes that par-
ticipate in a number of key metabolic pathways. The chemical versatility of flavoproteins
relies on the associated cofactors, flavin mononucleotide (FMN) and flavin adenine dinu-
cleotide (FAD). In humans, flavin cofactors are biosynthesized from a precursor riboflavin
that has to be supplied with food. To underline its nutritional essentiality, riboflavin is
called vitamin B2.

In compliance with manifold cellular demands, flavoproteins have been accommo-
dated to operate at different subcellular locations [1]. The largest fraction of flavoproteins
can be found in mitochondria, which is not surprising, given the central metabolic role of
this organelle. Flavoproteins reside in all subcompartments of a mitochondrium, including
its membranes. One example of a mitochondrial membrane flavoprotein is NDUFV1,
the core subunit of the respiratory chain Complex I, associated with FMN that transfers
electrons from NADH to the Fe-S clusters [2]. Another prominent resident of mitochondrial
membranes is the FAD-bound catalytic subunit of succinate dehydrogenase (Complex
II) [3]. Noteworthy, the apoptosis-inducing flavoprotein AIF1 is also anchored in the inner
mitochondrial membrane [4]. In addition, transmembrane and membrane-associated flavo-
proteins can be found also outside mitochondria, for example, at the plasma membrane
and in the endoplasmic reticulum. There have been recent advances in untangling the
cellular complexity of flavoproteome using structure-based evolutionary analysis [5].

One of the reasons for the association of flavoproteins with cellular membranes is their
involvement in lipid biochemistry. This activity brings flavoproteins into the spotlight of
the cellular death pathways. The membrane lipid reduction and oxidation (redox) reactions,
specifically phospholipid peroxidation, has recently become a focus of intense research
following the discovery of ferroptosis, an iron-dependent non-apoptotic cell death [6,7].
Ferroptosis is driven by peroxidation of polyunsaturated fatty acids (PUFAs) when the
glutathione-based repair of oxidative damage becomes insufficient [8,9]. Excitingly, it has
become clear that the lipid damage-related processes represent a significant pathogen-
esis component of diverse pathologies [10]. Flavoproteome is involved prominently in
these processes. Consequently, the detailed understanding of the anti-ferroptotic and pro-
ferroptotic roles played by flavoproteins is necessary in order to develop novel therapeutic
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approaches. The manipulation of the structural stability of flavoproteins is one of the
possibilities to adjust their function and thus deserves thorough consideration.

2. Human Flavoproteome

Human flavoproteins constitute an important component of the cellular metabolic
network [1]. The enzymatic roles of flavoproteins are determined by the associated flavin
cofactors FMN and FAD. The majority of human flavoproteins contain FAD, but only
a few are associated with FMN. Very few proteins have both cofactors, for example,
cytochrome P450 oxidoreductase (POR) and all three paralogs of nitric oxide synthase.
In several cases, the isoalloxazine ring of the flavin cofactor is covalently linked to a
histidine or a cysteine residue of the protein. One example of a covalently attached
FAD is succinante dehydrogenase in mitochondria. Biochemical reasons for the covalent
association are not completely clear, but might include the saturation of the active site, the
adjustment of the redox potential, facilitation of reactivity and protein stabilization. From
the structural perspective, Rossmann fold is the most prevalent fold among human FAD-
binding proteins, closely followed by the Acyl-CoA dehydrogenase fold [1]. Most human
FMN-binding proteins have Flavoprotein and TIM barrel folds. In FAD-containing proteins,
the pyrophosphate binds to the most strongly conserved sequence motifs, suggesting that
pyrophosphate binding is important for molecular recognition of the cofactor [11].

Flavoenzymes catalyze a large variety of diverse reactions. The tricyclic isoalloxazine
ring system of flavin cofactors provides necessary redox versatility, explaining the metabolic
importance of the flavoproteome [12]. Both one-electron and two-electron transfer are
possible, thermodynamically and kinetically; therefore, the one-electron reduced flavin
semiquinone and the two-electron reduced dihydroflavin both are biologically relevant.
This is in contrast to the obligate two-electron transferring NAD(P)H and one-electron
transferring iron. Mechanistically, flavoenzymes generate and react with carbanions,
radicals and hydrides [12]. During reduction in the flavin cofactor, the substrates are
typically oxidized by transfer of two electrons. Reoxidation of reduced flavin can happen
as a reverse reaction. In cases like this, hydride transfer would take place, representing
the two-electron at a time reaction. Additionally, the one-electron oxidation of the flavin
cofactor can happen; for example, one electron transfer from flavin to the iron-sulfur cluster.

Human flavoenzymes are typically intracellular proteins. There are only a couple of
exceptions. For example, renalase is an FAD-dependent amine oxidase that is secreted
into the blood from the kidney. Its activity decreases cardiac contractility and rate. Cate-
cholamines promote synthesis and secretion of renalase [13]. Another example is quiescin
sulfhydryl oxidases (QXOSs). These Golgi apparatus-localized flavoenzymes are disul-
fide catalysts and can be secreted. QSOX1 activity was required for the incorporation of
laminin into the extracellular matrix; if synthesized without QSOX1, the matrix could not
support cell adhesion [14]. More than half of the intracellular flavoproteins are localized in
mitochondria and peroxysomes; two organelles with key functions in cellular metabolism.
As mentioned above, many flavoproteins associate with cellular membranes (Table 1).

Table 1. Human flavoproteins discussed in this review.

Gene Flavoprotein Flavin

AIFM1 Apoptosis inducing factor, mitochondria associated 1 1 FAD
AIFM2 Ferroptosis suppressor protein 1 1 6-hydroxy-FAD

CYB5R1-5 Cytochrome B5 reductases 1-5 1 FAD
DLD Dihydrolipoamide dehydrogenase FAD
GSR Glutathione-disulfide reductase FAD

NQO1 NAD(P)H Quinone dehydrogenase 1 FAD
NQO2 Ribosyldihydronicotinamide dehydrogenase [quinone] FAD
POR Cytochrome P450 oxidoreductase 1 FMN + FAD
SQLE Squalene monooxygenase 1 FAD

TXNRD1 Thioredoxin reductase 1 FAD
1 Membrane association has been well-established.
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3. Ferroptosis

Ferroptosis is a type of eukaryotic cell death characterized by the iron-dependent accu-
mulation of lipid hydroperoxides to lethal levels [10]. Ferroptosis depends on intracellular
iron and is morphologically and biochemically distinct from other forms of cell death, such
as apoptosis and necrosis [7]. The antioxidative glutathione system is critical in protect-
ing against ferroptosis (Figure 1). Here, glutathione-dependent glutathione peroxidase
4 (GPX4) is able to restrict lipid peroxidation [8,9], which is unavoidable during aerobic
metabolism. To explain the importance of GPX4, it is assumed that the hydroperoxides
are continuously reduced by GPX4 in the presence of glutathione [15]. In the glutathione
system, flavoprotein glutathione reductase is responsible for sustaining sufficient levels of
reduced glutathione in the cell. When GPX4 reaction becomes limiting, ferrous iron initiates
lipid peroxidation by decomposing the hydroperoxides. The oxidative chain reaction then
leads to irreparable lipid damage and cell death.
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Figure 1. Ferroptosis-related flavoproteins (red). Lipid hydroperoxides (PUFA-OOH) in cellular
membranes are generated during aerobic metabolism by the lipoxygenases (LOX) and cytochrome
P450 oxidoreductase (POR). Molecular oxygen (O2) and iron ions (Fe2+) are required for lipid
peroxidation. Hydroperoxides are reduced by the glutathione peroxidase GPX4 in the presence of
glutathione (GSH). A precursor of glutathione, the cystine (Cys-Cys), is supplied by the transporter
System xc

-. Glutathione reductase (GSR) regenerates oxidized glutathione (GSSG) back to its reduced
state. In addition, the endogenous lipophilic anti-oxidant ubiquinone can reduce the oxidative lipid
damage. It is regenerated by the reducing enzymes NQO1 and FSP1. Ubiquinone is biosynthesized
in the mevalonate pathway, which is critically controlled by the HMG-CoA reductase (HMGCR).
Another mevalonate pathway enzyme, the squalene monooxygenase (SQLE), is downstream of the
branching point towards ubiquinone. Nevertheless, it is also involved in the ferroptosis control [16].
The mitochondrial dihydrolipoamide dehydrogenase (DLD) has been recently found to be required
to induce ferroptosis upon cystine deprivation [17].
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Lipid oxidation can proceed autocatalytically or enzymatically. Considering the
enzymatic pathway, lipoxygenases (LOXs) have been implicated in driving ferroptotic
damage of PUFAs [18,19]. Especially LOX15 has been thought to be central in ferroptosis.
On the other side, some cell types lacking LOX activity are known to be still susceptible to
ferroptotic death. As a possible explanation, it has been shown that some LOX inhibitors
operated as radical-trapping antioxidants [20]. The authors concluded that LOX may
contribute to the cellular pool of lipid hydroperoxides, but it is the lipid autooxidation that
drives ferroptosis. Yet another explanation could be the presence of further drivers of lipid
peroxidation in the cell. For example, the flavoprotein cytochrome P450 reductase has been
shown recently to oxidize polyunsaturated phospholipids [21].

The endogenous membrane antioxidant ubiquinone (coenzyme Q) is synthesized by
the mevalonate pathway. In preventing peroxidative damage to lipids, reduced ubiquinone
is as effective as α-tocopherol [22]. Not surprisingly, the inhibition of the upstream HMG-
CoA reductase enhanced ferroptosis induction by FIN56 [16]. Ubiquinone cannot be
recycled by ascorbate, but it can be reduced by some enzymes; in the case of the flavo-
protein NQO1, this activity has been known for a while [23]. In contrast, the ubiquinone-
reducing capacity of the flavoprotein AIFM2 has been discovered only recently [24–26].
Consequently, AIFM2 turned out to be able to complement the loss of GPX4.

In the following sections, ferroptosis-related human flavoproteins will be discussed in
more detail paying particular attention to the available data on structural and functional
stability of the proteins.

4. GSR

Glutathione reductase (GSR) is a FAD-containing flavoprotein localized in the cytosol.
Glutathione is the reducing substrate in the GPX4 reaction and thus it is the key component
of the anti-ferroptotic network. Its cellular availability mirrors the interplay of diverse
biochemical processes, such as the uptake of the precursor cystine, the GSH synthesis,
conjugation, oxidation and reduction. GSR uses NADPH, two essential cysteins and
an activated histidine to reduce an oxidized GSSG dimer into two GSH molecules [27].
NADPH and GSSG bind to separate sites on the GSR, and the associated FAD cofactor lying
in-between drives a cycle of redox half reactions. Despite its central role in glutathione
homeostasis, GSR does not seem to be essential to maintain the reduced glutathione pool
in E. coli [28]. In contrast, yeast strains deficient in GSR show higher levels of GSSG
and are more sensitive to oxidative stress [29]. However, yeast cells remain viable if the
thioredoxin system is intact. The recombinant flavoprotein thioredoxin reductase could
reduce oxidized glutathione in vitro. The compensatory effects from other parts of the
cellular anti-oxidative machinery might explain rather mild consequences of GSR defects
also in other species, including humans.

The first pathogenic mutation identified in human GSR was its C-terminal truncation,
which manifested in hemolytic crises after eating fava beans and in cataract develop-
ment [30,31]. The GSR activity was almost completely lacking in the erythrocytes of
affected patients and it could not be rescued by riboflavin in vivo or FAD in vitro. Intra-
cellular enzyme levels were very low to undetectable, which indicated the destabilization
of the protein structure. Another mutation, G330A, affected a conservative residue in the
FAD-binding motif [31]. When the recombinant mutant was tested in vitro, it showed a
strongly impaired thermostability. Interestingly, the patient with the G330A variant was
found to be a compound heterozygote bearing a nonsense mutation at W287 in another
GSR allele. A similar truncation (S216) is found frequently in tumor samples [32]. It remains
to be clarified whether the inactivation of GSR by this somatic mutation has a functional
relevance during tumorigenesis.

As discussed above, thioredoxin reductases (TXNRDs) can complement the GSR
function in regenerating the reduced glutathione pool in the cell. Conceivably, TRXNDs
should be able to support GPX4 in its anti-ferroptotic activity. Thus, it came as a surprise
that the loss of TXNRD1 protected pancreatic cancer cells from ferroptosis upon GPX4
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inhibition [33]. The authors found that the loss of TXNRD1 increased the levels of GPX4
protein by increasing the cellular pool of selenocystein. Selenocystein is a scarce amino
acid required for the structure and function of both polypeptides, thus the disappearance
of one facilitated the biogenesis of the second. The case is a good example of a com-
plex relationship between protein biogenesis, structure and function when considered
in the natural context of limited cellular resources. Conserved structural elements in
different flavoproteins support their shared biochemical roles in the cell [5]. How much
this structural relationship contributes to the complementary or antagonistic functions of
ferroptosis-related flavoproteins remains to be investigated.

5. AIFM2 (FSP1)

In humans, apoptosis-inducing factors (AIF)M1-M3 comprise a family of flavopro-
teins, all of which have been thought to reside in mitochondria and participate in caspase-
independent apoptotic cell death. AIFM1 is the most-analyzed member of the group [5,24,34].
Its structure revealed a gluthatione reductase-like fold [5,35], a curious coincidence when
considering the anti-ferroptotic function of the AIF family. Mature AIFM1 is anchored in
the inner membrane of mitochondria, exposing its C-terminal part to the intermembrane
space [4]. Upon apopotosis induction, AIFM1 is proteolytically processed to be released
from the membrane and subsequently translocated to the cytosol and the nuclei. The
flavoprotein function in the nuclei does not seem to depend on other cytoplasmic factors
and results in chromatin fragmentation [36]. It is believed that AIFM1 associates with
nucleases, such as endonuclease G and the macrophage migration inhibitory factor, to
execute DNA fragmentation. On the other side, it has been reported that a substantial
fraction, approximately 30% of the total pool of AIFM1, resides at the outer mitochondrial
membrane on the cytosolic side and might be sufficient to cause cell death, even without
an input from the intramitochondrial pool [37].

AIFM2 (also known as apoptosis-inducing factor-homologous mitochondrion-associated
inducer of death; AMID) shows significant sequence similarity with AIFM1 and both
proteins were assumed initially to have similar subcellular localization and pro-apoptotic
functions [38]. However, AIFM2 lacks a mitochondrial targeting sequence and instead
features an N-terminal myristoylation motif. Inhibitor and mutational studies revealed
the importance of myristoylation to target the flavoprotein to lipid droplets and plasma
membrane [25]. In support, lipid-droplet localization of AIFM2 has been discovered in
an unbiased screen using proximity labeling in combination with mass spectrometry [39].
Another study reported the localization of GFP-fused AIFM2 in an unspecified perinuclear
membrane compartment and its partial overlapping with the endoplasmic reticulum and
Golgi apparatus markers [26]. In addition to and independent of the involvement in
apoptosis, AIF family members were assigned the NAD(P)H oxidase function [40,41].
Interestingly, AIFM2 was found to contain 6-hydroxy-FAD as cofactor [41]. The 6-hydroxy-
FAD is a rather exotic flavin variant, which can be found in other flavoproteins, only in low
abundance. Its relevance for the AIFM2 function remains to be clarified.

Recently, there have been important advances in understanding the additional roles of
AIFs. It was shown that both AIFM1 and AIFM2 can function as NADH dehydrogenases
with ubiquinone as a physiological electron acceptor [24]. This work identified AIFs as the
elusive candidate dehydrogenases capable of bypassing the respiratory chain Complex
I in human cells. These alternative NADH dehydrogenases (NDH-2) have been known
for a long time to exist in other species, such as yeast and plants, and they are believed to
confer metabolic plasticity to the respective organisms. The discovery of similar activity
of human AIFs opened new possibilities to better understand the metabolic adaptation
of human cells. Furthermore, the capacity of AIF flavoproteins to reduce the endogenous
antioxidant ubiquinone (CoQ) is obviously also relevant in the context of cellular membrane
protection from oxidative damage. The one electron-reduced (semiquinone) and two
electron-reduced (ubiquinol) forms are at the basis of CoQ function not only as electron
carriers during the mitochondrial oxidative respiration, but also as a membrane-resident
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antioxidant. Thus, it was perfectly reasonable that AIFM2 was very recently shown to
suppress the oxidative membrane damage-driven cell death, ferroptosis. Two very different
screening strategies were used to uncover additional ferroptosis regulators and both screens
converged on AIFM2 [25,26]. To underscore its new function, the protein was renamed
ferroptosis suppressor protein 1 (FSP1). Importantly, ubiquinone-reducing activity was
shown to be the key for the anti-ferroptotic role of the flavoprotein. Although able to
reduce ubiquinone too, AIFM1 was not found among hits with anti-ferroptotic activity.
One possible explanation is the different cellular localizations of the two paralogs: AIFM1
is constrained to mitochondria and has limited access to other cellular membranes.

When mutated, AIFM1 can lead to severe mitochondrial diseases. The first pathogenic
variant was identified ten years ago in patients presenting with involuntary movements,
peripheral motor neuropathy and muscular atrophy [42]. The arginine deletion (R201del)
localized in the FAD-binding domain was shown to affect the stability and activity of the
flavoprotein. Many more mutations in AIFM1 have been identified meanwhile and some
of the mutant proteins have been thoroughly characterized in vitro [43]. These analyses
concluded that only a strong decrease in cellular steady-state levels or impairment of the
enzymatic activity of AIFM1 lead to early and severe forms of disease. In contrast, less
pronounced structural changes manifest in slowly progressing neurodegeneration [43].
What about AIFM2 (FSP1) mutations? Glutamate 156 that is required for the binding
FAD was exchanged to alanine (G156A) and the functional consequences analyzed [25].
The mutation did not affect cellular levels and the localization of FSP1, but it impaired
the reduction in ubiquinone and the anti-ferroptotic activity of the protein. The effect
of naturally occurring mutations, such as M135T and D288N, has not been investigated
yet. This question is relevant in regard to the ferroptosis sensitivity, because both these
mutations do occur more frequently in tumors [32].

6. NQO1

Human NAD(P)H:quinone oxidoreductase (NQO)1 belongs to a family of quinone
reductases found across such diverse taxa as bacteria, fungi and archea. There is a
highly similar paralog of NQO1 in humans, that is called NQO2. However, a num-
ber of organisms contain only one of the two proteins. Mammalian NQO1 was discov-
ered and characterized some 70 years ago [44,45]. At that time, the protein was named
DT-diaphorase to underscore its capacity to oxidize equally efficiently both NADH and
NADPH, diphosphopyridine nucleotide and triphosphopyridine nucleotide, as they were
called then. Using NAD(P)H, NQO1 catalyzes the two-electron reduction in endogenous
and exogenous quinones to hydroquinones. The production of semiquinones by one-
electron reductases would be much more dangerous for a cell, because the redox cycling
of semiquinones in the presence of molecular oxygen results in the formation of reactive
oxygen species [46].

One of the remarkable features of NQO1 is its high inducibility by diverse environ-
mental insults. NQO1 expression is driven by the antioxidant response element (ARE) and
the xenobiotic response element (XRE) located in its promoter region [47]. Accordingly,
the activation of the transcription factors NF-E2 p45-related factor 2 (Nrf2) and the aryl-
hydrocarbon receptor (AhR) must precede the enhanced gene transcription and happens
in response to a plethora of chemical and physical stressors, such as polycyclic aromatic
hydrocarbons, azo dyes, hydrogen peroxide, ionizing radiation, photodynamic therapy,
nanoparticle exposure and shear stress in blood vessels [48]. It is interesting to note that
some tumor types show constitutively elevated NQO1 protein levels. For example, high lev-
els of NQO1 were detected in non-small cell lung cancer (adenocarcinoma, squamous cell
carcinoma, and bronchoalveolar carcinoma), but not in small cell lung cancer or carcinoid
lung tumors [49]. The reason for this specificity remains unclear and tumor-type specific
roles of NQO1 could be one possible explanation. One of the roles could be protection
from ferroptosis. For example, the knockdown of NQO1 in hepatocellular carcinoma cells
increased their vulnerability to this form of cell death [50].
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The presence of the flavin cofactor in its hydroquinone form (FADH2) in NQO1 allows
for the reduction in superoxide. The relevance of this activity remains unclear, though,
because the rate constant of reduction is very low, going four orders of magnitude below
that of superoxide dismutase [51]. On the other side, high concentration of NQO1 following
upregulation during oxidative stress bears a possibility, at least in principle, that NQO1
contributes significantly to the antioxidative protection of cells because of superoxide
reduction. This role of NQO1 can become relevant in circumstances when cellular levels
of superoxide dismutase are low, such as in some cardiovascular cell types. For example,
when lysates of aortic smooth muscle A10 cells or those of cardiac H9c2 cells were tested,
they were found to inhibit pyrogallol autooxidation in NQO1- and NAD(P)H-dependent
manner [52].

As mentioned above, ubiquinone (CoQ) protects cellular membranes from oxidative
damage. The capacity of NQO1 to reduce ubiquinones has been known for quite some
time [23]. Beyer at al. demonstrated that the addition of NADH and NQO1 from rat
liver to large unilamellar or multilamellar vesicles containing CoQ resulted in its com-
plete reduction. Furthermore, NQO1 in this experimental model was able to protect
membrane lipids from peroxidation in the presence of the radical initiator 2,2′-azobis(2,4-
dimethylvaleronitrile). Importantly, NQO1 also protected cellular membranes of hepa-
tocytes from loss of permeability under adriamycin treatment and this protection was
reversed with dicoumarol, the inhibitor of NQO1 [23]. While considering the biological
relevance of NQO1-dependent reduction in ubiquinone, the cellular localization of the
enzyme represents an important issue. The cytosol is the main cellular compartment
where this flavoprotein can be found. However, other cellular subcompartments, such as
organellar and plasma membranes, deserve more thorough scrutiny, especially in regard to
the presence of NQO1 upon its massive upregulation during oxidative stress and in some
tumor types.

The reducing activity of NQO1 can be lost to a different degree due to structural
changes caused by mutations. Proline-to-serine change at position 187 (P187S) is an in-
teresting variant for several reasons. First, the allele is found relatively often, showing
the frequency of 25. In some groups, such as East Asian populations, the allele frequency
reaches as much as 46%. Second, P187S renders the protein highly unstable. In cells
homozygous for the mutation, NQO1 levels were very low or not detectable and the en-
zymatic activity was lacking [53]. The lack of activity could be explained by the impaired
binding of the cofactor FAD to the enzyme [54]. It turned out that the mutation causes
structural and dynamic changes affecting, at a distance, the FAD binding site and increasing
the flexibility of the C-terminal tail [55,56]. Third, the structural defect in the mutant protein
phenocopies the in vitro and in vivo behavior of the cofactor-free wild-type NQO1 [57].
Specifically, wild-type apo-NQO1, similar to the P187S mutant, became unstable in cells,
which lead to its increased degradation by the 26S proteasome. The proteasome-targeting
ubiquitination of both wild-type apo-NQO1 and P187S mutant was executed by the ubiq-
uitin ligase CHIP (C terminus of HSC70-interacting protein). CHIP recognized its targets
directly via the flexible C-terminus of NQO1 because the C-terminal truncation of NQO1
strongly affected the ubiquitination.

It remains to be determined how general the recognition mechanism used by the
cellular protein quality control (PQC) machinery to detect cofactor-free flavoproteins is. It
is interesting to note here, that the paralog NQO2 naturally lacks the 43 amino acid-long
C-terminal tail of NQO1, otherwise showing high structural similarity. The truncation
translates into an altered site to bind pyridine nucleotides. As a consequence, NQO2
prefers nicotine riboside over NAD(P)H and differs also in its substrate preferences. The
lack of the flexible tail in NQO2 was conceivably the reason why CHIP failed to recognize
the flavoprotein regardless of the presence/absence of the cofactor [57]. At the same time,
the levels of NQO2 decreased significantly in melanoma cells as soon as one day in the
medium lacking riboflavin. These data suggest diverse ways how PQC can detect and
degrade individual cofactor-free flavoproteins. Different mechanism can be operational
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even for the same flavoprotein. For example, it has been shown, that mutant and wild-type
apo-NQO1 in vitro can be directly recruited to and degraded by the 20S proteasome [58].

7. POR

Cytochrome P450 oxidoreductase (POR) is an example of a flavoprotein that accom-
modates two flavin cofactors in its structure. POR is associated with FMN at the N-terminal
flavodoxin domain and with FAD at the C-terminal ferredoxin reductase domain. The two
cofactors orient toward each other in an alignment necessary for efficient electron transfer,
their isoalloxazine rings being only 4 Å apart at the closest [59]. Electrons are brought to
POR by NADPH and are transferred in the form of a hydride ion to FAD, passed from FAD
to FMN, which then finally transfers them to one of many partner cytochromes P450 in the
endoplasmic reticulum. The arrangement between flavins is permissive for the efficient
inter-protein electron transfer; however, FMN needs to re-accommodate to donate electrons
further. To this end, a more open conformation of the flavodoxin domain is required to
position the reduced FMN in the vicinity to the heme-binding site in the cytochrome [60].
A single 21 amino acid-long segment close to the N terminus of the flavoprotein spans the
endoplasmic membrane and anchors the reductase in the compartment where the partner
cytochromes are localized.

Opposite to the anti-ferroptotic roles of other flavoprotein as discussed above, POR
was recently shown to possess a pro-ferroptotic activity [21,61]. Two CRISPR-Cas9-based
screens were set up to screen for ferroptosis suppression, whereby intrinsically sensitive
clear-cell renal carcinoma and inherently resistant melanoma cell lines were used. The
resistant cells were rendered ferroptosis-sensitive by supplementation withω-6 andω-3
PUFAs, and ML210 was used to trigger ferroptotic cell death. Inactivation of POR turned
out to prevent from ferroptosis in both screens. Mechanistically, lipidome analysis revealed
the involvement of POR in the lipid peroxidation [21]. The authors suggested that POR
can facilitate lipid peroxidation by accelerating the cycling between Fe(II) and Fe(III) in
the heme of partner cytochrome P450. At the same time, the participation of other electron
acceptors cannot be excluded, because POR can donate electrons to a number of other redox
partners, such as cytochrome b5, squalene monooxygenase and heme oxygenase [62]. The
discovery is an important advance towards comprehending the diversity of pro-ferroptotic
mechanisms. Previously, primarily the arachidonate lipoxygenases (LOXs) were thought
to be responsible for lipid peroxidation behind ferroptosis induction [18]. However, lack of
LOX expression in some ferroptosis-sensitive cells lines suggested additional lipid damage
pathways. The POR-dependent lipid peroxidation offers a possible explanation of this
discrepancy. In support, POR was also a hit in a genome-wide ferroptosis screen in the
pancreatic carcinoma cell line KP-4 [61].

Because of its many client enzymes, POR defects are expected to result in complex
metabolic disturbances, including manifold defects of steroidogenesis. This assumption
proved true by the first molecular description of the clinical POR deficiencies that had
manifested in the combined insufficiency of 17α-hydroxylase and 21-hydroxylase [63].
Many more mutations in POR have been identified since then. POR deficiency is now
classified as a separate form of congenital adrenal hyperplasia independent of Antley–
Bixler Syndrome [64]. It affects the biosynthesis of steroids in both the adrenal gland
and the gonads. In addition to clinically manifest variants, there are some noticeable
polymorphisms in POR not yet linked with disease. Conceivably, they might become
relevant phenotypically during environmental variations. One example is the variant
A503V, with an average allele frequency of 30%. The high frequency of A503V can also
explain its increased detection in tumor samples. In contrast, the S35L variant is frequent
in tumors, but not in healthy tissue of general population. The mutation is localized in the
transmembrane segment of POR and thus can disturb its localization and function during
tumorigenesis.

Can the availability of the flavin cofactors affect the structural stability and enzymatic
performance of POR? We are not aware of the respective data regarding the wild-type
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enzyme. In the case of disease-causing mutations, the localization of the structural defect
determines the remaining association of the variant protein with the cofactor. For example,
V492E contains stoichiometric amounts of FMN and almost completely lacks FAD, whereas
R475H, next to the normal amount of FMN, still contains FAD at ca. 35% of the wild-type
value [65]. Both mutations disrupt the interaction of POR with the FAD pyrophosphate;
however, there are subtle, yet distinct differences in the destabilization of the mutant
enzymes. As a consequence, R457H results in less strong, but more global destabilization,
whereby the mutant POR populates three ensembles in solution, one of which cannot be
reconstituted with FAD. In contrast, the V492E mutant can be reloaded with FAD fully. An
interesting case of the mutant POR reactivation was provided by Nicolo et al. [66]. The
authors suggested that free FMN can compensate for the loss of the protein-bound cofactor
in some mutants; for example, in the Y181D and A287P variants. The exact mechanism of
this effect remains to be determined, including the clarification whether NADPH passes
electron to FMN directly or via FAD.

POR belongs to the so-called class II redox partners of cytochrome P450. This class
is widely represented among eukaryotes. The bacterial class I redox partner system is
composed of two separate components, an FAD-bound ferredoxin reductase and a 2Fe-S
cluster-bound ferredoxin. The eukaryotic mitochondria contain a class I system. Because
of mitochondrial localization, the involvement of the flavoprotein ferredoxin reductase in
ferroptosis is less probable, similarly as in the case of the FSP1 paralog AIFM1.

8. Other Flavoproteins from the Ferroptosis Network

In addition to the four described flavoproteins, several more can be reasonably consid-
ered as members of the ferroptosis network in human cells. For example, the flavoprotein
squalene monooxygenase (SQLE) is, next to HMG-CoA reductase (HMGCR), the rate-
limiting step of the mevalonate pathway. The pathway is involved in the biosynthesis
of the endogenous membrane resident antioxidant ubiquinone. As expected, inhibition
of HMG-CoA reductase with statins enhanced FIN56-induced ferroptosis, and this effect
was reversed by the supplementation of cell cultures with mevalonic acid [16]. In the
same study, the inhibition of the flavoprotein SQLE with NB-598 enhanced ferroptosis.
SQLE is downstream of HMGCR and of the branching point towards ubiquinone. The
pro-ferroptotic activity of this flavoprotein must be subordinate or weaker than that of the
upstream pathway to explain the opposite effect brought about by statins.

Among electron-receiving POR partners are cytochromes b5, the small heme-bound
proteins localized at cellular membranes. A group of five human flavoproteins is specialized
in the reduction in cytochrome b5 and in this aspect they can be considered as functional
POR analogues. The cytochrome b5 reductases (CYB5Rs) are membrane proteins found
predominantly at the endoplasmic reticulum and the outer mitochondrial membrane. It was
shown that CYB5R purified from liver plasma membrane can reduce CoQ in reconstituted
liposomes [67]. In the presence of CoQ and NADH, the enzyme prevented liposomal
peroxidation by parinaric acid. This anti-ferroptotic activity is noteworthy, given the
functional similarity of CYB5R with the pro-ferroptotic POR [21].

Thioredoxin reductases (TXNRDs) have been mentioned in the section on GSR, yet
these flavoproteins deserve additional discussion because they constitute another major
thiol-dependent antioxidant system in mammalian cells. Human TXNRD1 is mainly, but
not exclusively, found in the cytosol. The localization of its “v3” splice variant at the plasma
membrane [68] and the capacity of the enzyme to reduce lipid hydroperoxides [69] are
relevant when considering the possible roles of thioredoxin reductase in ferroptosis pro-
cesses. In TXNRDs, the electrons are transferred from NADPH to FAD, then to N-terminal
redox-active dithiol motifs, subsequently to the selenylsulfide of the other subunit of the
complex, and finally to disulfide substrate of the reductase, the thioredoxin 1 [70]. Crosstalk
between thioredoxin and glutathione systems is possible. For example, physiological con-
centrations of glutathione, NADPH, and GSR reduced thioredoxin in vitro and this reaction
was strongly stimulated by glutaredoxin 1 [71]. Reciprocally, purified thioredoxins reduced
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glutathione in the presence of TXNRD and NADPH in vitro and thioredoxin system was
able to compensate the lack of glutathione reductase [29]. Recently, the efforts to identify
the mechanism of ferroptosis induction by ferroptocide revealed thioredoxin as its target,
experimentally supporting the anti-ferroptotic role of the thioredoxin system [72].

Mitochondria are one of the major cellular sources of reactive oxygen species. Inter-
estingly, it turned out that mitochondria have a key role in cysteine deprivation-induced
ferroptosis but not in GPX4 inhibition-induced ferroptosis [73]. The authors showed that
the inhibition of mitochondrial TCA cycle and the electron transfer chain suppress lipid
peroxidation and ferroptosis. The relationship between TCA cycle and ferroptosis has been
underlined by a recent study which found the flavoprotein dihydrolipoamide dehydro-
genase (DLD) responsible for the cysteine deprivation-induced ferroptosis in head and
neck cancer cell lines [17]. DLD is a component of the α-ketoglutarate dehydrogenase
(KGDH), the complex decarboxylating α-ketoglutarate during TCA cycle. The addition
of a-ketoglutarate to cell cultures enhances ferroptosis during cysteine deprivation even
in the absence of glutamine. The ferroptotic role of DLD is interesting from a therapeutic
perspective. It has been shown that riboflavin supplementation can rescue DLD mutants
that cause mitochondrial myopathy [74]. Whether the absence of the riboflavin destabilizes
wild-type DLD and how much this destabilization affects ferroptosis induction in tumor
cells remains to be determined [75].

It cannot be excluded that more flavoproteins will be assigned the ferroptotic function.
In silico approaches might help discovering new members and better understanding the
function of the already known members of the ferroptosis-related flavoproteome. The
analyses of shared structural features seems to be a promising strategy to this end [5].

9. Conclusions

Since 2012, when it was proposed, the concept of ferroptosis as a distinct form of cell
death driven by the iron-dependent lipid peroxidation underwent impressive development.
The mechanistic details of ferroptosis and its contribution to redox biology and disease
have been rapidly clarified [10,76,77]. The involvement of ferroptotic pathways in diverse
pathologies, such as tumors, neurodegeneration, stroke, ischemia-reperfusion injury among
others, in combination with the successful development of chemical tools to manipulate
lipid peroxidation, justifies the expectations of a strong clinical impact. However, a number
of mechanistic questions and therapeutic challenges remains [77]. One of the remaining
issues is the comprehensive understanding of the cellular states determining susceptibility
to ferroptosis. Because flavoproteins are numerously involved in the molecular ferrop-
tosis network, the flavoproteome function must determine these states, at least partially.
Accordingly, this survey was motivated by the conviction that a detailed understanding
of the human flavoproteome in the context of the ferroptosis network can be rewarding.
Flavoproteins are enzymes and, as such, represent classical targets for drug development.
The mostly non-covalent association with flavin cofactors offers a means to control the
structural stability and thus the function of the flavoproteins. The key issue that needs
to be understood in the future is the balance between pro-ferroptotic and anti-ferroptotic
roles of flavoproteins and how this equilibrium can be shifted in either direction according
to the therapeutic needs.
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AIF apoptosis-inducing factor
CHIP C terminus of HSC70-interacting protein
CYB5R cytochrome b5 reductases
DLD dihydrolipoamide dehydrogenase



Int. J. Mol. Sci. 2021, 22, 430 11 of 14

FAD flavin adenine dinucleotide
FMN flavin mononucleotide
FSP1 ferroptosis suppressor protein 1
GPX4 glutathione peroxidase 4
GSR glutathione reductase
HMGCR HMG-CoA reductase
LOX lipoxygenase
NQO NAD(P)H:quinone oxidoreductase
POR cytochrome P450 oxidoreductase
PQC protein quality control
PUFA polyunsaturated fatty acids
redox reduction and oxidation
QXOS quiescin sulfhydryl oxidase
SQLE squalene monooxygenase
TXNRD thioredoxin reductase

References
1. Lienhart, W.-D.; Gudipati, V.; Macheroux, P. The human flavoproteome. Arch. Biochem. Biophys. 2013, 535, 150–162. [CrossRef]

[PubMed]
2. Agip, A.-N.A.; Blaza, J.N.; Fedor, J.G.; Hirst, J. Mammalian Respiratory Complex I through the Lens of Cryo-EM. Annu. Rev.

Biophys. 2019, 48, 165–184. [CrossRef]
3. Sun, F.; Huo, X.; Zhai, Y.; Wang, A.; Xu, J.; Su, D.; Bartlam, M.; Rao, Z. Crystal structure of mitochondrial respiratory membrane

protein complex II. Cell 2005, 121, 1043–1057. [CrossRef] [PubMed]
4. Otera, H.; Ohsakaya, S.; Nagaura, Z.-I.; Ishihara, N.; Mihara, K. Export of mitochondrial AIF in response to proapoptotic stimuli

depends on processing at the intermembrane space. EMBO J. 2005, 24, 1375–1386. [CrossRef] [PubMed]
5. Trisolini, L.; Gambacorta, N.; Gorgoglione, R.; Montaruli, M.; Laera, L.; Colella, F.; Volpicella, M.; De Grassi, A.; Pierri, C.L.

FAD/NADH Dependent Oxidoreductases: From Different Amino Acid Sequences to Similar Protein Shapes for Playing an
Ancient Function. J. Clin. Med. 2019, 8, 2117. [CrossRef]

6. Seiler, A.; Schneider, M.; Förster, H.; Roth, S.; Wirth, E.K.; Culmsee, C.; Plesnila, N.; Kremmer, E.; Rådmark, O.; Wurst, W.; et al.
Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death.
Cell Metab. 2008, 8, 237–248. [CrossRef] [PubMed]

7. Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang,
W.S.; et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012, 149, 1060–1072. [CrossRef] [PubMed]

8. Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.;
Clish, C.B.; et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014, 156, 317–331. [CrossRef]

9. Friedmann Angeli, J.P.; Schneider, M.; Proneth, B.; Tyurina, Y.Y.; Tyurin, V.A.; Hammond, V.J.; Herbach, N.; Aichler, M.; Walch, A.;
Eggenhofer, E.; et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 2014, 16,
1180–1191. [CrossRef]

10. Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan,
V.E.; et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017, 171, 273–285.
[CrossRef]

11. Dym, O.; Eisenberg, D. Sequence-structure analysis of FAD-containing proteins. Protein Sci. A Publ. Protein Soc. 2001, 10,
1712–1728. [CrossRef]

12. Walsh, C.T.; Wencewicz, T.A. Flavoenzymes: Versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 2013, 30, 175–200.
[CrossRef] [PubMed]

13. Xu, J.; Li, G.; Wang, P.; Velazquez, H.; Yao, X.; Li, Y.; Wu, Y.; Peixoto, A.; Crowley, S.; Desir, G.V. Renalase is a novel, soluble
monoamine oxidase that regulates cardiac function and blood pressure. J. Clin. Investig. 2005, 115, 1275–1280. [CrossRef]
[PubMed]

14. Ilani, T.; Alon, A.; Grossman, I.; Horowitz, B.; Kartvelishvily, E.; Cohen, S.R.; Fass, D. A secreted disulfide catalyst controls
extracellular matrix composition and function. Science 2013, 341, 74–76. [CrossRef]

15. Ursini, F.; Maiorino, M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med. 2020, 152, 175–185.
[CrossRef]

16. Shimada, K.; Skouta, R.; Kaplan, A.; Yang, W.S.; Hayano, M.; Dixon, S.J.; Brown, L.M.; Valenzuela, C.A.; Wolpaw, A.J.; Stockwell,
B.R. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat. Chem. Biol. 2016, 12, 497–503.
[CrossRef]

17. Shin, D.; Lee, J.; You, J.H.; Kim, D.; Roh, J.-L. Dihydrolipoamide dehydrogenase regulates cystine deprivation-induced ferroptosis
in head and neck cancer. Redox Biol. 2020, 30, 101418. [CrossRef]

18. Yang, W.S.; Kim, K.J.; Gaschler, M.M.; Patel, M.; Shchepinov, M.S.; Stockwell, B.R. Peroxidation of polyunsaturated fatty acids by
lipoxygenases drives ferroptosis. Proc. Natl. Acad. Sci. USA 2016, 113, E4966–E4975. [CrossRef]

http://doi.org/10.1016/j.abb.2013.02.015
http://www.ncbi.nlm.nih.gov/pubmed/23500531
http://doi.org/10.1146/annurev-biophys-052118-115704
http://doi.org/10.1016/j.cell.2005.05.025
http://www.ncbi.nlm.nih.gov/pubmed/15989954
http://doi.org/10.1038/sj.emboj.7600614
http://www.ncbi.nlm.nih.gov/pubmed/15775970
http://doi.org/10.3390/jcm8122117
http://doi.org/10.1016/j.cmet.2008.07.005
http://www.ncbi.nlm.nih.gov/pubmed/18762024
http://doi.org/10.1016/j.cell.2012.03.042
http://www.ncbi.nlm.nih.gov/pubmed/22632970
http://doi.org/10.1016/j.cell.2013.12.010
http://doi.org/10.1038/ncb3064
http://doi.org/10.1016/j.cell.2017.09.021
http://doi.org/10.1110/ps.12801
http://doi.org/10.1039/c2np20069d
http://www.ncbi.nlm.nih.gov/pubmed/23051833
http://doi.org/10.1172/JCI24066
http://www.ncbi.nlm.nih.gov/pubmed/15841207
http://doi.org/10.1126/science.1238279
http://doi.org/10.1016/j.freeradbiomed.2020.02.027
http://doi.org/10.1038/nchembio.2079
http://doi.org/10.1016/j.redox.2019.101418
http://doi.org/10.1073/pnas.1603244113


Int. J. Mol. Sci. 2021, 22, 430 12 of 14

19. Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; et al. Oxidized
arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 2017, 13, 81–90. [CrossRef]

20. Shah, R.; Shchepinov, M.S.; Pratt, D.A. Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis. ACS
Cental Sci. 2018, 4, 387–396. [CrossRef]

21. Zou, Y.; Li, H.; Graham, E.T.; Deik, A.A.; Eaton, J.K.; Wang, W.; Sandoval-Gomez, G.; Clish, C.B.; Doench, J.G.; Schreiber, S.L.
Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat. Chem. Biol. 2020, 16, 302–309.
[CrossRef] [PubMed]

22. Frei, B.; Kim, M.C.; Ames, B.N. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl.
Acad. Sci. USA 1990, 87, 4879–4883. [CrossRef] [PubMed]

23. Beyer, R.E.; Segura-Aguilar, J.; Di Bernardo, S.; Cavazzoni, M.; Fato, R.; Fiorentini, D.; Galli, M.C.; Setti, M.; Landi, L.; Lenaz, G.
The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc. Natl.
Acad. Sci. USA 1996, 93, 2528–2532. [CrossRef] [PubMed]

24. Elguindy, M.M.; Nakamaru-Ogiso, E. Apoptosis-inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-
sensitive NADH:Ubiquinone Oxidoreductases (NDH-2). J. Biol. Chem. 2015, 290, 20815–20826. [CrossRef] [PubMed]

25. Bersuker, K.; Hendricks, J.M.; Li, Z.; Magtanong, L.; Ford, B.; Tang, P.H.; Roberts, M.A.; Tong, B.; Maimone, T.J.; Zoncu, R.; et al.
The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019, 575, 688–692. [CrossRef] [PubMed]

26. Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Goya Grocin, A.; Xavier da Silva, T.N.; Panzilius, E.;
Scheel, C.H.; et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019, 575, 693–698. [CrossRef]

27. Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Et Biophys. Acta
2013, 1830, 3217–3266. [CrossRef]

28. Tuggle, C.K.; Fuchs, J.A. Glutathione reductase is not required for maintenance of reduced glutathione in Escherichia coli K-12. J.
Bacteriol. 1985, 162, 448–450. [CrossRef]

29. Tan, S.-X.; Greetham, D.; Raeth, S.; Grant, C.M.; Dawes, I.W.; Perrone, G.G. The thioredoxin-thioredoxin reductase system can
function in vivo as an alternative system to reduce oxidized glutathione in Saccharomyces cerevisiae. J. Biol. Chem. 2010, 285,
6118–6126. [CrossRef]

30. Loos, H.; Roos, D.; Weening, R.; Houwerzijl, J. Familial deficiency of glutathione reductase in human blood cells. Blood 1976, 48,
53–62. [CrossRef]

31. Kamerbeek, N.M.; van Zwieten, R.; de Boer, M.; Morren, G.; Vuil, H.; Bannink, N.; Lincke, C.; Dolman, K.M.; Becker, K.; Schirmer,
R.H.; et al. Molecular basis of glutathione reductase deficiency in human blood cells. Blood 2007, 109, 3560–3566. [CrossRef]
[PubMed]

32. Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al.
COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [CrossRef] [PubMed]

33. Cai, L.L.; Ruberto, R.A.; Ryan, M.J.; Eaton, J.K.; Schreiber, S.L.; Viswanathan, V.S. Modulation of ferroptosis sensitivity by
TXNRD1 in pancreatic cancer cells. bioRxiv 2020. [CrossRef]
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