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Abstract: Alzheimer’s disease is the most common neurodegenerative brain disease causing dementia.
It is characterized by slow onset and gradual worsening of memory and other cognitive functions.
Recently, parabiosis and infusion of plasma from young mice have been proposed to have positive
effects in aging and Alzheimer’s disease. Therefore, this study examined whether infusion of plasma
from exercised mice improved cognitive functions related to the hippocampus in a 3xTg-Alzheimer’s
disease (AD) model. We collected plasma from young mice that had exercised for 3 months and
injected 100 µL of plasma into the tail vein of 12-month-old 3xTg-AD mice 10 times at 3-day intervals.
We then analyzed spatial learning and memory, long-term memory, hippocampal GSK3β/tau proteins,
synaptic proteins, mitochondrial function, apoptosis, and neurogenesis. In the hippocampus of
3xTg-AD mice, infusion of plasma from exercised mice improved neuroplasticity and mitochondrial
function and suppressed apoptosis, ultimately improving cognitive function. However, there was
no improvement in tau hyperphosphorylation. This study showed that plasma from exercised mice
could have a protective effect on cognitive dysfunction and neural circuits associated with AD via a
tau-independent mechanism involving elevated brain-derived neurotrophic factor due to exercise.

Keywords: Alzheimer’s disease; cognitive function; hippocampus; neuroplasticity; mitochondria;
young plasma; exercise

1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia, characterized by slow onset
and progressive decline of memory and cognitive functions. AD is associated with various cellular
changes in the brain, including synaptic injury, alterations in mitochondrial structure and function,
abnormal inflammatory response, extracellular accumulation of amyloid beta (Aβ), and intracellular
neurofibrillary tangles [1–3]. AD is caused by atrophy, senile plaques, and hyperphosphorylated tau
protein aggregates in the hippocampus, one of the neuroanatomical areas responsible for memory and
learning [4,5]. Cognitive dysfunction, including that involving memory and learning, is associated
with decreased neurogenesis in the hippocampus, which could result from decreased expression of
immature neuron factors, such as DCX (doublecortin), that signal the birth of new neurons [6].

Tau overexpression and hyperphosphorylation have been found to impair axonal movement of cell
organelles, including mitochondria [7–9]. There has been much evidence demonstrating mitochondrial
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dysfunction accompanied by aging and aging-related neurodegenerative disease [10]. In particular,
mitochondrial dysfunction has been observed in fibroblasts and hematopoietic cells from the brains
of AD transgenic mouse models and human patients with AD [11–14]. It has been suggested that
mitochondrial dysfunction could develop when the course of AD worsens or in all stages of the disease,
and that this process may occur not only in the brain, but systemically [13].

In recent research on aging-related treatments, injection of young mouse blood into aged mice
has shown positive effects, which may be applied as a new experimental approach for the treatment
of aging-related diseases. According to previous studies, parabiosis between 18-month-old and
5-week-old mice resulted in increased expression of genes related to brain activity than in mice
that did not receive blood transfusions, especially immediate-early genes in hippocampal cells [15].
This indicated that parabiosis increased brain activity and improved memory. With increasing age,
the synapses, which form the network for communication between neurons, begin to regress, leading
to degeneration of neurons, atrophy of the brain, and a sudden increase in neurodegenerative disease.
Blood links the diverse tissues of the body. Blood is not only a transport medium for oxygen and cells,
but also helps to fight infectious disease and conveys information in the form of hormones and other
molecules. In other words, blood plays an important role in conveying information between cells and
tissues, including the brain.

Meanwhile, exercise not only has a positive effect in patients with neurodegenerative diseases such
as AD and Parkinson’s disease, but also has positive effects on plasma. Exercise-induced neuroplasticity,
characterized by inhibited apoptosis and increased neurogenesis and brain-derived neurotrophic factor
(BDNF), facilitates recovery from brain damage after traumatic brain injury, ischemia, and stroke [16–19].
The plasma concentration of BDNF increases after aerobic exercise [20], and exercise training has also
been reported to increase resting plasma BDNF [21]. As AD worsens, it eventually leads to loss of
motor function. Although exercise has various positive effects on the brain, the drawback is that these
effects are only possible when the individual is capable of physical activity. Thus, in this study, we
aimed to examine whether transfusion of plasma from exercised mice could have similar effects to
exercise on cognitive function, hippocampal neuroplasticity, and mitochondrial function in AD.

2. Results

2.1. Effect of Exercise on Plasma BDNF in Donation Mice

Enzyme-linked immunosorbent assay (ELISA) was performed to investigate changes in plasma
BDNF concentration. The group treated with exercised young plasma (EYP) showed significantly
increased plasma BDNF concentrations compared with the group treated with young plasma (YP)
(p < 0.001) (Figure 1).Int. J. Mol. Sci. 2020, 21, x 3 of 17 

 

 
Figure 1. Effect of exercise on plasma brain-derived neurotrophic factor (BDNF) in donation plasma 
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To assess spatial learning and long-term memory, the Morris water maze and step-through 
avoidance tasks were performed. Spatial learning was assessed by measuring the time on the 
platform. In spatial learning ability, the AD group took longer to find the platform from day 2 
compared to the control (CON) group (p < 0.001). The group treated with EYP took less time to find 
the platform than the AD group starting from day 3 (Day 3: p = 0.039, Day 4: p = 0.017, Day 5: p < 
0.001) (Figure 2a). The AD group showed reduced spatial memory (p < 0.001) and long-term memory 
(p < 0.001) compared to the CON group. The group treated with YP infusion did not demonstrate 
statistically significant differences in these tests; however, infusion of plasma from young exercised 
mice improved spatial memory and long-term memory compared with the AD group (p = 0.008 and 
p = 0.030, respectively). Treatment comparisons revealed significant differences in spatial and long-
term memory between AD + YP and AD + EYP combined groups (p < 0.001, p = 0.028, respectively) 
(Figure 2b,c). Infusion of plasma from exercised young mice conferred positive effects in improving 
spatial memory, learning ability, and long-term memory. 

Figure 1. Effect of exercise on plasma brain-derived neurotrophic factor (BDNF) in donation plasma
mice. YP: young plasma, EYP: exercised young plasma. Data are expressed as the mean ± standard
error of the mean (SEM). * p < 0.05.
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2.2. Effect of Plasma from Young Exercised Mice on Cognitive Functions in 3xTg-AD Mice

To assess spatial learning and long-term memory, the Morris water maze and step-through
avoidance tasks were performed. Spatial learning was assessed by measuring the time on the platform.
In spatial learning ability, the AD group took longer to find the platform from day 2 compared to the
control (CON) group (p < 0.001). The group treated with EYP took less time to find the platform than
the AD group starting from day 3 (Day 3: p = 0.039, Day 4: p = 0.017, Day 5: p < 0.001) (Figure 2a).
The AD group showed reduced spatial memory (p < 0.001) and long-term memory (p < 0.001) compared
to the CON group. The group treated with YP infusion did not demonstrate statistically significant
differences in these tests; however, infusion of plasma from young exercised mice improved spatial
memory and long-term memory compared with the AD group (p = 0.008 and p = 0.030, respectively).
Treatment comparisons revealed significant differences in spatial and long-term memory between AD
+ YP and AD + EYP combined groups (p < 0.001, p = 0.028, respectively) (Figure 2b,c). Infusion of
plasma from exercised young mice conferred positive effects in improving spatial memory, learning
ability, and long-term memory.Int. J. Mol. Sci. 2020, 21, x 4 of 17 
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Morris water maze task for spatial learning (a) and memory (b) and step through task for long-term 
memory (c). CON: wild-type, AD: 3xTg-AD, AD + YP: 3xTg-AD and young plasma injection, AD + 
EYP: 3xTg-AD and exercised young plasma injection group. Data are expressed as the mean ± 
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2.3. Effect of Plasma from Young Exercised Mice on GSK3β and Tau Protein Expression in Hippocampus 

Western blot analysis was performed to investigate changes in GSK3β/tau protein in the 
hippocampus. For group comparisons, results were normalized relative to the CON group. AD, AD 
+ YP, and AD + EYP groups showed significantly decreased p-GSK3β/GSK3β ratios (p < 0.001) and 
significantly increased p-tau (Ser262, Thr205)/tau ratios (p < 0.001) compared with the CON group. 
Differences between groups not including the CON group were not statistically significant (Figure 
3). 

Figure 2. Effect of plasma from young exercised mice on cognitive functions in 3xTg-AD mice.
The Morris water maze task for spatial learning (a) and memory (b) and step through task for long-term
memory (c). CON: wild-type, AD: 3xTg-AD, AD + YP: 3xTg-AD and young plasma injection, AD + EYP:
3xTg-AD and exercised young plasma injection group. Data are expressed as the mean ± standard
error of the mean (SEM). * p < 0.05 compared with the CON group. # p < 0.05 compared with the AD
group. + p < 0.05 between AD + YP and AD + EYP groups.

2.3. Effect of Plasma from Young Exercised Mice on GSK3β and Tau Protein Expression in Hippocampus

Western blot analysis was performed to investigate changes in GSK3β/tau protein in the
hippocampus. For group comparisons, results were normalized relative to the CON group. AD, AD
+ YP, and AD + EYP groups showed significantly decreased p-GSK3β/GSK3β ratios (p < 0.001) and
significantly increased p-tau (Ser262, Thr205)/tau ratios (p < 0.001) compared with the CON group.
Differences between groups not including the CON group were not statistically significant (Figure 3).
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Figure 3. Effect of plasma from young exercised mice on GSK3β and tau protein expression in the
hippocampus. CON: wild-type, AD: 3xTg-AD, AD + YP: 3xTg-AD and young plasma injection,
AD + EYP: 3xTg-AD and exercised young plasma injection group. Data are expressed as the mean ±
standard error of the mean (SEM). * p < 0.05 compared with the CON group.

2.4. Effect of Plasma from Young Exercised Mice on Mitochondrial Ca2+ Retention and H2O2 Emission
in the Hippocampus

AD, AD + YP, and AD + EYP groups showed significantly reduced mitochondrial Ca2+ retention
capacity in the hippocampus compared to the CON group (p < 0.001). Infusion of plasma from
young exercised mice resulted in a significant increase in mitochondrial Ca2+ retention capacity
in the hippocampus compared to the AD group (p = 0.034) and the AD + YP group (p = 0.021).
The AD group and the AD + YP group did not show statistically significant differences (Figure 4 left).
The mitochondrial H2O2 emission rate was calculated for complex I substrates (glutamate + malate,
GM), complex 2 substrates (succinate, GM + S), and lipid substrate (glycerol-3 phosphate, GMS + G3P).
Mitochondrial H2O2 emission rate in hippocampal tissue was significantly increased with complex 2
substrates (succinate, GM + S) and lipid substrates (glycerol-3 phosphate, GMS + G3P) in the AD, AD
+ YP, and AD + EYP groups compared with that in the CON group (p < 0.001). Infusion of plasma from
young exercised mice resulted in significant decreases in all substrates except for complex 1 substrate
(GM + S: p = 0.032, GMS + G3P: p = 0.013). There were significant differences in H2O2 emission rate
between AD + YP and AD + EYP combination groups (p < 0.001, respectively). The AD group and the
AD + YP group did not show statistically significant differences (Figure 4 right). Thus, infusion of
plasma from young exercised mice helped to maintain mitochondrial calcium homeostasis and reduced
reactive oxygen species (ROS), resulting in improved mitochondrial function in the hippocampus.
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injection, AD + EYP: 3xTg-AD and exercised young plasma injection group. Data are expressed as the
mean ± standard error of the mean (SEM). * p < 0.05 compared to the CON group. # p < 0.05 compared
to the AD group. + p < 0.05 between the AD + YP and AD + EYP groups.

2.5. Effect of Plasma from Young Exercised Mice on Apoptosis in the Hippocampus

To investigate changes in apoptotic proteins in the hippocampus, we analyzed the expression
levels of Bax, Bcl-2, cytochrome c, apaf-1, and cleaved caspase-3 and -9. To investigate cell death,
we analyzed the number of TUNEL-positive cells. To compare cell death between groups, the CON
group results were set as 1, and the other groups’ results were normalized relative to the CON group.
AD, AD + YP, and AD + EYP groups showed significant increased expressions of Bax, cytochrome
c, and cleaved caspase-3 and -9, and significant decreased expression of Bcl-2 compared to the CON
group (p < 0.001). The AD + EYP combination group demonstrated significantly decreased expression
of Bax (p = 0.038), cytochrome c (p < 0.001), apaf-1 (p = 0.033), and cleaved caspase-3 and -9 (p = 0.041,
p = 0.023, respectively), and significantly increased expression of Bcl-2 (p = 0.039) compared with
the AD group. There were significant differences in apoptosis between AD + YP and AD + EYP
groups (Bax: p = 0.034, Bcl-2: p = 0.015, cytochrome c: p = 0.028, apaf-1: p = 0.039), cleaved caspase-3:
p = 0.029 and -9: p = 0.020). The AD group and the AD + YP group did not show statistically significant
differences (Figure 5). Thus, plasma from young exercised mice inhibited apoptosis and cell death in
the hippocampus of AD mice.
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Figure 5. Effect of plasma from young exercised mice on apoptosis in the hippocampus. CON:
wild-type, AD: 3xTg-AD, AD + YP: 3xTg-AD and young plasma injection, AD + EYP: 3xTg-AD and
exercised young plasma injection group. Data are expressed as the mean ± standard error of the mean
(SEM). * p < 0.05 compared to the CON group. # p < 0.05 compared to the AD group. + p < 0.05 between
AD + YP and AD + EYP groups.
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2.6. Effect of Plasma from Young Exercised Mice on Cell Death in the Hippocampal Dentate Gyrus

To investigate cell death in the hippocampal dentate gyrus (DG) we utilized a TUNEL assay.
AD, AD + YP, and AD + EYP groups showed a significantly increased numbers of hippocampal
TUNEL-positive cells compared to the CON group (p < 0.001). The AD + EYP group demonstrated a
significantly reduced number of TUNEL-positive cells compared to the AD group (p = 0.012) and the
AD + YP group (p = 0.011), whereas there was no significant difference between the AD and AD + YP
groups (Figure 6). Thus, plasma from young exercised mice inhibited cell death in the hippocampus of
AD mice.
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Figure 6. Effect of plasma from young exercised mice on cell death in the hippocampal dentate gyrus
(DG). Photomicrographs and data of TUNEL-positive cells (arrow). The scale bar represents 50 µm.
CON: wild-type, AD: 3xTg-AD, AD + YP: 3xTg-AD and young plasma injection, AD + EYP: 3xTg-AD
and exercised young plasma injection group. Data are expressed as the mean ± standard error of the
mean (SEM). * p < 0.05 compared to the CON group. # p < 0.05 compared to the AD group. + p < 0.05
between AD + YP and AD + EYP groups.

2.7. Effect of Plasma from Young Exercised Mice on the Expression of BDNF, PSD 95, and Synaptophysin
in the Hippocampus

To investigate synaptic proteins in the hippocampus, we analyzed the protein expression levels
of BDNF, PSD 95, and synaptophysin. For comparisons between groups, results were normalized to
the CON group. AD, AD + YP, and AD + EYP groups showed decreased expressions of BDNF, PSD
95, and synaptophysin proteins compared to the CON group (all p < 0.001). The AD + EYP group
demonstrated increased protein levels of BDNF (p < 0.001), PSD 95 (p < 0.001), and synaptophysin
(p = 0.025) compared to the AD group. There were significant differences in expression of synaptic
proteins between the AD + YP group and the AD + EYP group (BDNF: p = 0.040, PSD95: p = 0.018,
synaptophysin: p = 0.024). The AD + YP group showed a significant increase in BDNF protein
expression (p = 0.030), whereas PSD95 and synaptophysin expression were not statistically significant
compared to the AD group (Figure 7). Thus, infusion of plasma from young control and exercised
mice increased the levels of synaptic proteins in the hippocampus of AD mice.
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2.8. Effect of Plasma from Young Exercised Mice on Cell Proliferation and Neurogenesis in the Hippocampus

To investigate cell proliferation and neurogenesis in the hippocampus, we analyzed DCX
expression-positive cells (marker of cell proliferation) and NeuN/brdU-positive cells. AD, AD
+ YP, and AD + EYP groups showed reduced hippocampal levels of DCX-positive cells and
NeuN/brdU-positive cells (p < 0.001, respectively) compared to the CON group. The AD + EYP
group demonstrated increased levels of DCX-positive cells (p = 0.014) and NeuN/brdU-positive cells
(p = 0.041) in the hippocampus compared to the AD group. There were significant differences in
the numbers of DCX and NeuN/brdU-positive cells between the AD + YP and the AD + EYP group
(p = 0.010, p = 0.009, respectively). The AD + YP group did not show statistically significant differences
compared to the AD group (Figure 8). Thus, infusion of plasma from exercised young mice increased
neurogenesis in the hippocampus.
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Figure 8. Effect of plasma from young exercised mice on cell proliferation and neurogenesis in the
hippocampus. CON: wild-type, AD: 3xTg-AD, AD + YP: 3xTg-AD and Young plasma injection, AD
+ EYP: 3xTg-AD and exercised young plasma injection group. Photomicrographs and data of DCX-
and NeuN/BrdU-positive cells (white arrows). The scale bar represents 50 µm. Data are expressed
as the mean ± standard error of the mean (SEM). *, p < 0.05 compared to the CON group. #, p < 0.05
compared to the AD group. +, p < 0.05 between AD + YP and AD + EYP groups.

3. Discussion

Increasing evidence suggests that AD pathogenesis is not restricted to the neuronal compartment.
Glial cells, particularly reactive astrocytes and activated microglia, appear to play critical and interactive
roles in neurodegeneration [22,23]. Accumulating evidence of their role in brain energy metabolism
and reduced oxygen supply to the brain clearly point to their critical involvement in the prevention,
initiation, and progression of neurodegenerative diseases, including AD [10,24]. However, AD is
an age-related neurodegenerative disease caused by accumulation of Aβ, neurofibrillary tangles,
gradual nerve injury, and cognitive deficits. In 3xTg mice, we observed pathological elements
similar to those of AD, including tau hyperphosphorylation and impaired spatial memory, which are
consistent with previous studies [25]. These symptoms have been reported to gradually worsen over
time [26]. Among the pathological elements of AD, overexpression and phosphorylation of tau is
correlated with mitochondrial dysfunction including ROS production, reduced ATP, fragmenting of
mitochondrial membrane potential, and ultimately, neuronal damage [27,28]. Specifically, elevated
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levels of ROS, including H2O2, resulting from impaired regulation of mitochondrial Ca2+ homeostasis
have been shown to increase the sensitivity of mitochondrial PTP opening [29], which in turn promotes
apoptosis [30]. In the present study, the AD group showed tau hyperphosphorylation, reduced levels
of synaptic plasticity markers such as BDNF, PSD95, and synaptophysin, reduced cell proliferation
and neurogenesis, reduced mitochondrial Ca2+ retention, and elevated H2O2. There were increased
levels of Bax, apaf-1, cytochrome c, cleaved caspase-3 and -9, decreased Bcl-2 levels, and increased cell
death in the AD group. In the hippocampus, tau hyperphosphorylation impairs cognitive function
by not only inhibiting cell proliferation and neurogenesis, but also by increasing the number of cells
undergoing apoptosis via mitochondrial dysfunction.

Various studies have demonstrated that exercise has positive effects on brain health, and exercise
is especially known to play a beneficial role in AD treatment. However, the obvious but essential
precondition for exercise is that the individual must physically able. AD is known to start as mild
cognitive impairment and eventually progress to loss of motor function, eliminating the possibility
of exercise. However, recent research on aging has suggested that parabiosis could have positive
effects on cognitive function in the elderly. When plasma from young mice was infused into aged
mice, behavioral tests, including those for contextual fear conditioning, spatial learning, and memory
showed improvements in aging-related cognitive dysfunction [15]. Conversely, when plasma from
elderly mice was infused into young mice, neurogenesis, learning, and memory decreased [31].
Yuan et al. [32] reported that treatment with plasma from young mice reduced acute brain injury
induced by aging-related hemorrhagic stroke. In one recent study, parabiosis and intravenous infusion
of plasma from young mice resulted in near-complete recovery of synaptic and neural protein levels in
an animal model of AD [33]. These results suggest that factors carried in the blood might partially
contribute to synaptic plasticity, neurogenesis, and cognitive function. In the present study, the young
plasma group showed partial, trend-level improvements in hippocampal GSKβ/Tau expression,
neuroplasticity, and mitochondrial function, but these were not statistically significant. Conversely,
the group infused with plasma from mice that had exercised for 12 weeks showed overall improvements
accompanied by positive effects on cognitive function. The effects of plasma from exercised mice may
be due to elevated levels of BDNF in the blood resulting from exercise. Among the young plasma
donor mice in this study, those that had exercised showed higher levels of plasma BDNF than those
that had not exercised. Previous animal and clinical studies have also shown that blood BDNF levels
increase after exercise [34,35]. Qin et al. [36] reported that reduced peripheral blood BDNF is important
clinical evidence of AD or mild cognitive impairment, supporting a relationship between decreasing
BDNF level and AD progression. Specifically, plasma BDNF level can reflect hippocampal BDNF.
Therefore, plasma BDNF level is an important and stable blood biomarker of AD [37,38].

From a neuroprotective stance, BDNF secreted at the synaptic cleft modulates neuroplasticity to
confer protection from neural cell death caused by Aβ aggregates and tau protein, which are involved
in the pathology of AD [39]. In a study by Jiao et al. [40], delivery of the BDNF gene was proposed to
be a good treatment method for tau-related neural degeneration in AD and other tauopathy-related
neurodegenerative diseases. BDNF is involved in the control of neurogenesis; normal BDNF-TrkB
signaling is essential for the long-term survival of new neurons in the hippocampal dentate gyrus [41]
and can also inhibit caspase-3 activity as a result of apoptotic stimuli [42]. Mitochondrial function
in the brain is increased by BDNF in a dose-dependent manner, and BDNF counteracts damage
caused by mitochondrial Ca2+ overload [43]. However, in the present study, plasma from young
control and exercised mice failed to improve tau protein levels. In previous studies, heterochronic
parabiosis and infusion of plasma from young mice improved synaptic and neuronal proteins as
well as cognitive function in mutant mice for amyloid precursor protein without a decrease in Aβ

burden [33]. Meanwhile, BDNF supplementation relieved behavior deficits, protected against neuronal
loss, and alleviated synaptic degeneration and neuronal abnormality in P301L mutant tau transgene
mice, but had no effect on tau hyperphosphorylation [40]. Consistent with previous studies on plasma
infusion and BDNF, the present study found that infusion of plasma from exercised mice in an AD
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model did not reduce tau hyperphosphorylation but did enhance cognitive function via improvements
in hippocampal synaptic proteins, neuroplasticity, including apoptosis, and mitochondrial function.

4. Material and Methods

4.1. Animals

All animal experiments were conducted according to the National Institutes of Health and National
Institutes of Health and Korean Academy of Medical Sciences guidelines. The study protocol was
approved by the Kyung Hee University Animal Care and Use Committee (Approval No. KHUASP
[SE] -17-103, 14 August 2017). The mice were kept under constant temperature (25 ± 1 ◦C) and light
(7 AM to 7 PM) conditions, and food and water were provided arbitrarily. The 12-month-old male
mice were randomly divided into the following groups: wild type (CON), 3xTG-AD (AD), 3xTg-AD,
young plasma injection (AD + YP), and 3xTg-AD and exercised young plasma injection (AD + EYP)
groups (n = 10 in each group). The plasma used for the donation was obtained from 4-month-old
C57BL/6 mice from the same mouse line that had undergone a 12-week exercise period. 3xTg-AD
mice were obtained commercially from the Jackson Laboratory (MMRRC stock number 008880) and
were maintained by breeding in our facilities. Genotypes were determined by PCR analysis of DNA
collected from tail biopsies. BrdU (Sigma, St. Louis, MO, USA) was administered intraperitoneally
(i.p.) at 100 mg/kg/day for 7 days, and the mice were sacrificed 4 weeks after the first day of BrdU
injection to observe neurogenesis.

4.2. Plasma Donation Mice EXERCISE Protocol

The 4-week-old mice (C57BL/6) that would eventually be used for blood donation exercised on a
treadmill for animals at an inclination of 0◦. For the first 4 weeks, the animals performed 5 min of
warm-up exercise at a speed of 3 m/min, followed by 30 min of the main exercise at a speed of 10
m/min, and finally 5 min of a cool-down exercise at a speed of 3 m/min. Thereafter, the exercise load of
the main exercise was gradually increased to a speed of 11 m/min in weeks 5–6, 12 m/min in weeks 7–8,
13 m/min in weeks 9–10, and eventually 50 min of 14 m/min in weeks 11–12. Exercise was performed
five times per week, for a total of 12 weeks.

4.3. Infusion of Young Plasma and Young Plasma from Exercised Mice

For young plasma infusion, we performed plasma infusion immediately after sacrificing 20,
4-month-old male donor mice each from the exercise and non-exercise groups, two mice every 3 days.
As described previously [15], the plasma was isolated by centrifugation and injected into the tail veins
of 3xTg-AD mice in 100-µL doses, one dose every 3 days, for a total of 10 doses.

4.4. Behavioral Analysis

4.4.1. Morris Water Maze

Spatial learning and memory were analyzed using the Morris water maze task. One day before
starting training, for acclimation, the animals were made to swim freely in the swimming pool for
60 s without an escape platform. Training (learning) consisted of the animals trying to find an escape
platform, and was performed four times a day for 5 days. Animals that could not find the escape
platform within 60 s were guided to the platform, while swimming, by the experimenter. The animals
were allowed to rest for 30 s on the platform. A probe trial was performed 24 h after the last training
session, in which animals were allowed to swim freely for 60 s with no escape platform. Video tracking
was used to automatically measure how well the animals remembered the previous location of the
escape platform.
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4.4.2. Step-Through Avoidance Test

Long-term memory was measured using the step-through avoidance test. On the first day of
training, the animals were placed on a platform brightly lit by a halogen lamp, and the door to a box
was left open. Once the animal entered the box, the door was closed and the animal was allowed to
remain inside the box for 20 s. This method was repeated twice. Finally, on the third trial, as soon as
the door was closed, the animal was given a single 0.3 mA electrical shock for 2 s through the floor.
After 24 h, the animal was placed on the brightly lit platform, and after the door to the box was opened,
the time was measured until the animal entered the box (latency). The latency was measured up to
300 s, and animals that did not enter the box within this time were scored a latency of 300 s.

4.5. Preparation of Tissue

The animals were euthanized immediately after the water maze test. To prepare the
brain slices, the mice were fully anesthetized with ethyl ether, perfused transcardially with
50 mM phosphate-buffered saline (PBS), and then fixed with a freshly prepared solution of 4%
paraformaldehyde in 100 mM phosphate buffer (pH 7.4). The brains were then removed, post-fixed in
the same fixative overnight, and transferred into a 30% sucrose solution for cryoprotection. Coronal
sections with a thickness of 40 µm were created using a freezing microtome (Leica, Nussloch, Germany).
From each group of 10 animals, five were used for immunohistochemistry and five for Western blot and
mitochondrial function analysis. The hippocampal tissue for Western blot analysis was immediately
stored at −70 ◦C until use. For immunohistochemistry, two sections from each group were analyzed,
resulting in a total of 10 slices. Western blot was performed to analyze all five samples in each group
and then was re-quantified for each protein and reanalyzed in the five samples. Therefore, the density
value was calculated and analyzed a total of 10 times in each group.

4.6. Immunohistochemistry

To visualize cell proliferation expression, immunohistochemistry for doublecortin (DCX) in the
dentate gyrus was performed. The sections were incubated in PBS for 10 min, and then washed three
times for 5 min in the PBS. The sections were then incubated in 1% H2O2 for 30 min. The sections were
selected from each brain and incubated overnight with goat anti-DCX antibody (1:500; Santa cruz,
Dallas, TX, USA) and then with biotinylated secondary antibody (rabbit) (1:250; Vector Laboratories,
Burlingame, CA, USA) for another 1.5 h. Signal from the secondary antibody was amplified with the
Vector Elite ABC kit® (1:100; Vector Laboratories). Antibody-biotin-avidin-peroxidase complexes were
visualized using a DAB substrate kit (Vector Laboratories). The slides were air-dried overnight at
room temperature, and the coverslips were mounted using Permount ® (Fisher scientific, Fair lawn,
NJ, USA).

4.7. Immunofluorescence

BrdU/NeuN-positive cells in the dentate gyrus were tested for immunofluorescence. In brief,
the brain sections were permeabilized by incubation in 0.5% Triton X-100 in PBS for 20 min, then
incubated in 50% formamide-2× standard saline citrate at 65 ◦C for 2 h, denaturated in 2 N HCl at
37 ◦C for 30 min, and rinsed twice in 100 mM sodium borate (pH 8.5). The sections were incubated
overnight with a rat anti-BrdU antibody (1:500; Abcam, Cambridge, UK) and mouse anti-NeuN
antibody (1:500; Millipore, Temecula, CA). The brain sections were then washed in PBS and incubated
with the appropriate secondary antibodies for 1.5 h. The secondary antibodies used were anti-mouse
IgG Alexa Fluor-488 and anti-rat IgG Alexa Fluor-550. Images were captured using an FV3000 confocal
microscope (Olympus, Tokyo, Japan).
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4.8. TUNEL Staining

To visualize DNA fragmentation, we performed TUNEL staining using an In Situ Cell Death
Detection Kit (Roche Diagnostics, Risch-Rotkreuz, Switzerland) according to the manufacturer’s
protocol. The sections were post-fixed in ethanol-acetic acid (2:1), rinsed, incubated with proteinase K
(100 mg/mL), and then rinsed again. Next, the sections were incubated in 3% H2O2, permeabilized
with 0.5% Triton X-100, rinsed again, and incubated in the TUNEL reaction mixture. The sections were
rinsed and visualized using Converter-POD with 0.03% DAB, counterstained with Nissl, and mounted
onto gelatin-coated slides. The slides were air-dried overnight at room temperature and cover-slipped
using Permount mounting medium.

4.9. Western Blotting

The hippocampal tissues were homogenized on ice and lysed in a lysis buffer containing
50 mM Tris–HCl (pH 7.5), 150 mM NaCl, 0.5% deoxycholic acid, 1% Nonidet P40, 0.1% sodium
dodecyl sulfate, 1 mM PMSF, and leupeptin 100 mg/mL. The protein content was measured using
a colorimetric protein assay kit (Bio-Rad, Hercules, CA, USA). Thirty micrograms of protein were
separated on sodium dodecyl sulfate-polyacrylamide gels and transferred onto a nitrocellulose
membrane, which was incubated with antibodies against β-actin (1:2000; Santa Cruz Biotechnology),
GAPDH (1:2000; Santa Cruz Biotechnology), t-GSK3β, p-GSK3β (ser 9) (1:1000; Cell Signaling), t-Tau,
p-Tau (ser262) (1:1000; Thermo Fisher), p-tau (thr 205) (1:1000; Thermo Fisher), Bcl-2 (1;1000; Santa
Cruz Biotechnology), cytochrome c (1:1000; Santa Cruz Biotechnology), Bax (1:1000; Cell Signaling),
cleaved caspase-3,-9 (1:700; Cell Signaling), BDNF (1:1000; Alomone), PSD95 (1:1000; Cell Signaling),
and synaptophysin (1:1000; Abcam). Horseradish peroxidase-conjugated anti-mouse antibodies for
Bcl-2, p-Tau, cytochrome c, β-actin and GAPDH, and anti-rabbit antibodies for t-tau, t-GSK3β, p-GSK3β,
Bax, cleaved caspase-3, BDNF, PSD95, and synaptophysin were used as secondary antibodies.

4.10. Mitochondrial Ca2+ Retention Capacity

The mitochondrial calcium retention capacity was tested to assess the susceptibility of the
permeability transition pore (PTP) to opening. Briefly, after grinding the hippocampal tissue, overlaid
traces of changes in fluorescence induced by Calcium Green-5 N were measured continuously (∆F/min)
at 37 ◦C during state 4 respiration using a Spex FluoroMax 4 spectrofluorometer (Horiba Scientific,
Edison, NJ, USA). After establishing the background ∆F (hippocampal tissue in the presence of 1 µM
Calcium Green-5 N, 1 U/mL hexokinase, 0.04 mM EGTA, 1.5 nM thapsigargin, 5 mM 2-deoxyglucose,
5 mM glutamate, 5 mM succinate, and 2 mM malate), the reaction was initiated by addition of Ca2+

pulses (12.5 nM), with excitation and emission wavelengths set at 506 and 532 nm, respectively.
The total mitochondrial calcium retention capacity prior to PTP opening (i.e., release of Ca2+) was
expressed as pmol/mg tissue weight.

4.11. Mitochondrial H2O2 Emission

The mitochondrial H2O2 emission was measured at 37 ◦C (∆F/min) during state 4 respiration
(10 µg/mL oligomycin) by continuously monitoring oxidation of Amplex Red (excitation/emission
λ = 563/587 nm) using a Spex FluoroMax 4 spectrofluorometer with the following protocol: 10 µM
Amplex Red, 1 U/mL horseradish peroxidase, and 10 µg/mL oligomycin; followed by 1 mM malate
+ 2 mM glutamate (complex I substrates); 3 mM succinate (complex II substrate); and 10 mM
glycerol-3-phosphate (lipid substrate). The mitochondrial H2O2 emission rate after removing the
background value from each of the standard values (standard curve) was calculated from the ∆F/min
gradient values and expressed as pmol/min/mg tissue weight.
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4.12. Plasma BDNF Analysis in Donation Mice

The plasma BDNF concentration was measured using ELISA. The ELISA kit was purchased from
R & D Biology Inc. (Total BDNF Quantikine ELISA kit DBNT00, R & D Systems), and the experiment
was performed strictly according to the manufacturer’s instructions. The specific protocol was as
follows: first, the reagents, samples, and standard products were prepared. The samples and standard
products were added and reacted for 120 min at 37 ◦C. After washing the plate three times, antibody
working solution was added and the mixture was left to react for 60 min at 37 ◦C. The plate was
washed three times again, horseradish peroxidase (HRP) was added, and the mixture was left to react
for 30 min at 37 ◦C. After washing the plate three times, substrate working solution was added, and the
mixture was left to react in a dark place for 5–10 min. After adding stop buffer, a BioTek ELx800
full-automatic enzyme labeling system ( Winooski, VT, USA) was used to detect the optical density
(OD) at 450 nm within 30 min.

4.13. Statistical Analysis

Cell counting and optical density quantification for TUNEL, DCX, and BrdU/NeuN-positive cells
were performed using Image-Pro® Plus (Media Cyberbetics Inc. Rockville, MD, USA) attached to a
light microscope (Olympus, Tokyo, Japan). The data were analyzed with one-way ANOVA, followed
by Tukey post-hoc tests. Plasma BDNF was analyzed using t-tests. All values are expressed as the
mean ± standard error of the mean (S.E.M.), and p-values < 0.05 were considered significant.

5. Conclusions

Treatment with plasma from young control or exercised mice showed positive effects on cognitive
function in a 3xTg-AD animal model, with partial improvements in hippocampal neuroplasticity and
mitochondrial function. In particular, in plasma from young exercised mice, elevated plasma BDNF
levels, as a result of exercise, might have a protective effect against cognitive dysfunction and on
important AD-related neural pathways, acting via tau-independent mechanisms. Further studies will
be needed to investigate potential mechanisms mediating these interactions.
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Abbreviations

AD Alzheimer’s disease
Aβ Amyloid beta
BDNF Brain-derived neurotrophic factor
BrdU 5-Bromo-2’-Deoxyuridine
DAB 3,3′-Diaminobenzidine
DCX Doublecortin
EYP Exercised young plasma
GM Glutamate + malate
GM+S GM + succinate
GMS+G3P GMS + glycerol-3-phosphate
GSK-3β Glycogen synthase kinase-3 beta
NeuN Neuronal nuclei
PBS phosphate-buffered saline
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PSD95 postsynaptic density protein 95
ROS Reactive oxygen species
TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling
YP Young plasma
3xTg-AD Triple-transgenic mouse model-AD
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