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Abstract: Lead and lead-derived compounds have been extensively utilized in industry, and their
chronic toxicity towards aquatic animals has not been thoroughly addressed at a behavioral level. In
this study, we assessed the risk of exposure to lead at a waterborne environmental concentration in
adult zebrafish by behavioral and biochemical analyses. Nine tests, including three-dimension (3D)
locomotion, novel tank exploration, mirror biting, predator avoidance, social interaction, shoaling,
circadian rhythm locomotor activity, color preference, and a short-term memory test, were performed
to assess the behavior of adult zebrafish after the exposure to 50 ppb PbCl2 for one month. The
brain tissues were dissected and subjected to biochemical assays to measure the relative expression
of stress biomarkers and neurotransmitters to elucidate the underlying mechanisms for behavioral
alterations. The results of the behavioral tests showed that chronic exposure to lead could elevate the
stress and anxiety levels characterized by elevated freezing and reduced exploratory behaviors. The
chronic exposure to PbCl2 at a low concentration also induced a sharp reduction of aggressiveness
and short-term memory. However, no significant change was found in predator avoidance, social
interaction, shoaling, or color preference. The biochemical assays showed elevated cortisol and
reduced serotonin and melatonin levels in the brain, thus, altering the behavior of the PbCl2-exposed
zebrafish. In general, this study determined the potential ecotoxicity of long-term lead exposure in
adult zebrafish through multiple behavioral assessments. The significant findings were that even at a
low concentration, long-term exposure to lead could impair the memory and cause a decrease in the
aggressiveness and exploratory activities of zebrafish, which may reduce their survival fitness.
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1. Introduction

Currently, industries are using lead and lead-derived compounds extensively due to their unique
chemical properties and economic values. The application of lead has rapidly grown from five million
tons per annum in 1970 to approximately 11 million tons in 2016. However, lead can directly enter
aquatic environments from urban sources, including households and waste management and sewage
treatment plants. Several studies have reported that lead can cause adverse effects even at a low
concentration [1,2]. Dissolved lead concentrations in freshwater and saltwater with chronic effects
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(EC10/NOEC—usually more than 14 days) on fish range from 18 to 1559 µg/L and 44 to 437 µg/L,
respectively [3,4].

More evidence has shown the detrimental impacts of lead on human health, especially at a
neurobehavioral level. The neurotoxicity of chronic exposure to low concentrations of lead can impair
cognitive performance in childhood through to adulthood [5–9]. Some studies demonstrated the
correlation between the exposure to lead at low concentrations and attention-deficit/hyperactivity
disorder (ADHD) in children [10]. The development of the central nervous system can be disrupted
when children are exposed to low concentrations of lead for a long period of time (blood lead
level below 10 mg/dL) [11]. Therefore, lead toxicity has become a serious issue for human health
and environmental protection [6]. According to previous studies, the effect of lead on the nervous
system includes the disruption of key molecules during neuronal migration and differentiation,
interference with synapse formation mediated by a reduction in neuronal sialic acid production and
premature differentiation of glial cells, interference with neurotransmitter release, and disruption of
the function of GABAergic, dopaminergic, and cholinergic systems [12]. The exposure to lead at high
concentrations can cause lead encephalopathy in adults within weeks, with symptoms such as fatigue,
headaches, psychomotor agitation, hallucinations, sleep disturbances, delirium, coma, convulsions,
attention-deficit, and memory impairment [12,13].

Many studies have also been done in rodent and primate models to assess the effects of early lead
exposure on tasks of executive performance, such as spatial working memory, response inhibition,
cognitive flexibility, and temporal information processing, which are similar to children with ADHD [10].
An increased distractibility, impulsivity, and an inability to follow sequences of directions in both rats
and monkeys provided evidence of lead-induced behavior alterations [14]. Lead-treated monkeys had
an impaired ability to organize behavior temporally and were unable to learn from the consequences
of previous actions [15]. Recent researches robustly indicated that chronic low-level lead exposure
led to the disruption of the pathways related to the exploratory activity in pre-adolescent mice [16].
Six-week-old male mice with 0.2% lead acetate in their drinking water for 12 weeks had deficits in
spatial short-term memory and an impairment of adult hippocampal neurogenesis [17].

Although mammalian models have been successfully established to explore the neuronal toxicity
of heavy metals, several disadvantages of using rodents as animal models have diverted the attention
of the scientific community to other animal models in recent years. Due to the practice of the 3R
(Replacement, Reduction, and Refinement) principle regarding animal welfare, the number of rodents
used in each experiment must be reduced. However, due to higher individual variation on behavioral
performance, a high number of animals should be used to reach statistical significance in behavioral
tests. In addition, due to the large space requirement and relatively expensive instrumental setting,
the assessment of ecotoxicity by multiple behavioral endpoints using mice has not yet been widely
explored. To overcome these limitations, zebrafish have been proposed to serve as an alternative lower
vertebrate model for ecotoxicity research.

The use of zebrafish (Danio rerio) has several advantages over rodent models, such as easy
maintenance, prolific breeding, rapid development, and external development, making them a practical
and robust animal model for human diseases and developmental and toxicological studies [11,18–21].
Several studies have demonstrated the neurotoxic effects of lead exposure at early embryonic stages,
thereby causing some changes in the development of the nervous system. Zebrafish embryos treated
with lead at 12–72 h post-fertilization (hpf) displayed alterations in neural ventricle formation, hindbrain
branchiomotor neurons and neural vasculature, and increased apoptosis [22]. Low-level lead exposure
during development resulted in embryotoxicity, behavioral disorders, and learning and memory
impairments in zebrafish [6]. Chronic exposure to lead induced learning deficits that persisted for at
least three generations, indicating the transgenerational effects of embryonic lead exposure [20]. In
addition, a previous study indicated that lead exposure at 10 µmol/L concentration downregulated
nrxn2a (a synaptic cell-adhesion molecule associated with neurological disorders) expression, increased
apoptosis, and altered locomotor behavior in zebrafish embryos and larvae [23].
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The potential risks of lead exposure have been extensively studied in the embryonic and larval
stages of zebrafish, but the ecotoxicity of lead has not been carefully addressed in adult zebrafish and
other aquatic species. In this study, we aim to investigate the toxicity of chronic lead exposure at a
low concentration for one month through the assessments of three-dimension (3D) locomotion, novel
tank exploration, mirror biting, predator avoidance, conspecific social interaction, shoaling, circadian
rhythm locomotor activity, color preference, and short-term memory (the experimental design is
illustrated in Figure 1). Biomarkers, including acetylcholine (ACh) and acetylcholinesterase (AChE),
gamma-aminobutyric acid (GABA), dopamine, neuroendocrine markers (serotonin and melatonin),
and oxidative stress parameters, such as reactive oxygen species (ROS) and superoxide dismutase
(SOD), were analyzed to elucidate the underlying mechanism of lead-induced behavioral disorders in
adult zebrafish at a cellular and molecular level.
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Figure 1. Schematic diagram of the evaluation of the neurobehavioral toxicity of PbCl2 in zebrafish.
Yellow indicates the time points (day) for conducting behavioral assays. After 30 days, all fish were
sacrificed and the biochemical assays were performed.

2. Results

2.1. Lead Exposure Induced Anxiety-Like Behavior in Zebrafish

Three-dimensional (3D) locomotion is a sensitive tool for the risk assessment of the alteration
of swimming behavior after exposure to chemicals or pollutants [24]. It was found that 50 ppb
PbCl2-treated zebrafish had the lowest average speed (Figure 2B) and average angular velocity
(Figure 2C). The total distance traveled was also decreased in all of the PbCl2-treated zebrafish, but no
significant difference was found when compared with the control group (Figure 2D). The correlation
between rapid movement time ratio and average speed could be identified by a freezing time movement
ratio. The 50 ppb PbCl2-treated zebrafish had the highest freezing time movement ratio; thus, they
also had the lowest rapid movement time ratio. However, there was only a slight decrement in the
swimming time movement ratio (Figure 2G–I). Based on these results, lead at its lowest concentration,
50 ppb, can induce anxiety-like behavior in adult zebrafish. Supplementary Video S1 display the
behavioral changes for the control and 50 ppb PbCl2-treated zebrafish in the 3D locomotion test.
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Figure 2. Comparison of three-dimensional (3D) behavior among seven-day PbCl2-exposed groups and
a control group. (A) A schematic diagram showing the typical 3D locomotor paths of several individual
fish, using our previously established method. Eight parameters were measured among treatments
and a control group: (B) average speed, (C) average angular velocity, (D) total distance, (E) time in
top duration, (F) meandering, (G) freezing time movement ratio, (H) swimming time movement ratio,
and (I) rapid movement time ratio. Data are expressed in mean values evaluated by one-way ANOVA
(n = 10; * p ≤ 0.05, and ** p ≤ 0.01).

In addition to the 3D locomotion test, a novel tank exploration test was also performed to
determine whether lead exposure induces anxiety through the chronological response assay in a novel
environment. We found that the zebrafish exposed to 50 ppb PbCl2 displayed reduced locomotor
activity (Figure 3A), a higher freezing time movement ratio (Figure 3B), and a lower number of entries
to the top compartment (Figure 3D) compared to the control group. Other parameters, including
the time (Figure 3C), latency to enter (Figure 3E), and total distance traveled in the top compartment
(Figure 3F) of the control and PbCl2-exposed fish had no significant difference. The locomotor activity
and the number of entries to the top zone in most of the observation time decreased, indicating that
exposure to lead at a low concentration does not simply reduce locomotor behavior, but also induces
anxiety-like behavior in a new environment. Supplementary Video S2 display the behavioral changes
for the control and 50 ppb PbCl2-treated zebrafish in the novel tank test.
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Figure 3. Comparison of behavioral endpoints in the novel tank exploration test among 30-day 50 ppb
PbCl2-exposed groups and a control group. Six parameters were evaluated: (A) average speed, (B)
freezing time movement ratio, (C) time in top duration, (D) number of entries to the top, (E) latency
to enter the top, and (F) total distance traveled in the top. Data are expressed as mean ± SEM and
analyzed by two-way ANOVA with Sidak’s multiple comparisons test (n = 30; */$ p ≤ 0.05, $$ p ≤ 0.01,
and **** p ≤ 0.0001).

2.2. Lead Exposure Decreased Aggressiveness in Zebrafish

The mirror biting experiment is a well-established test that is commonly used for studying the
social/aggressive behavior of adult zebrafish [25]. Mirror biting behavior and rapid swimming indicates
the aggressiveness of zebrafish. In our study, a mirror biting test was performed after lead treatment.
We used a chronological approach to measure aggressiveness in the mirror biting test after 1 day, 4 days,
7 days, 14 days, and 30 days of PbCl2 exposure. The average speed and mirror biting time percentage
of the treated fish were significantly reduced on the seventh day (Figure 4A,B). Furthermore, they
displayed anxiety, as indicated, by an increased freezing time movement ratio in most of the time
intervals. The most significant change was observed on day 7 of PbCl2 incubation, when compared to
the control group (Figure 4C). The downward trend of the swimming time movement ratio and rapid
movement time ratio demonstrated that the PbCl2 treatment had a significant impact on aggressive
behavior (Figure 4D,E). In addition, the significantly reduced duration in the mirror side of the treated
fish indicated a less aggressive behavior than the control fish (Figure 4F). These results demonstrated
that a low concentration of PbCl2 decreased aggressiveness in adult zebrafish. Supplementary Video
S3 display the behavioral changes for the control and 50 ppb PbCl2-treated zebrafish in the mirror
biting test. Since PbCl2 at 50 ppb induced the most significant anxiety-like response in both the 3D
locomotion and mirror biting test, it was considered the optimal concentration; thus, it was used to test
other zebrafish behavioral endpoints in the following experiments.

2.3. Lead Exposure Did Not Alter Fear Response in Zebrafish

Predator avoidance is an innate response to help the prey to escape from its predator. In this test,
we used a convict cichlid (Amatitlania nigrofasciata) as a predator fish to induce the fear response of the
zebrafish. In avoiding the predator, any unusual movements of the PbCl2-treated fish compared to the
control fish could be conceived as an impact of the treatment. We found that there were no significant
differences in behavioral endpoints of the PbCl2-treated fish and the control group (Figure 4G–L). This
result demonstrated that chronic exposure of PbCl2 at 50 ppb did not alter the predator avoidance
response in adult zebrafish. Supplementary Video S4 display the behavioral changes for the control
and 50 ppb PbCl2-treated zebrafish in the predator avoidance test.
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Figure 4. Evaluation of aggressiveness and fear by mirror-biting and predator avoidance tests between
the control and 50 ppb PbCl2-treated fish. After PbCl2 exposure (red line), the mirror biting behavior
was chronologically monitored and the data were presented as (A) mirror biting time percentage,
(B) average speed, (C) freezing time movement ratio, (D) swimming time movement ratio, (E) rapid
movement time ratio, and (F) longest duration in the mirror side. Data are expressed as mean ±SEM
values and analyzed by two-way ANOVA with Sidak’s multiple comparisons test (n 1 & 7 days = 10,
n 14 days = 40, n 30 days = 30; */$ p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 and ****/$$$$ p ≤ 0.0001). After
PbCl2 exposure for 30 days, the predator avoidance behavior was monitored and data were presented
as (G) average speed, (H) predator approaching time, (I) freezing time movement ratio, (J) swimming
time movement ratio, (K) rapid movement time ratio, and (L) average distance to separator. Data are
expressed as mean and analyzed by the Mann–Whitney test (n = 30).

2.4. Lead Exposure Did Not Alter Conspecific Interaction and Shoaling Behaviors

The social phenotype is an important part of the natural behavior of a zebrafish. We used a
conspecific social interaction test to investigate whether chronic lead exposure has any detrimental
effects on the social interaction of the zebrafish. Normally, zebrafish display high sociability when
placed in a tank with conspecific fish. In our test, the PbCl2-treated fish showed no significant alteration
in the interaction time percentage (Figure 5A), longest duration in separator side (Figure 5B), or
average distance to the separator (Figure 5D) when compared with the control fish. However, the
PbCl2-exposed fish displayed a significant reduction in locomotor activity compared to the control
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group, which was consistent with our result in another behavioral test (Figure 5C). Supplementary
Video S5 display the behavioral changes for the control and 50 ppb PbCl2-treated zebrafish in the social
interaction test.
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Figure 5. Comparison of the conspecific social interaction and shoaling between control and 50 ppb
PbCl2-treated fish. After PbCl2 exposure, the conspecific social interaction was monitored and the data
are presented as (A) interaction time percentage, (B) longest duration in the separator side, (C) average
speed, and (D) average distance to the separator. The data are expressed as the mean values and
analyzed by the Mann–Whitney test (n = 30; * p ≤ 0.05). For the shoaling test, after PbCl2 exposure, the
shoaling behavior was monitored at 30 days post-treatment and the data are presented as (E) average
speed, (F) time in the top duration, (G) average inter-fish distance, (H) average distance to the center of
the tank, (I) average shoal area, and (J) average nearest neighbor distance. Data are expressed as the
mean values and analyzed by the Mann–Whitney test (n = 30; ** p ≤ 0.01).

We also performed a shoaling test to assess the anxiogenic effects of PbCl2 exposure. Generally,
adult zebrafish display a stable shoal cohesion. In this study, we measured six endpoints to evaluate
the shoal cohesion of the fish after thirty days of PbCl2 exposure. A previous study showed that the
fish became more active and began exploration of the top area after a few minutes of acclimation.
Furthermore, anxious fish tend to swim together in a tightened shoal compared to non-anxious fish
when placed in a novel environment. Therefore, the average speed, time in top duration, average
inter-fish distance, and average distance to the center of the tank may reflect the exploration preference
or anxiety and stress-like behavior of zebrafish. In addition, other endpoints, such as the average shoal
area and average nearest neighbor distance endpoints, allow researchers to study shoal cohesion, since
they can demonstrate the anxiogenic effects of an experimental drug. In this study, the PbCl2-exposed
fish showed no significant difference with the control group in the time in the top duration (Figure 5F),
average inter-fish distance (Figure 5G), average distance to the center of the tank (Figure 5H), average
shoal area (Figure 5I), and average nearest neighbor distance (Figure 5J). However, the average speed of
PbCl2-exposed fish was significantly reduced compared to the control fish, which was also consistent
with our results from other behavioral tests (Figure 5E). Altogether, exposure to a low concentration of
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lead did not alter the social interaction and shoaling behavior of zebrafish. However, it is important
to note that, based on some of the results, it induced anxiety in zebrafish. Supplementary Video S6
display the behavioral changes for the control and 50 ppb PbCl2-treated zebrafish in the shoaling test.

2.5. Lead Exposure Altered Zebrafish Circadian Rhythm Locomotor Activity

In the circadian rhythm locomotor activity test with the light/dark (L/D) 12/12 h setting, the
PbCl2-exposed fish generally maintained lower locomotor activity than the control fish during both
the light and dark cycles (Figure 6A). In the light cycle, this phenomenon was shown by a lower
average speed and rapid movement time ratio of the treated fish (Figure 6B,G). Irregular movements
were also observed in the treated fish, which was indicated by a high level of meandering during
the light cycle (Figure 6D). Meanwhile, there were no significant differences shown in the average
angular velocity, freezing movement time ratio, or swimming movement time ratio of the treated
group compared with the control group (Figure 6C,E,F). Furthermore, low locomotor activity in the
PbCl2-exposed fish during the dark cycle was noticed, as indicated by a low average speed, average
angular velocity, swimming movement time ratio, and rapid movement time ratio (Figure 6H,I,L,M).
Moreover, a significant difference was found in the freezing movement time ratio of the control and
the PbCl2-treated group (Figure 6K). On the other hand, there was no significant difference in the
meandering during the dark cycle (Figure 6J). Overall, based on the results, it can be inferred that a low
concentration of PbCl2 altered the adult zebrafishes’ locomotor activity in both light and dark cycles.
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Figure 6. Evaluation of the circadian rhythm locomotor activity for control and chronic PbCl2-treated fish
(50 ppb, red). (A) Circadian locomotor activity patterns of average speed; (B) average speed; (C) average
angular velocity; (D) meandering; (E) freezing movement time ratio; (F) swimming movement time
ratio; and (G) rapid movement ratio during the light cycle; (H) average speed; (I) average angular
velocity; (J) meandering; (K) freezing movement time ratio; (L) swimming movement time ratio; and
(M) rapid movement ratio during the dark cycle. The data are expressed as mean ± SEM and analyzed
by the Mann–Whitney Test (n control fish = 18; n PbCl2-treated fish = 18; ** p < 0.01, *** p < 0.001,
**** p < 0.0001).

2.6. Lead Exposure Induced Short-Term Memory Loss in Zebrafish

The passive avoidance task is a fear-associated test used to assess central nervous system-related
disorders in rodent models [26,27]. In this test, a subject learns to escape an aversive stimulus (such
as a foot-shock). Therefore, the passive avoidance task is a useful test to evaluate the effect of PbCl2
on short-term memory. A shuttle box is one of the apparatuses that provides stimulus condition.
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It has been applied to determine memory loss induced by metal poisoning. In this study, we used
the passive avoidance test in a shuttle box to assess whether exposure with 50 ppb PbCl2 could
impair short-term memory in adult zebrafish. The results showed that the control fish could maintain
short-term memory with a latency time around 150–200 s during the testing phase (Figure 7A–C).
Within four days and 14 days, the PbCl2-treated fish did not show any significant change in the latency
(Figure 7B,C). However, the exposure of PbCl2 for one month significantly reduced the latency down to
approximately 50 s in the testing session (Figure 7D). It is demonstrated that long-term PbCl2 exposure
can induce short-term memory loss in zebrafish.
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Figure 7. Passive avoidance task to test the short-term memory of fish treated with different exposure
durations in 50 ppb of PbCl2. (A) An illustration that shows the principle of the shuttle box experiment.
Twenty-four hours after the training session, we tested the latency for the fish to enter the dark
compartment equipped with an electrical shock. Latency of fish treated with PbCl2 (50 ppb) after 4
days (B), 14 days (C), and 30 days (D) after training. Data are expressed as mean ± SEM values and
analyzed by two-way ANOVA (n = 10; ** p ≤ 0.01).

2.7. Lead Exposure Did Not Alter Color Preference Sequence

Zebrafish have multiple cone cell-specific photoreceptors for color discrimination. Chemicals
targeting cone cell-specific photoreceptors and brain neurotransmitter expression can induce color
preference alteration in zebrafish. We exposed the zebrafish to PbCl2 at 50 ppb for 30 days and
their color preference was determined according to our previous protocol. Healthy adult zebrafish
have a color preference as follows: red > blue > green > yellow (Figure 8). The PbCl2-exposed
zebrafish did not show any significant changes on color discrimination compared to the control
group. However, the color plate combination for green/yellow (Figure 8B), red/yellow (Figure 8D),
red/green (Figure 8E), and blue/yellow (Figure 8F) displayed a reduced preference index after PbCl2
exposure. When combined with yellow, the red, blue, and green color preference intensities were
significantly reduced after long-term PbCl2 exposure. In the red/green combination, the PbCl2-treated
fish also significantly showed a reduction in the preference for red compared to the control group.
Meanwhile, the blue-over-green and red-over-blue preferences were not significantly decreased by
chronic PbCl2 exposure.



Int. J. Mol. Sci. 2020, 21, 1844 10 of 20
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 10 of 19 

 

 

Figure 8. Comparison of the color preference between control and PbCl2-exposed fish (50 ppb for 30 
days). The combinations of four colors are (A) green/blue, (B) green/yellow, (C) red/blue, (D) 
red/yellow, (E) green/red, and (F) blue/yellow. Data are expressed as mean ±SEM values and analyzed 
by two-way ANOVA (n = 16; * p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.0001). 

2.8. Comparison of Biomarkers in the Brain Tissue of the Control and Lead-Treated Zebrafish 

After all the behavioral tests were performed, we sacrificed the fish and their brain tissues were 
subjected to ELISA for the measurement of neurotransmitter expression. Initially, we evaluated the 
oxidative stress and lipid peroxidation by measuring the reactive oxygen species (ROS), superoxide 
dismutase (SOD), and malondialdehyde (MDA) markers. Interestingly, we found that PbCl2 
exposure at 50 ppb for 30 days could significantly elevate the antioxidant enzyme SOD levels (Figure 
9B). In addition, we also noticed a reduction of acetylcholinesterase (AChE) (Figure 9D) in fish after 
exposure to a low concentration of PbCl2 for 30 days. We hypothesized that the reduced AChE and 
elevated SOD levels may have contributed in the recovery of the behavioral alteration patterns 
detected in the mirror biting assay by boosting the total antioxidant and anti-dementia activity in the 
acclimation process. However, there was no significant differences regarding their level of ROS and 
ACh observed in this experiment (Figure 9A,C). 

Melatonin is a hormone that plays an important role in mediating the circadian rhythm in 
animals, showing high levels in the night cycle and low levels in the day cycle. We determined 
significantly low levels of melatonin in the PbCl2-exposed fish (Figure 9E). This result suggests that 
the circadian rhythm locomotor activity dysregulation in the PbCl2-exposed fish was due to the 
decrease in melatonin levels. Some of the biomarkers—namely, AChE and serotonin—had also been 
significantly reduced, whereas the ACh, dopamine, and GABA levels in the PbCl2-treated group 
displayed no significant difference with the control. 

Figure 8. Comparison of the color preference between control and PbCl2-exposed fish (50 ppb
for 30 days). The combinations of four colors are (A) green/blue, (B) green/yellow, (C) red/blue,
(D) red/yellow, (E) green/red, and (F) blue/yellow. Data are expressed as mean ±SEM values and
analyzed by two-way ANOVA (n = 16; * p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.0001).

2.8. Comparison of Biomarkers in the Brain Tissue of the Control and Lead-Treated Zebrafish

After all the behavioral tests were performed, we sacrificed the fish and their brain tissues were
subjected to ELISA for the measurement of neurotransmitter expression. Initially, we evaluated the
oxidative stress and lipid peroxidation by measuring the reactive oxygen species (ROS), superoxide
dismutase (SOD), and malondialdehyde (MDA) markers. Interestingly, we found that PbCl2 exposure
at 50 ppb for 30 days could significantly elevate the antioxidant enzyme SOD levels (Figure 9B). In
addition, we also noticed a reduction of acetylcholinesterase (AChE) (Figure 9D) in fish after exposure
to a low concentration of PbCl2 for 30 days. We hypothesized that the reduced AChE and elevated
SOD levels may have contributed in the recovery of the behavioral alteration patterns detected in the
mirror biting assay by boosting the total antioxidant and anti-dementia activity in the acclimation
process. However, there was no significant differences regarding their level of ROS and ACh observed
in this experiment (Figure 9A,C).
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including (A) ROS (reactive oxygen species), (B) SOD (superoxide dismutase), (C) acetylcholine, (D)
acetylcholine esterase, (E) melatonin, (F) dopamine, (G) serotonin, (H) GABA, (I) cortisol, (J) MDA
(malondialdehyde), (K) HIF-1α, and (L) catecholamine were measured. Data are expressed as mean
values (n = 5; * p ≤ 0.05, *** p ≤ 0.001 tested by t-test).

Melatonin is a hormone that plays an important role in mediating the circadian rhythm in animals,
showing high levels in the night cycle and low levels in the day cycle. We determined significantly low
levels of melatonin in the PbCl2-exposed fish (Figure 9E). This result suggests that the circadian rhythm
locomotor activity dysregulation in the PbCl2-exposed fish was due to the decrease in melatonin levels.
Some of the biomarkers—namely, AChE and serotonin—had also been significantly reduced, whereas
the ACh, dopamine, and GABA levels in the PbCl2-treated group displayed no significant difference
with the control.

3. Discussion

In this study, we used multiple behavioral assays, including 3D locomotion, novel tank exploration,
mirror biting, predator avoidance, social interaction, shoaling, circadian rhythm locomotor activity,
color preference, and short-term memory tests, to evaluate the toxicity of low concentrations of PbCl2 in
adult zebrafish. The most significant and important finding in our study was the discovery of memory
loss in adult zebrafish induced by chronic PbCl2 exposure at a concentration of 50 ppb. This finding
is consistent with previous publications about the neurotoxicity and memory impairment induced
by chronic lead exposure in rodents [28–30]. On the other hand, the study done by Chen et al. also
showed that the 25 to 50 ppb lead acetate exposure of 8 to 120 hpf zebrafish induced memory deficiency
at the adult stage (determined at 150 dpf), which was tested by food reward-based T-maze [6]. In this
study, we found that waterborne exposure of PbCl2 at 50 ppb for 30 days could dramatically reduce the
latency in the passive avoidance shuttle box assay, indicating memory impairment in zebrafish. The
biochemical assays also provided an evidence that the loss of short-term memory in adult zebrafish
was due to the dysregulation of the cholinergic system, which may have been caused by the abnormal
level of AChE, an enzyme that catalyzes the breakdown of ACh. In summary, we concluded that either
the acute exposure of lead at the embryonic stage or the chronic exposure of lead at the adult stage can
induce memory impairment in zebrafish.
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We also discovered that chronic exposure of PbCl2 caused the zebrafish to not only reduce their
locomotor activity behavior and decreased aggressiveness in the mirror biting test, but also to exhibit
high anxiety-like/freezing behaviors in the 3D locomotion, novel tank exploration, and circadian
rhythm locomotor activity tests. Furthermore, abnormal exploratory behavior was also exhibited by
the PbCl2-treated fish. The assessment of 3D swimming behavior indicated that the exposure with
the lowest concentration of PbCl2 for seven days made the adult zebrafish less active with a high
anxiety index. These findings were concluded from the significant reduction of average speed and
average angular velocity. These are also correlated with the significant decrement of total distance
traveled by the treated fish. In line with our results, the decrease in locomotor activity and high
anxiety were also reported in studies involving mice [31,32]. Another study reported that heavy metal
exposure reduced the aggressive behavior of mice [33]. The exact reason why a low dose of PbCl2
displayed a more powerful effect on reducing zebrafish locomotor activity is complex. We proposed
that maybe a high dose of PbCl2 can trigger the upregulation of metallothionines on buffering the
PbCl2-induced acute toxicity. On the contrary, a low dose of PbCl2 exposure may not yet be enough to
trigger metallothionine expressions. More experiments have to be conducted in order to validate this
hypothesis in the future studies.

To validate the effect of chronic lead exposure, a variety of animal models have been studied, from
a nematode [34], an aquatic model [35], to a rodent model [2]. Lead toxicity is more severe in aquatic
animals than in rodents. Lead compounds in recent rodent studies were given by oral gavage that
damages the surface of the organs less compared to aquatic animals, of which the lead is dissolved in
their environment. We observed the significant increase of the superoxide dismutase (SOD) levels
in the brain of PbCl2-treated fish. In zebrafish, SOD is required as an antioxidant defense system to
reduce accumulated superoxide anions as the consequence of heavy metal overload [36]. The level of
malondialdehyde (MDA), a lipid peroxidation product, was also increased significantly. Consistent
with the results of previous studies, increased levels of SOD and MDA were observed in the zebrafish
embryos treated with chromium (Cr) for 96 h in a concentration-dependent manner (3, 10, and 30
µM) [37]. In addition, the mRNA expression of the gene encoding SOD increased after eight-week
exposure to Pb salts [2]. We suggest that the elevation of SOD in the zebrafishes’ brains after chronic
PbCl2 exposure at a low concentration is a compensatory response of acclimation.

Previous neurotoxicity studies also reported that lead could induce posttraumatic stress disorder
in C. elegans [34] and children [38,39]. Stress response caused by the heavy metal-induced neurological
toxicity was related to elevated levels of catecholamines and cortisol [40,41]. Catecholamines
are regulated by the activation of the adrenal medulla. Under stress, an increase in dopamine,
norepinephrine, and epinephrine levels occurs [42]. Furthermore, the hormone cortisol has been
known to increase as a response to stress [43,44]. In this study, elevated cortisol levels in zebrafish were
determined, which explained the high anxiety response in behavioral experiments. Furthermore, we
found that the expression of melatonin, the sleeping hormone, showed a significant reduction, which
could explain the results of the circadian rhythm locomotor activity [45]. During the dark cycle, the
low locomotor activity of PbCl2-treated fish with a high freezing time movement ratio was observed.
Thus, the PbCl2-treated fish could not sleep normally in the dark cycle and exhibited anxiety-like
behavior in the day cycle. The dysregulation of the circadian rhythm due to cadmium poisoning
has been reported in zebrafish larvae [46]. The circadian rhythm locomotor activity dysregulation
caused by lead overload is the first case reported in adult zebrafish. Further studies on evaluating
the circadian gene expression at a molecular level are considered necessary to explore its underlying
mechanism for circadian rhythm locomotor activity dysregulation.

PbCl2 also affected the expression of serotonin and AChE in zebrafish. The low levels of brain
serotonin supported the low locomotor activity detected in the PbCl2-exposed fish, since serotonin
has been reported to play a positive role in regulating locomotor activity in many animals [47–51]. In
addition, the reduced expression of serotonin and melatonin was consistent, since both have tryptophan
as their precursor. On the other hand, acetylcholine plays an important role on modulating memory
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and neuromuscular activity. Acetylcholinesterase (AChE) is the enzyme responsible for the breakdown
of ACh in the neural synapse. Its activity is usually positively affected by environmental contaminants,
such as heavy metals, pesticides, and insecticides [52–54]. In this study, we found that AChE activity
was compromised after exposure to a low concentration of PbCl2 for 30 days. However, cases with
enhanced AChE activity were also reported in fish after heavy metal exposure. Romani et al. reported
that increased AChE activity was found in the brain and white muscle tissue of bony fish, Sparus
auratus, after a 20-day exposure to sublethal concentrations of Cu at 0.1 or 0.5 ppm [55]. In another
study, the AChE levels in Seriola dumerilli were upregulated after Cd exposure at a dose of 50 µg/kg
and downregulated at a dose of 100 and 250 µg/kg [56]. In addition, it was discovered that the AChE
activity in the brain of the zebrafish increased after chronic zinc exposure at 0.1 ppm for 21 days [57].
We suggest that the inconsistency of the AChE activity response toward heavy metals may be correlated
to the nature of the animal model and exposure dose and duration (short-term or long-term). Therefore,
memory loss in the PbCl2-exposed zebrafish may not be primarily associated with the cholinergic
system. More studies on measuring other neurotransmitters that are associated with memory, such as
glutamate and glycine, are considered necessary in future studies.

4. Conclusions

We performed biochemical and behavioral assessments to evaluate the toxicity of lead in adult
zebrafish. The chronic exposure with low concentrations of lead can change the behavior of adult
zebrafish. This was indicated by reduced locomotor activity, exploratory response, and short-term
memory. In addition, it can elevate anxiety and dysregulate the circadian rhythm and color preference
intensity. A biochemical survey demonstrated that the behavioral alterations may be correlated to
oxidative stress, lipid peroxidation, and stress (summarized in Figure 10).
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5. Materials and Methods

5.1. Animal Ethics

Wild-type AB strain zebrafish were raised and kept in standard laboratory conditions according
to the protocol described by Westerfield [58]. All procedures were approved by The Committee
for Animal Experimentation of the Chung Yuan Christian University (Number: CYCU104024, issue
date 21 December 2015). All the zebrafish were housed in a recirculating tank system on a 14:10 h
light/dark cycle. The water quality was maintained at 28.5 ◦C (pH 7.2–7.6). For all experiments, we
used five-to-six-month-old adult zebrafish.

5.1.1. Lead Chloride Exposure

Lead chloride (PbCl2) was purchased from Shanghai Huayi Company (Shanghai, China). A PbCl2
stock solution at a concentration of 1000 mg/L (ppm) was prepared in ultrapure water and was stored
at 25 ◦C. Adult fish were exposed to a nominal concentration of 0 (control group), and concentrations
of 50 ppb, 100 ppb, and 1000 ppb PbCl2 for 24 h, 96 h (acute treatment), 7 days, 10 days, 14 days
(sub-chronic treatment), and 30 days (chronic treatment). The water was changed every two days to
maintain the lead concentration during incubation.

5.1.2. Adult Neurobehavioral Analysis

Eight behavioral assessments were used to evaluate the neurobehavioral disorders associated
with the exposure to low concentrations of lead. The behavioral tests included 3D locomotor activity
(for acute and sub-chronic effects), passive avoidance (on day 4, 14, and 30 of PbCl2 exposure),
aggression (for acute and sub-chronic effects), predator escape/avoidance, social interaction, shoaling,
circadian rhythm locomotor activity, and color preference tests (on day 30 of exposure), which are
described below.

5.1.3. Zebrafish 3D Locomotor Activity Test

Three-dimensional locomotor activity was tracked at four time points, including 1, 4, 7, and 14 days
after the exposure to PbCl2, according to a previously described protocol [24]. The 3D locomotion
test of six fish was performed using an acrylic tank (20 cm × 20 cm × 20 cm dimension with 15 cm
water level).

5.1.4. Novel Tank Test

The novel tank test was conducted to observe the fishes’ ability to acclimate to the novel
environment. As described in the previous method, the video recording was started immediately after
the tested fish were put into the trapezoid test tank (28 cm × 5 cm × 15 cm) for one minute every 5 min
until 30 min passed [59]. Later, six endpoints, which were average speed, freezing time movement
ratio, time in top duration, number of entries to the top, latency to enter the top, and total distance
traveled in the top, were analyzed.

5.1.5. Aggressiveness Test

Aggressive behavior was determined in adult zebrafish based on the mirror test described in
previous studies [59]. The same test tank was filled with ~1.25 L water, where a mirror was placed at
the side of the tank. After ~1 min of introduction into the tank, the aggressive behavior, indicated by
bites and fast swimming, were recorded for a period of five minutes. Six endpoints, including average
speed, mirror biting time percentage, longest duration in the mirror side, freezing time movement
ratio, swimming time movement ratio, and rapid movement time ratio, were later calculated.



Int. J. Mol. Sci. 2020, 21, 1844 15 of 20

5.1.6. Predator Avoidance Test

The predator avoidance test is considered as an indicator of predator avoidance behavior in
zebrafish. It was carried out based on the previous publication [59]. The same test tank was filled
with ~1.25 L water, where a transparent separator was placed in the middle of the tank. The predator
convict cichlid (Amatitlania nigrofasciata) was placed on one side and the zebrafish were put on the
other side. After introduction into the tank, the predator avoidance behaviors, indicated by average
speed, predator approaching time percentage, average distance to the separator, freezing, swimming,
and rapid time movement ratios, were recorded for a period of five minutes.

5.1.7. Social Interaction Test

A social interaction test was carried out to assess the zebrafishes’ ability to interact with their
conspecific. Similar to the predator avoidance test, a glass separator was used in the same size tank
as described in the previous publication [59]. After acclimation, the tested fish were introduced in
one side of the tank with a conspecific in another side. After video recording, several important
endpoints (interaction time percentage, longest duration in the separator side, average speed, and
average distance to the separator) were calculated.

5.1.8. Shoaling Test

As an innate behavior, shoaling is one of the social-related behaviors to reduce anxiety and the
risk to be captured by predators. Based on the previous publication, a shoaling test was conducted to
observe the shoaling formation ability of zebrafish [59]. After acclimation, the behavior of the fish in
groups of three were recorded and several endpoints, including average speed, time in top duration,
average inter-fish distance, average distance to the center of the tank, average shoal area, and average
nearest neighbor distance, were calculated.

5.1.9. Circadian Rhythm Locomotor Activity Test

To evaluate lead-induced disorders in zebrafish locomotor activity during the day and night,
we performed a circadian rhythm test based on a previously published procedure [60]. To prevent
any external disturbance, the tested fish were moved into a temperature-controlled incubator and
kept at 28 ◦C. A specially designed Light Emitting Diode (LED) lightbox with a conventional and
infrared LED array was used as the light source. An infrared-sensitive Charged Coupled Device (CCD)
(700–1000 nm detection window) with a maximum resolution of 1920 × 1080 pixels and 30 fps frame
rate was used for video recording (3206_1080P module, Shenzhen, China). In this experiment, we
recorded the average speed, average angular velocity, and meandering for one minute every hour and
used idTracker software [61] to track fish movement trajectories according to our previously published
method [24].

5.1.10. Passive Avoidance Test (Short-Term Memory Test)

To assess whether PbCl2 could impair short-term memory in adult zebrafish, we carried
out a passive avoidance test after 4 days (acute treatment), 14 days (sub-chronic treatment) and
30 days (chronic treatment) of exposure (n = 14), referring to previous research with minor
modifications [57,62,63]. There were two phases—training and testing—with a 24 h interval between
them. In each session, the fish were placed individually in an acrylic tank (20 cm × 20 cm × 20 cm)
divided by a door into two compartments of equal size: one black (right side) and one white (left
side). Three training sessions were performed and a maximum of two electric shocks were given
per session. In each training session, the fish were placed in the white compartment with the door
closed for one minute for environment habituation and recognition. Next, the door was lifted, and
the fish were allowed to cross over to the dark side of the tank. When the fish swam to the dark area,
they immediately received a mild electric shock (5 V, 1 mA) until the fish returned into the white
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compartment. The fish that completed the training were kept in a small plastic container (15 × 10 cm
× 5 cm) with the temperature of water maintained at 28 ◦C. After 24 h, the fish were placed into the
apparatus and tested with the same protocol as the training session, but without the electric shock.
The latency to enter the black compartment was observed and its expected increase in the test session
was used as an indicator of memory retention.

5.1.11. Color Preference Assay

Color-based experiments are known to be associated with aversion, anxiety, or fear in the
zebrafish [64]. The color preference tracking technique is also applied to evaluate neurodegenerative
disorders as an index for the preclinical appraisal of drug efficacy and for the behavioral evaluation
of toxicity [65]. In this study, we carried out the color preference assay in a 21 cm × 21 cm × 10 cm
acrylic tank filled with 1.5 L of filtered water. The tanks consisted of four compartments, and each
compartment was divided into two-color combinations among red, green, blue, and yellow. In total,
there were six color combinations to determine the color preference of zebrafish. The experiment was
done between 10:00 and 16:00. The color preference was recorded with a combination of an IR camera
and a HD camera and analyzed using idTracker software [61].

5.1.12. Determination of Neurotransmitters, Neuroendocrine Markers, and Oxidative Stress
Parameters

Five randomly selected zebrafish from the control and treatment group were used for biochemical
assays. The whole-brain tissue was homogenized on ice in 50 volumes (v/w) of PBS at pH 7.2 using
a bullet blender tissue homogenizer (Next Advance, Inc., Troy, NY, USA). Then, the samples were
incubated on ice for 30 min before centrifugation at 12,000× g for 10 min. The crude homogenate was
stored in 100 µL aliquots at −80 ◦C for ELISA. The levels of neurotransmitters—namely, serotonin,
dopamine, GABA, and Ach—and AChE were measured by using target-specific ELISA kits purchased
from a commercial company (ZGB-E1572, ZGB-E1573, ZGB-E1574, ZGB-E1585, ZGB-E1637, Zgenebio
Inc., Taipei, Taiwan). The ROS and SOD levels were also determined (ZGB-E1561 and ZG-E1604,
Zgenebio Inc., Taipei, Taiwan). The neuroendocrine marker, melatonin, was determined using
commercially available ELISA kits (ZG-E1597, Zgenebio Company, Taipei, Taiwan). The target protein
content was analyzed according to the manufacturer’s instructions.

5.1.13. Statistical Analysis

All data were presented as mean ± standard error of the mean (SEM). Statistical analyses
were performed using the t-test, ANOVA, or non-parametric test, depending on data normality for
significance determination followed by the least significant difference of multiple comparison tests
with The Prism software (Graph pad Software version 7, La Jolla, CA, USA). Statistical significance
was considered to be probability (p) values less than 0.05.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/5/1844/
s1. Video related to 3D locomotion can be found in Supplementary Video S1. Video related to novel tank
exploratory behavior can be found in Supplementary Video S2. Video related to aggressiveness in the mirror
biting test can be found in Supplementary Video S3. Video related to fear behavior in the predator avoidance
test can be found in Supplementary Video S4. Video related to conspecific social interaction can be found in
Supplementary Video S5. Video related to shoaling behavior can be found in Supplementary Video S6.
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