CG200745, a novel HDAC inhibitor, attenuates kidney fibrosis in a murine model of Alport syndrome

Sang Heon Suh^{1,2}, Hong Sang Choi^{1,2}, Chang Seong Kim^{1,2}, In Jin Kim¹, Hyunju Cha³, Joong Myung Cho³, Seong Kwon Ma^{1,2}, Soo Wan Kim^{1,2,*}, and Eun Hui Bae^{1,2,*}

¹Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea; ²Department of Internal Medicine, Chonnam National University Hospital, Gwangju 61469, Korea;³Crystal Genomics, Inc., 5 F, Bldg A, Korea Bio Park, Seongnam 13488, Korea

*These authors have contributed equally to this manuscript as correspondence authors.

Table of Contents

Table S1. List of primary and secondary antibodies for immunohistochemistry	Page 2
Table S2. List of primary and secondary antibodies for immunoblotting	Page 3
Table S3. List of primer sequences for real-time qPCR	Page 4
Figure S1. CG alone does not induce apoptosis in HK-2 cells.	Page 5
Figure S2. Raw data for immunoblotting related Figure 2	Page 6
Figure S3. Raw data for immunoblotting related Figure 3	Page 7
Figure S4. Raw data for immunoblotting related Figure 4	Page 8
Figure S5. Raw data for immunoblotting related Figure 5	Page 9
Figure S6. Raw data for immunoblotting related Figure 6	Page 10
Figure S7. Raw data for immunoblotting related Figure 7	Page 11
Figure S8. Raw data for immunoblotting related Figure 8	Page 12

	Host	Reactivity	Supplier	Cat. No.
F4/80	Rat	Mouse	Bio-rad	MCA497GA
Transforming growth factor β 1	Rabbit	Human, Mouse	Abcam	ab92486
α smooth muscle actin	Mouse	Human, Mouse	Sigma-Aldrich	A3854
Rabbit IgG, HRP-linked	Goat	Rabbit IgG	Vector	PI-1000
Rat IgG, HRP-linked	Goat	Rat IgG	Vector	PI-9400
Mouse IgG, HRP-linked	Goat	Mouse IgG	Vector	PI-2000

Table S1. List of primary and secondary antibodies for immunohistochemistry

Table S2. List of	primary and	lsecondary	y antibodies f	or immunoblotting.

	Host	Reactivity	Supplier	Cat. No.
Angiotensin-converting enzyme	Goat	Human, Mouse	Santa Cruz	sc12187
Angiotensin-converting enzyme 2	Goat	Mouse	R&D	AF3437
Angiotensin-converting enzyme 2	Rabbit	Human	Cell Signaling	#4355
Angiotensin II-III	Mouse	Human, Mouse	Novus Biologicals	NB100-62346
Ang II type 1 receptor	Rabbit	Human, Mouse	Santa Cruz	sc-1173
Ang II type 2 receptor	Rabbit	Human, Mouse	Santa Cruz	sc-9040
BAX	Rabbit	Human, Mouse	Cell signaling	#2772
BCL2	Rabbit	Human, Mouse	Cell signaling	#3498
CD68	Rabbit	Mouse	Abcam	ab31630
Caspase 3	Rabbit	Human, Mouse	Cell signaling	#9662
Cleaved caspase 3	Rabbit	Human, Mouse	Cell signaling	#9661
ERK1/2	Rabbit	Human, Mouse	Cell signaling	#9102
Fibronectin	Rabbit	Human, Mouse, Rat	Abcam	ab2413
Heme oxygenase 1	Mouse	Mouse	Abcam	ab13248
JNK	Rabbit	Human, Mouse	Cell signaling	#9252
P38	Rabbit	Human, Mouse	Cell signaling	#9212
Phopho-ERK1/2	Rabbit	Human, Mouse	Cell signaling	#9101
Phopho JNK	Rabbit	Human, Mouse	Cell signaling	#9251
Phospho P38	Rabbit	Human, Mouse	Cell signaling	#9215
Phospho SMAD2/3	Rabbit	Human, Mouse, Rat	Cell Signaling	#8828
SMAD4	Rabbit	Human, Mouse, Rat	Cell Signaling	#38454
SMAD2/3	Rabbit	Human, Mouse, Rat	Cell Signaling	#3102
TNFα-converting enzyme (TACE)	Rabbit	Human, Mouse	Millipore	AB19027
Transforming growth factor β	Rabbit	Human, Mouse, Rat	Cell Signaling	#3711
α smooth muscle actin	Mouse	Human, Mouse, Rat	Sigma-Aldrich	A3854
β-actin	Rabbit	Human, Mouse, Rat	Cell Signaling	#3711
Goat IgG, HRP-linked	Rabbit	Goat IgG	Sigma-Aldrich	AP106P
Rabbit IgG, HRP-linked	Goat	Rabbit IgG	Cell Signaling	#7074
Mouse IgG, HRP-linked	Horse	Mouse IgG	Cell Signaling	#7076

Table S3. List of	primer sequences	for real-time o	PCR

	Forward	Reverse
Homo sapience		
GAPDH	GACATCAAGAAGGTGGTGAA	TGTCATACCAGGAAATGAGC
TGFB1	CAGAAATACAGCAACAATTCCTGG	TTGCAGTGTGTTATCCCTGCTGTC
Rattus norvegicus		
<i>Acta2</i> (αSMA)	TGTGCTGGACTCTGGAGATG	GAAGGAATAGCCACGCTCAG
Col1a1 (collagen, type I)	CAACCTCAAGAAGTCCCTGC	ACAAGCGTGCTGTAGGTGAA
Gapdh	ATCAAATGGGGTGATGCTGGTGCTG	CAGGTTTCTCCAGGCGGCATGTCAG
<i>Fn1</i> (fibronectin)	CATGAAGGGGGTCAGTCCTA	GTCCATTCCCCTTTTCCATT
Mus musculus		
<i>Acta2</i> (αSMA)	ACTGGGACGACATGGAAAAG	CATCTCCAGAGTCCAGCACA
Col1a1 (collagen, type I)	GAGCGGAGAGTACTGGATCG	TACTCGAACGGGAATCCATC
Gapdh	TGTGTCCGTCGTGGATCTGA	GATGCCTGCTTCACCACCTT
lcam1	AACTTTTCAGCTCCGGTCCTG	TCAGTGTGAATTGGACCTGCG
11-6	ACAACCACGGCCTTCCCTACTT	CACGATTTCCCAGAGAACATGTG
Fn1 (fibronectin)	ACACGGTTTCCCATTACGCCAT	AATGACCACTGCCAAAGCCCAA
<i>Tgfb1</i> (TGFβ)	CAACAATTCCTGGCGTTACCTTGG	GAAAGCCCTGTATTCCGTCTCCTT
<i>Tnf</i> (TNFα)	GCATGATCCGCGACGTGGAA	AGATCCATGCCGTTGGCCAG
Vcam1	TCTCTCAGGAAATGCCACCC	CACAGCCAATAGCAGCACAC

Figure S1. CG alone does not induce apoptosis in HK-2 cells. Comparison of protein expression level for molecules related to apoptosis determined by immunoblotting in HK-2 cells after stimulation with vehicles or recombinant human Ang II (rhAng II) with or without co-treatment of CG (n = 3/group). **P < 0.01 vs. control cells (CON); #P < 0.05, ##P < 0.01 vs. rhAng II-treated cells by one-way ANOVA with Newman-Keuls multiple comparison test.

Figure S2. Raw data for immunoblotting related Figure 2

pSMAD2/3 52-60 kDa

SMAD2/3

SMAD4 70 kDa

 β -actin for TGF β & SMAD4

100	
75 -	
50 ***	
37	

β-actin 43 kDa

50-60 kDa

Figure S3. Raw data for immunoblotting related Figure 3

Figure S4. Raw data for immunoblotting related Figure 4

β-actin	43 kDa

Figure S5. Raw data for immunoblotting related Figure 5

Cleaved caspase3 17-19 kDa ¹⁵⁰ ²⁰ ²⁰ ¹⁵ ²⁰ ²⁰ ¹⁵ ²⁰ ²⁰ ²⁰ ²⁰ ²¹

Figure S6. Raw data for immunoblotting related Figure 6

Figure S7

Figure S7. Raw data for immunoblotting related Figure 7

Figure S8. Raw data for immunoblotting related Figure 8