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Abstract: Jasmonic acid (JA) is an endogenous growth-regulating substance, initially identified
as a stress-related hormone in higher plants. Similarly, the exogenous application of JA also has
a regulatory effect on plants. Abiotic stress often causes large-scale plant damage. In this review, we
focus on the JA signaling pathways in response to abiotic stresses, including cold, drought, salinity,
heavy metals, and light. On the other hand, JA does not play an independent regulatory role, but
works in a complex signal network with other phytohormone signaling pathways. In this review, we
will discuss transcription factors and genes involved in the regulation of the JA signaling pathway in
response to abiotic stress. In this process, the JAZ-MYC module plays a central role in the JA signaling
pathway through integration of regulatory transcription factors and related genes. Simultaneously,
JA has synergistic and antagonistic effects with abscisic acid (ABA), ethylene (ET), salicylic acid (SA),
and other plant hormones in the process of resisting environmental stress.

Keywords: endogenous and exogenous; transcription factors and genes; signal transduction; plant
hormone; crosstalk

1. Introduction

Plants often endure biotic stress (pathogens, herbivores, or parasitic microorganisms) and abiotic
stress (cold, drought, salinity, light, or wounding) [1,2]. To survive and reproduce, plants not only
need to grow and develop but also tolerate environmental stress. There are numerous benefits of
maintaining a balance between plant growth and stress tolerance. Farmers associate abiotic stress
with considerable economic losses. Phytohormones play key roles in plant growth and development.
In addition, many signaling networks that regulate stress responses have been identified [3,4]. Plant
hormones, which are natural and non-toxic compounds, could be applied as safe and environmentally
friendly chemical control agents. Jasmonates (JAs) are derivatives of fatty acids, including key
compounds such as jasmonic acid (JA), methyl jasmonate (MeJA), and jasmonate isoleucine conjugate
(JA-Ile) [5]. The core of the JA chemical structure is 3-oxo-2-2′-cis-pentenyl-cyclopentane-1-acetic acid,
an endogenous signaling molecule involved in diverse developmental processes that was originally
considered a stress-related hormone in higher plants [6,7]. Over the last decade numerous genes and
transcription factors (TFs) involved in the JA biosynthesis and the signal transduction pathway have
been identified, including various inhibitors and activators involved in environmental signaling [8,9].
There are numerous good reviews on research on JA biosynthesis [5,10,11]. The present review avoids
repeating an introduction of JA synthesis; instead, it focuses on JA functions in signaling pathways that
mediate responses to abiotic stress. In addition, the authors review diverse phytohormones including
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abscisic acid (ABA), ethylene (ET), salicylic acid (SA), gibberellin (GA), auxin (indole-3-acetic acid,
IAA), and brassinosteroids (BR), which participate in complex signaling networks with JAs in response
to abiotic stress.

2. JA-Mediated Abiotic Stress Responses

Jasmonic acid is a plant-signaling molecule closely associated with plant resistance to abiotic
stress. In abiotic stress, JA is usually involved in physiological and molecular responses. Physiological
responses often include activation of the antioxidant system (superoxide anion radical, peroxidase,
NADPH-oxidase) [12], accumulation of amino acids (isoleucine and methionine) and soluble sugars [13],
and regulation of stomatal opening and closing [14]. Molecular responses often involve the expression of
JA-associated genes (JAZ, AOS1, AOC, LOX2, and COI1) [15,16], interactions with other plant hormones
(ABA, ET, SA, GA, IAA, and BR) [3,4], and interactions with TFs (MYC2 and bHLH148) [17,18]. Possible
mechanisms of JA in abiotic stress tolerance are shown in Figure 1. In this section, we discuss the role
of JA signaling in regulating plant responses under different environments.

Figure 1. The role of jasmonic acid (JA) in plant response to abiotic stress.

2.1. Cold Stress

Low temperature stress is a considerable limiting factor for plant growth and development, with
a major influence on the geographical distribution of plants. There are two forms of low temperature
stress: chilling and freezing stress, defined as plant injury caused by temperatures above and below 0
◦C, respectively [19,20]. Plants have evolved complex tolerance mechanisms against such stress factors,
including the expression of hormone-related genes and the accumulation of cold-induced stress-related
proteins, amino acids, and soluble sugars to stabilize the subsequent cell membrane damage [21].
Low temperature conditions can induce the expression of JA biosynthesis genes, including allene oxide
cyclase (AOC), allene oxide synthase1 (AOS1), and lipoxygenase2 (LOX2). Jasmonic acid positively
regulates downstream cold-responsive genes, which are also upregulated by the C-repeat binding
factor (CBF) transcriptional pathway to enhance cold tolerance [15]. Recent studies conducted on
bananas have shown that two MYC2 TFs are activated rapidly following the exogenous application of
MeJA in the course of cold storage. In addition, MeJA significantly enhances the expression of inducer
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of CBF expression (ICE-CBF) cold-responsive pathway genes [17]. Such findings demonstrate that
the MaMYC2 transcription factor participates in MeJA-induced chilling tolerance in banana fruit in
coordination with MaICE1. In addition, exogenous JA treatment can reduce lipoxygenase activity
and increase antioxidant synthesis to enhance cold tolerance in plants. Furthermore, Li et al. [22]
observed that the expression of CBF, late embryogenesis abundant (LEA), and dehydration-responsive
element binding (DREB1) in Zoysia japonica increased under chilling stress, along with ABA and
JA concentrations. Cao et al. [23] also found that superoxide dismutase (SOD), catalase (CAT), and
ascorbate peroxidase (APX) activities in MeJA-treated loquat fruit increased in the course of loquat
fruit storage, while lipoxygenase activity decreased (Figure 2).

Figure 2. Response mechanism of endogenous JA to abiotic stress. Note: Positive regulatory actions or
under light conditions are indicated by arrows and by lines and bars under dark conditions. Double
slashes indicate that the process cannot proceed. Salt, drought, or heavy metal stress conditions induce
oxidative stress due to elevated reactive oxygen species (ROS) generation levels. The JA produced
facilitates stress tolerance by modulating major enzymatic components (SOD and APX) of antioxidant
defense systems. In light, the secretion of extra-floral nectar (EFN) is promoted by JA and jasmonate
isoleucine conjugate (JA-Ile). Conversely, no light inhibits the secretion of EFN by JA, but not JA-Ile.
Far-red (FR) light induces phytochrome A (phyA) and activities of the JA singling pathway. SOD:
superoxide dismutase; APX: ascorbate peroxidase.

2.2. Drought Stress

Climate change is leading to global warming and more frequent and/or extreme drought events
in many important agricultural regions globally. The impact of drought stress on crops is one of
the major reasons for reduction in crop yield reduction and even crop failure, reducing yields from
many crops by more than 50% [24]. Overall, the effects of drought stress include suppressed plant
growth [25,26], reduced photosynthetic rates [27], and accelerated leaf senescence [28,29]. In addition,
drought stress can trigger oxidative reactions, induce membrane lipid accumulation, and induce
antioxidant enzyme expression [30,31]. Jasmonic acid can minimize water loss by regulating stomatal
opening and closing in Arabidopsis thaliana [32]. The concentrations of endogenous JAs increase
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rapidly following drought stress, and then return to the baseline levels if stress periods are prolonged.
In addition, numerous genes and TFs associated with drought stress are expressed following drought
stress. Jasmonate ZIM-domain proteins (JAZ) are regulators, typically repressors, in the JA signaling
pathway. Fu et al. [33] demonstrated that OsJAZ1 plays a negative regulatory role in rice drought stress
tolerance, particularly in relation to the ABA and JA signaling pathways. In addition, Seo et al. [18]
found that OsbHLH148, a basic helix–loop–helix protein, acts as a transcriptional regulator and up
regulates OsDREB1 and OsJAZ, which are involved in drought stress responses and the JA signaling
pathway, respectively. Furthermore, Ge et al. [34] reported that in a drought-tolerant Prunus armeniaca
genotype, transient JA accumulation could promote leaf senescence, prevent excessive water loss, and
improve plant survival under soil drought conditions. Conversely, the exogenous application of JAs
could alleviate drought stress associated damage in P. armeniaca. Foliar application of MeJA on soybean
leaves can enhance water stress tolerance capacity, and further analysis showed increased levels of
sugars, phenolic compounds, and flavonoids [35]. Such findings indicate that both endogenous and
exogenous JAs participate in drought stress tolerance in plants.

2.3. Salt Stress

Salt stress interferes with plant metabolism, leading to oxidative stress, malnutrition, membrane
disorders, and genotoxicity [36,37]. Both endogenous and exogenous JA can enhance plant salt stress
tolerance [38]. Pedranzani et al. [39] analyzed changes in endogenous JAs under salt stress in tomato
cultivars. According to their findings, the difference in lipid kinase activity between the two salt-tolerant
cultivars studied was associated with salt stress tolerance, and not JA synthesis. Abouelsaad et al. [40]
found that endogenous JA enhanced salt tolerance in tomato, mainly through homeostasis maintenance
among reactive oxygen species (ROS). However, other studies have reported that exogenous JA
treatments reduced salt-induced damage to various plants via increased photosynthetic rates, proline
contents, ABA levels [41], and antioxidant enzyme activity [42], or via reductions in Na+ accumulation
rates in shoots [43]. Shahzad et al. [44] observed that exogenous JA could improve Na+ exclusion in
the root by decreasing Na+ uptake, facilitating surface salt stress tolerance in two maize genotypes.
During the first phase of salt stress, JA levels increase, and could be involved indirectly in leaf growth
inhibition in salt-sensitive genotypes. Qiu et al. [45] reported that three days of exposure to exogenous
JA decreased the concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in wheat
seedlings significantly, improving the tolerance of wheat seedlings to salt stress. In addition, the
transcript levels and SOD, peroxidase, CAT, and APX activities increased significantly. Such results
indicate that JA could facilitate salt stress tolerance by enhancing the concentrations of antioxidative
compounds and antioxidant enzyme activity (Figure 2).

2.4. Heavy Metal Stress

Heavy metals pollute the environment and impair plant growth and development [46]. Both
fresh weight and photosynthetic pigment concentrations decreased in Suaeda glauca and A. thaliana
exposed to high lead (Pb), nickel (Ni), cadmium (Cd), and manganese (Mn) concentrations. Many
of these metals have no beneficial functions in plants, and may in fact be toxic to plants even at very
low levels [47]. Zhao et al. [48] compared Cd stress responses in wild-type and JA-deficient mutant
spr2 tomatoes and observed that Cd concentrations in roots and leaves increased more at higher
doses of CdCl2, particularly in spr2 plants. The results demonstrated that a lack of endogenous JA
could enhance the sensitivity of tomato seedlings to Cd. In addition, according to Sirhindi et al. [49],
the exogenous application of JA before NiCl2 stress could enhance Glycine max seeding tolerance to
Ni2+ stress. Furthermore, they revealed that JA protected the seedlings by regulating the antioxidant
machinery and protecting DNA synthesis of total proteins, while Azeem [50] revealed that exogenous
supplementation of JA alleviated the adverse effects of oxidative stress on growth, biomass production,
and protein concentrations in Ni-treated plants by further increasing antioxidant enzyme activity.
External JA supplementation could minimize CD accumulation rates in faba bean roots, shoots, and
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leaves not only by enhancing osmotic and antioxidant activity, but also by inhibiting H2O2, and
MDA accumulation [51]. Noriega et al. [52] revealed that JA inhibited lipid peroxidase activity by
activating ascorbate or glutathione antioxidant machinery. In addition, the significant increase in HO-1
antioxidant enzyme activity they observed under heavy metal stress could be regulated strictly by
ROS homeostasis. Such findings indicate that JAs regulate plant responses to heavy metal stress by
regulating their antioxidant systems (Figure 2).

2.5. Light Stress

Light is a key regulator of JA biosynthesis and signal transduction [53,54]. Radhika et al. [55]
observed that both light and JA influenced extra-floral nectar (EFN) secretion: JA decreased EFN
secretion in the dark, but induced EFN secretion under light conditions. Conversely, JA-Ile can enhance
EFN secretion under light conditions, but does not decrease EFN secretion in the dark (Figure 2).
In a JA-free hebiba mutant of Oryza sativa, JA or its precursor, 12-oxophytodienoic acid, could rescue the
development of plants grown under both dark and red light conditions. Therefore, lack of JA potentially
results in the phenotypic effects of the mutation [56]. Robson et al. [16] showed that A. thaliana mutants
with reduced JA biosynthesis and signaling levels exhibited reduced levels of responses to high
irradiance under far-red (FR) light. The results indicated that coronatine-insensitive1 (COI1), a central
component of JA signaling, influenced FR light-induced expression of transcription factor genes,
and that JA suppressed the expression. Notably, COI1-mediated degradation of JAZ1-glucuronidase
(JAZ1-GUS) in response to JA treatment required phytochrome A (phyA). Overall, the findings indicate
that the signaling activities of both phyA and JA function through the degradation of the JAZ1
protein, and that both are required in plant responses to light stress. Chen et al. [57] revealed that
treatment with exogenous MeJA enhances the interaction between FR-insensitive 219 (FIN219) and
the C terminus of cryptochrome 1 (CCT1) under blue light. Further investigations revealed that
cryptochrome1 and FIN219 have a mutually antagonistic relationship, suggesting that the relationship
between the JA signaling and blue light signaling pathways plays a key role in seedling development
and stress responses. Liu et al. [58] found that JA pretreatment reduced the adverse effects of UV-B on
photosystem II function significantly by increasing the effective photosystem II quantum yield, the
capture efficiency of excitation energy in reaction center, and the photosynthetic electron transport
rate, and by decreasing nonphotochemical quenching in wheat seedlings. The results confirm that
exogenous JA could counteract the negative effects of UV-B stress on wheat seedlings. In Nicotiana,
UV-B irradiation induces overlapping biochemical changes and the transcription of genes, including
the JA biosynthesis and signaling pathways [59]. In addition, Demkura et al. [60] concluded that UV-B:
(1) induces phenolic compound production via both JA-dependent and JA-independent pathways, and
(2) enhances sensitivity to JAs, leading to enhanced expression of the wound-response gene, trypsin
proteinase inhibitor.

2.6. Other Stress Factors

Ozone (O3), a major photochemical oxidant, causes severe damage to plants. After ozone treatment,
endogenous JA concentrations increase significantly in wild-type A. thaliana. However, exogenous
MeJA can inhibit O3-induced programmed cell death. A novel O3-sensitive and JA-insensitive
A. thaliana mutant, O3-sensitive and jasmonate-insensitive 1 (oji1), has been isolated previously. JA is
typically a protective compound under stress conditions. Higher O3 concentrations induce high ET
emission levels in oji1 [61,62]. Grantz et al. [63] reported that MeJA acts as an antiozonant in Pima
cotton (Gossypium barbadense) and interacts synergistically with ET at very high O3 concentrations
(685 ppb). Conversely, this is accompanied by antagonism to ET. In addition, Kaya et al. [64] found that
Nicotiana tabacum treated with 45 µM JA had greater MDA and pigment (chlorophyll and carotenoids)
concentrations, antioxidant activity (catalase, ascorbate peroxidase, glutathione S-transferase and
glutathione reductase), and phytohormone (ABA and IAA) levels, but less herbicide residue (imazapic).
Consequently, they proposed that exogenous JA regulates stress responses in tobacco plants exposed
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to herbicides. The plant circadian clock enables plants to measure day length and adapt to changes in
circadian rhythm. Furthermore, circadian stress influences ROS- and JA-associated gene expression.
Nitschke et al. [65] proposed that circadian stress activated the JA pathway in cytokinin-deficient
A. thaliana plants. Notably, the induction of MYC2 and JAZ1 has also been detected in clock mutants
cca1-1, lhy-11, and elf3-9, indicating that strong circadian stress responses are commonly associated
with activated JA pathways.

In summary, both endogenous and exogenous JA participate in plant responses to abiotic stress.
The JA regulatory mechanisms in response to cold, drought, salinity, heavy metal, light, O3, imazapic,
and circadian stress are listed in Table 1.

Table 1. Regulation mechanism of endogenous and exogenous JAs in response to abiotic stress in plants.

Type of Stress Plant Species JA Regulation Mechanism Reference

Freezing Arabidopsis thaliana Endogenous

Positively regulated the C-repeat
binding factor (CBF) transcriptional
pathway to up-regulate downstream

cold-responsive genes

[15]

Chilling Musa acuminata Endogenous

Induced MaMYC2 and inducer of CBF
expression (ICE-CBF) cold-responsive
pathway gene expression, including

MaCBF1, MaCBF2, MaCOR1, MaKIN2,
MaRD2, and MaRD5

[17]

Chilling and
freezing Zoysia japonica Endogenous Up-regulated ZjCBF, ZjDREB1, and

ZjLEA expression [22]

Chilling Eriobotrya japonica Exogenous
(10 µM)

Enhanced antioxidant enzyme
activity and higher

unsaturated/saturated fatty acid ratio
[23]

Drought Arabidopsis thaliana Endogenous Produced higher 12-OPDA levels and
reduced stomatal aperture [32]

Drought Oryza sativa. Endogenous
OsJAZ1 was a negative regulator via
the abscisic acid (ABA)-dependent

and JA-dependent pathways.
[33]

Drought Oryza sativa. Endogenous

OsbHLH148 acted on the JA signaling
pathway with OsJAZ1 and OsCOI1,

constituting an
OsbHLH148–OsJAZ–OsCOI1

signaling module

[18]

Drought Prunus armeniaca Exogenous
(50 µM)

Increased malondialdehyde (MDA)
levels and promoted leaf senescence [34]

Drought Glycine max Exogenous
(20 µM)

Increased cell wall fractionation,
saturated and unsaturated fatty acid,
flavonoid, phenolic acid, and sugar

fraction content

[35]

Salt Lycopersicon
esculentum Endogenous

Increased lipoxygenase (LOX),
AOS-mRNA, and Pin2-mRNA

accumulation
[39]

Salt Solanum
lycopersicum Endogenous Activated both enzymatic and

non-enzymatic ROS antioxidants [40]

Salt Zea mays Exogenous
(25 µM)

Improved Na+ exclusion by
decreasing Na+ uptake [44]

Salt Triticum aestivum Exogenous
(2 mM)

Decreased the concentration of MDA
and H2O2, and increased the

transcript levels and activities of SOD,
POD, catalase (CAT), and APX

[45]
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Table 1. Cont.

Type of Stress Plant Species JA Regulation Mechanism Reference

Heavy metal
(cadmium)

Lycopersicon
esculentum Endogenous

JA played a positive regulatory role in
tomato plant response to Cd stress by

regulating the antioxidant system
[48]

Heavy metal
(nickel) Glycine max Exogenous

(1 µM and 1 nM)

Managed the antioxidant machinery
and protected the DNA synthesis of
total proteins to mitigate Ni stress

[49]

Heavy metal
(nickel) Zea mays Exogenous

(10 µM)

JA alleviated the negative impact of
Ni-treated plants by improving the

activity of antioxidant enzymes SOD,
CAT, APX, GPX, and GR

[50]

Heavy metal
(cadmium) Vicia faba Exogenous

(10 µM)

Inhibited the accumulation of Cd,
H2O2, and MDA, and enhanced

osmolyte and antioxidant activities
that reduce oxidative stress

[59]

Heavy metal
(cadmium) Glycine max Exogenous

(20 µM)

Augmented the activities of
antioxidant enzymes CAT and SOD to

Cd treatment
[51]

Light and
darkness Phaseolus lunatus Endogenous

JA-Ile enhanced EFN secretion under
light conditions, yet did not reduce

EFN secretion in the dark
[55]

Light and
darkness Oryza sativa Endogenous

JA and phytochrome A signaling
were integrated through degradation

of the JAZ1 protein
[56]

Far-red Arabidopsis thaliana Exogenous
(50 µM)

Interaction of the photoreceptor CRY1
and the JA-conjugating enzyme

FR-insensitive219/JAR1
[57]

UV-B Triticum aestivum Exogenous (1 and
2.5 mM)

Increased reaction centers’ excitation
energy capture efficiency, effective

PSII, and electron transport rate
(ETR), and decreased NPQ

[58]

Ozone stress Arabidopsis thaliana Exogenous
(100 µM)

Inhibited the spread of programmed
cell death [62]

Imazapic stress Nicotiana tabacum Exogenous
(45 µM)

Increased antioxidant activity and
phytohormone level and decreased

MDA content
[64]

Circadian
stress Arabidopsis thaliana Endogenous Reduced the cell death phenotype [65]

3. Interactions between JA and Plant Hormone Pathways under Abiotic Stresses

Interactions among plant hormone signals are at the core of plant responses to biotic and abiotic
stress factors. JA does not have an independent regulatory role but works within a complex signal
network with other phytohormone signaling pathways, such as those of ABA [66,67], ET [68], SA [69],
GA [70], IAA [71], and BR [72]. Consensus has been reached across numerous studies on plant
responses to biotic and abiotic stress factors based on (1) the convergence of signaling pathways
involved in transcription of multiple stimulus responses that are under the control of overlapping
genes; and (2) the hormonal pathways that interact through stress responses to regulate different
environmental stresses [73]. In response to dehydration stress, diverse phytohormones (ABA, JA, SA,
GA, IAA, and ET) acted jointly to upregulate 859 genes identified using whole-genome transcriptome
analyses in A. thaliana significantly [74]. An overview of crosstalk between JA and other major plant
hormones for abiotic stress tolerance is presented in Figure 3. The following discussion explores recent
studies on the mechanisms by which JAs and other plant hormones respond to abiotic stress.
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Figure 3. Schematic diagram representing crosstalk of JA with other plant hormone signaling pathways.
Note: Positive and negative regulatory actions are indicated by arrows and lines with bars, respectively.
MYC2 is the major component involved in interactions between JA and gibberellin (GA). DELLAs
interact with JAZ repressors, relieving MYC2 from JAZ repression, and facilitate JA-mediated defense
responses by the activation of MYC2. MYC2 is also positively regulated by ABA. Conversely, MYC2
inhibits salicylic acid (SA) regulation of abiotic stress response genes. The JAZ inhibition of EIN
mediates JA and ET signaling synergy in plant resistance, whereas the reciprocal counteraction between
MYC2 and EIN mediates JA and ethylene (ET) signaling antagonism.

3.1. Interactions between JA and ABA Pathways in Response to Abiotic Stresses

As a major phytohormone regulating abiotic stress responses, ABA interacts with the JA signaling
pathway to induce plant physiological responses to mitigate the effects of various abiotic stress
factors [75]. The findings of several studies suggest that JA and ABA signal transduction pathways
exhibit both synergistic and antagonistic regulation characteristics [76,77]. JA interacts with ABA to
tolerate chilling stress [78]. Yoshikawa et al. [79] demonstrated that JAs, ABA, and polyamines could
be associated with low temperature stress responses in apple. Many key genes, such as CBF, LEA, and
DREB, have been shown to respond to low temperature stress in the ABA and JA signal transduction
pathways. Li et al. [22] reported that low temperature increased JA and ABA concentrations, while
also inducing the upregulation of ZjCBF, ZjLEA, and ZjDREB1 in Z. japonica leaves.

The bHLH transcription factor, MYC2, a major regulator of the core JA signaling mechanism,
participates in the ABA signaling pathway in response to drought stress [80,81]. The same transcription
factor also regulates AOC1, a key JA biosynthesis gene, at signal intersections of the ABA/JA signaling
pathways [82,83]. OsbHLH148 transcript levels increased rapidly following treatment with MeJA
or ABA, and abiotic stress factors including drought, salinity, and cold stress. Expression profiling
analyses of transgenic versus wild-type rice have identified OsDREB and OsJAZ genes that are
upregulated by OsbHLH148 over-expression [18]. Proline accumulation under water stress appears to
be an ABA-independent response, as both JA-deficient (jar1-1) and JA-insensitive (jai1) A. thaliana lines
accumulate similar levels [84]. This indicates that the JA and ABA signaling pathways coordinate to
regulate each other’s responses to drought, salinity, cold, and water stress. Octadecanoid-responsive
AP2/ERF-domain transcription factor 47 (ORA47) acts as a gene target in ABA and JA biosynthesis
when A. thaliana is subjected to water stress [85].

Many studies have reported that ABA and JA are involved in salt stress responses in plants.
Treatment with JA further increased ABA concentrations in rice under salt stress. In addition,
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endogenous GA concentrations increased following treatment with JA [86]. Furthermore, according
to Kim et al. [87], applying JA after NaCl treatment, rather than before, could increase endogenous
ABA concentrations. Wang et al. [88] reported that during plant growth, JA and ABA concentrations
generally increased under salt stress, while SA and IAA concentrations declined. Brossa et al. [89]
proposed that the interaction of JA and ABA signaling during the regulation of antioxidant status is
responsible for acclimating plants to osmotic stress.

3.2. Interactions between JA and Ethylene Pathways under Abiotic Stresses

JAs and ET play regulate plant defense against cold, drought [90], and salinity stress [91] through
coordination and antagonism. Ethylene response factors (ERFs) conferring abiotic stress tolerance are
induced not only by ethylene, but also by the JA signaling pathway. Therefore, they could facilitate
crosstalk among abiotic stress response pathways [67]. The relationship between AP2/ERF TFs and the
JA signaling pathway was first identified in Catharanthus roseus [92]. Lorenzo et al. [93] reported that
ERF1 acting downstream of the ET and JA pathways could be central to the regulation of plant defensive
responses. Pre et al. [94] found that the AP2/ERF-domain transcription factor ORA59 in A. thaliana was
an essential integrator of the JA and ET signal transduction pathways, providing novel insights into the
molecular mechanisms underlying in the crosstalk between JA and ET. In soybean, GmERF7 expression
decreased under cold treatment, although the expression of the gene was induced by drought, salt,
or treatment with MeJA, ET, or ABA. [90]. In C. roseus, the octadecanoid-derivative responsive
catharanthus AP2-domain protein (ORCA), inducible by JAs, belongs to the AP2/ERF-domain family
and links plant salinity stress responses to changes in metabolism [91].

In A. thaliana, O3-induced cell death is regulated by both the JA and ET signal transduction pathways.
Grantz et al. [63] reported that at very high O3 concentrations, synergistic O3 and MeJA interaction
took place in Pima cotton. However, the plant responses to O3 were not mediated by the ET and MeJA
signaling pathways. Stress caused by excess or inadequate nutrients is also regulated by both the JA and
the ET signaling pathways. Although selenium (Se) is a vital plant nutrient, it can be toxic when present
in excess concentrations. Recent studies have found that JA and ET synergistically regulate Se-induced
stress responses [95]. JA and ET, therefore, act synergistically in plant responses to abiotic stress.

3.3. The Interactions between JA and SA Pathways under Abiotic Stresses

As an endogenous growth regulator, SA regulates plant physiological processes. It also plays
an important role in the plant response to adverse environmental conditions such as cold [96–98],
drought [99], salinity [43] and light [100]. Górnik et al. [96] reported that treatment of seeds with SA
or JA could improve the resistance of seedlings to chilling, while Ilyas et al. [97] demonstrated that
exogenous application of SA and JA could enhance drought stress tolerance in wheat, although JA was
more effective than SA. However, the combined application of SA and JA did not significantly influence
plant growth. Sayyari et al. [98] found that hydrophilic total antioxidant activity in pomegranates
fruits increased following treatment with both MeJA and methyl salicylate (MeSa), while there were
no significant changes in lipophilic total antioxidant activity. The findings suggest that both MeJa and
MeSa have potential postharvest applications in reducing chilling injury. The mechanism by which JA
and SA protect against salt stress is via the induction of protein-coding gene expression [43]. In addition,
according to Farhangi-Abriz et al. [101] exogenous SA and JA decreased the concentration of Na+ in
soybean under different salt stress levels, although there was no significant effect on the concentrations
of Na+ in the absence of salt stress. Therefore, JA has a greater effect on Na+ reduction than SA.
The SA and JA signaling pathways share a key regulator, glutaredoxin GRX480, which mediates redox
regulation of proteins because of their capacity to catalyze disulfide transitions [102]. Research on
Nicotiana attenuata found that mitogen-activated protein kinase 4 (MAPK4) is a negative regulator
in the SA signaling pathway but is a positive regulator in the JA signaling pathway in response to
light stress [100]. Coordinated regulation between JA and SA signaling pathways, therefore, involves
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multiple factors, including GRX480 or MAPK4. In addition, exogenous application of SA and JA can
enhance abiotic stress responses.

3.4. Interactions between JA and other Plant Hormone Pathways under Abiotic Stress

Numerous studies have demonstrated that plant growth and development are regulated in
a coordinated manner by the JA and IAA signal transduction pathways. However, no study has
explored coordinated abiotic stress responses involving JA and IAA. Similarly, plant growth and
defense are regulated through synergistic and antagonistic interactions between the JA and GA
pathways. However, plant stress responses are often at the expense of growth inhibition [103]. In the
presence of JA, JAZs are degraded to release DELLAs, plant growth repressors whose degradation is
promoted by GA and which confer plants with elevated resistance to necrotrophs via potentiating JA
signaling [104]. Similarly, the JA and ABA signaling pathways play an antagonistic role in plant growth
and development, while operating synergistically in response to environmental stress. During plant
responses to salt stress, ABA and JA typically increase, whereas IAA and SA decline. The Gretchen
Hagen 3 (ZmGH3) gene in Zea mays is responsive to several abiotic stress factors (salinity, drought,
and Cd) and major stress-related hormones (ABA, SA, and JA) [88]. The MYC2 TF of JAZs are key
intermediates in coordinated regulation activities taking place via the JA and ABA signaling pathways,
and they influence plant growth and defense activities [73]. JA inhibits overall plant growth, while BR
promotes above ground growth. Coordination between the JA and BR signal transduction pathways is
also involved in the balance between plant growth and defense. The crosstalk of JA with other plant
hormones under environmental stress conditions is achieved primarily by regulating plant growth.

4. Conclusions

The mechanisms of action of JA are different under different environmental stress factors due
to the diversity of plant hormone signals and interactions among different signals. Numerous genes
(JAZ, AOS1, AOC, LOX2, and COI1) and TFs (MYC2 and bHLH148) are involved in the core JA
signaling pathway as activators or repressors, mediating responses to environmental stress signals.
As illustrated in Figure 3, the JAZ-MYC module plays a central role in the JA signaling pathway
through the integration of regulatory TFs and associated genes. However, research on plant perception
of different abiotic stress signals and the initiation of the JA response has not been systematic.

JAs function synergistically and antagonistically with ABA, ET, SA, and other plant hormones to
tolerate environmental stress. The process is often accompanied by the regulation of plant growth and
development hormones [103,105]. Further systematic research on the mechanisms of interaction of JA
signaling with other plant hormones in response to abiotic stress is required.

In recent years, advancements in genomics, transcriptomics, and proteomics have provided more
clues on such complex gene and protein interaction networks. Such tools also facilitate the study of the
regulatory mechanisms of plant hormones exclusively, and of crosstalk under different environmental
stress factors. However, plant hormone signaling networks are complex and unpredictable, particularly
under complex and volatile environments. Because of the large quantity of data and the complexity of
plant hormone systems, JA regulation under environmental stress is yet to be clarified. Understanding
the signal transduction mechanism of JA under different environmental stress factors could facilitate
the improvement of plant tolerance to environmental stress in the future, with potential improvements
in plant survival and crop yield.
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HO-1 Hemeoxygenase-1
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PSII Photosystem II
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