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Abstract: Skeletal muscle and the nervous system depend on efficient protein quality control, and they
express chaperones and cochaperones at high levels to maintain protein homeostasis. Mutations in
many of these proteins cause neuromuscular diseases, myopathies, and hereditary motor and
sensorimotor neuropathies. In this review, we cover mutations in DNAJB6, DNAJB2, αB-crystallin
(CRYAB, HSPB5), HSPB1, HSPB3, HSPB8, and BAG3, and discuss the molecular mechanisms by
which they cause neuromuscular disease. In addition, previously unpublished results are presented,
showing downstream effects of BAG3 p.P209L on DNAJB6 turnover and localization.
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1. Introduction

Maintaining protein homeostasis is essential for cellular functioning. This is demonstrated by
the diversity of the molecular machinery evolved to maintain the protein homeostasis and by the
pathologies associated with dysfunctional protein quality control (PQC).

Chaperones, together with their essential cofactors known as cochaperones, assist their client
proteins in attaining their native conformation, prevent unfolded or misfolded proteins from
aggregation, and target damaged or superfluous proteins to degradative pathways [1]. Efficient PQC
requires the interplay of the different chaperone systems [2,3]. Some of these, e.g., the HSPA (Hsp70)
family, consume ATP for client-binding cycles, whereas others, such as the small heat shock proteins
(HSPB), are energy-independent [1,4]. Cochaperones such as J-domain proteins (JDP, Hsp40) and BAG
proteins assist chaperones in their functions, mediate interactions of the different chaperone families,
and affect the fate of the client proteins [1,2].

The chaperone systems are tightly connected to the protein turnover pathways,
the ubiquitin–proteasome system (UPS), and the autophagy–lysosome system. In UPS, the principal
turnover pathway for soluble proteins, target proteins are tagged with polyubiquitin chains and
delivered to proteasomes for degradation; both of these steps are mediated by chaperones and
cochaperones [5]. The three main autophagic pathways—macroautophagy, chaperone-mediated
autophagy (CMA), and (endosomal) microautophagy—all involving chaperones, use lysosomes for the
degradation of their cargoes [1,6]. In macroautophagy, the cargo is sequestered by autophagosomes,
which subsequently fuse with lysosomes to deliver their contents. In addition to soluble proteins,
this pathway can degrade more complex cargo such as protein aggregates or organelles [6]. In CMA
and microautophagy, client proteins are delivered directly to lysosomes or endosomes [6].
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The neuromuscular system, which is responsible for our movements, is largely comprised of
post-mitotic, terminally differentiated cells, namely neurons and muscle fibers. These cells have to stay
functional through the lifetime of the organism and hence rely on efficient PQC. In muscles, additional
challenges are posed by the crowded environment and mechanical, oxidative, and thermal stress, which
necessitate the expression of chaperones at high levels [7,8]. Similarly, the long axons of motor neurons
are notorious for their susceptibility to damage. Hence, it is not surprising that mutations affecting
the PQC system can lead to neuromuscular disease. Indeed, the current version of the gene table
of neuromuscular disorders [9] contains at least 15 chaperones or cochaperones (Table 1)—although
what can be counted as a chaperone is to some extent a matter of definition. In this review, we will
focus on the intimately interconnected network of chaperones and cochaperones presented in Figure 1
and the surprising diversity of pathomechanims by which mutations affecting these proteins cause
neuromuscular disease.

Table 1. Chaperone and cochaperone genes currently known to underlie neuromuscular disorders.

Gene Symbol Neuromuscular Disorder(s) (MIM1 Number When Available)

BAG3 MFM6 (#612954); CMD1HH (#613881); CMT2
CCT5 Hereditary sensory neuropathy with spastic paraplegia (#256840)

CRYAB MFM2 (#608810); CMD1II (#615184); Fatal infantile hypertonic myofibrillar myopathy (#613869)
DNAJB2 DSMA5 (#614881); CMT2
DNAJB6 LGMD D1 DNAJB6-related (#603511); Distal myopathy with rimmed vacuoles
HSPB1 dHMN2B (#608634); CMT2F (#606595)
HSPB3 dHMN2C (#613376); CMT2; (neuro)myopathy
HSPB8 dHMN2A (#158590); CMT2L (#608673); Neuromyopathy with rimmed vacuoles
HSPD1 Spastic paraplegia 13, autosomal dominant (#605280)
SACS Spastic ataxia, Charlevoix–Saguenay type (#270550)
SIL1 Marinesco–Sjögren syndrome (#248800)

STUB1 Spinocerebellar ataxia, autosomal recessive 16 (#615768)
TOR1A Torsion dystonia, early onset (#128100)

VCP Scapuloperoneal muscular dystrophy and dropped head syndrome;
Distal myopathy; IBMPFD (# 167320); ALS14 (#613954); CMT2Y (#616687)

VMA21 X-linked myopathy with excessive autophagy (XMEA) (#310440)
1 MIM, Mendelian Inheritance in Man (www.omim.org).
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2. J-Domain Proteins

The J-domain proteins (JDPs), also known as the J-protein or the Hsp40 family, are cochaperones
of the ubiquitous HSPA (Hsp70) chaperones [21,22]. The human genome encodes 50 members of
the family [23], and these are traditionally divided to class I (DNAJA), class II (DNAJB), and class III
(DNAJC) based on their domain structure [22]. The defining feature of JDPs is the J domain (JD), which
interacts with the HSPA chaperones through the conserved His–Pro–Asp (HPD) motif [22].

The J domain mediates the canonical function of JDPs—the stimulation of HSPA chaperone
activity. HSPAs interact with their clients with alternating low-affinity (ATP-bound) and high-affinity
(ADP-bound) states [21]. This HSPA cycle requires JDPs and nucleotide exchange factors (NEFs) as
essential cofactors [21]: JDPs stimulate the otherwise very low ATPase activity of HSPAs, thereby
promoting the high-affinity client binding. After ATP hydrolysis, NEFs are needed to stimulate the
exchange of ADP to ATP and client release [21].

In the DNAJA and DNAJB classes, the N-terminal J domain is followed by a
glycine/phenylalanine-rich (G/F) region, which may play different functional roles in different
JDPs [22,24]. Based on data from diverse family members, the G/F region may modulate HSPA
client binding [25], participate in some client interactions [26], and regulate the HSPA chaperone
cycle [27,28].

JDPs of the DNAJA and DNAJB classes differ in the organization of C-terminal parts, which
contain the principal client-binding domains [21,29]. DNAJAs harbor a double β barrel domain with a
zinc-finger motif, whereas DNAJBs lack the zinc finger and show more variability in the C-terminal
domain structure [21,29]. Some members of both classes also contain a C-terminal dimerization
domain [21,29]. The DNAJC class—a trash bin for all the JDPs lacking the G/F region and actually the
largest class—is structurally and functionally divergent and includes some JDPs with highly specialized
functions [21,22,29].

Besides stimulating HSPA ATPase activity, most JDPs themselves recognize and bind non-native
proteins; then, they present them to HSPAs [21,29]. In this regard, the diversity of JDPs is thought to
provide the HSPA machinery with spatial and functional specificity [21,22]. For example, JDPs do play
a role in the triage “decisions” between unfolding and different degradation pathways [1,21].

Similar to the small heat shock proteins discussed below, individual JDPs may have the ability to
utilize different binding and action modes, some of which can be HSPA-independent, allowing them
to efficiently deal with different types of clients [21,30,31]. The client-binding repertoire of JDPs is
further expanded by the recently discovered interclass dimerization between class I and II JDPs, which
is utilized in HSPA-mediated protein disaggregation [32,33].

The gene table of neuromuscular disorders currently lists three JDPs as disease genes (Table 1).
Mutations in DNAJB6 and DNAJB2 cause myopathy and sensorimotor neuropathy, respectively.
These cochaperones, belonging to a subfamily of DNAJBs highly efficient in suppressing protein
aggregation [30], will be discussed in more detail below. Spastic ataxia of the Charlevoix–Saguenay
type results from recessive mutations in sacsin (SACS a.k.a. DNAJC29), which is a large JDP with
chaperone and cochaperone activities [34–36].

New JDPs may soon be joining the above-mentioned proteins in the neuromuscular gene table.
DNAJB5 was recently identified as a candidate gene for hereditary myoclonus and progressive distal
muscular atrophy [37], but its pathogenic role awaits confirmation. DNAJC7, on the other hand,
is emerging as a candidate gene for amyotrophic lateral sclerosis (ALS) [38].

2.1. DNAJB6

The JDP cochaperone DNAJB6, previously known as MRJ or “mammalian relative of DnaJ” [39],
exists as two alternatively spliced isoforms differing in their C-terminal parts—DNAJB6a or DNAJB6(L)
(326 aa, 36 kDa) and DNAJB6b or DNAJB6(S) (241 aa, 27 kDa) (Figure 2) [40,41]. The part of the
protein shared by both isoforms harbors the N-terminal J domain, the G/F region containing most of
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disease mutations (see below), and a serine/threonine-rich (S/T) region mediating interactions with
client proteins [30,42].
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Figure 2. Structure of DNAJB6 and mutations. (A) A schematic view of the DNAJB6 protein, with the
various domains, and the alternatively spliced C-terminal parts of the “a” and “b” isoforms indicated.
The inset shows the sequence of the glycine/phenylalanine-rich (G/F) domain, with the α5 helix and
myopathy-causing mutations (pink arrows). (B) Protein structure of the J (orange) and G/F (green)
domains, with residues harboring disease mutations shown. Structure from Protein Data Bank ID
6U3R [28].

The short isoform DNAJB6b exhibits both cytosolic and nuclear localization, and it has been shown
to accumulate to nuclei upon heat shock and hypoxia [11,40,43–46]. It exists as polydisperse oligomers
comprising tens of subunits [28,30,47,48]. The long isoform DNAJB6a contains a nuclear localization
signal in its unique C-terminal domain, and it was for long considered exclusively intranuclear [40,42].
However, recently, its localization to the nuclear envelope and the endoplasmic reticulum (ER) was
discovered [41].

DNAJB6 is widely expressed; it is present at variable levels in most if not all human and murine
tissues [11,39,41]. DNAJB6b shows highest expression in the central nervous system (CNS) and seems
to be the predominant isoform in most tissues [11,39,41]. In both human and murine heart, DNAJB6a
was reported to be the major isoform and expressed on a high level [41]. Data regarding skeletal
muscle are variable: while the Western blot results of Ding et al. indicated a clear predominance of
DNAJB6a in human and murine muscles [41], those of Bengoechea et al. showed an isoform ratio
of approximately 1:1 in human samples [49]. In any case, the overall expression level of DNAJB6 in
skeletal muscle is rather low, which is interesting considering the role of DNAJB6 in myopathy [11,41].

2.1.1. Structure of DNAJB6b

Although several 3D structures of J domains from different JDPs have been solved, no structural
information for DNAJB6 was available until recently. In 2018, Söderberg et al. published molecular
models of monomeric, dimeric, and oligomeric DNAJB6b based on information obtained from
crosslinking, small-angle X-ray scattering, and electron microscopy (EM) experiments [48]. The dimer
model featured a client-binding groove formed by the S/T-rich regions of the two monomers [48].

Very recently, a solution structure for DNAJB6b was solved by Karamanos and colleagues who
used NMR to study full-length DNAJB6b and a ∆ST-DNAJB6b construct lacking the S/T-rich region,
revealing important aspects of the structure–function relationships of DNAJB6 [28].

First, while the G/F region is highly flexible, a part of it forms a stable helix (α5) that
interacts with the J domain, regulating its accessibility to HSPA [28]. This helix contains an
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aspartate–isoleucine/valine–phenylalanine (DI/VF or DIF) motif, mutations in which were previously
shown to confer toxicity to E. coli DnaJ [27,28].

Second, DNAJB6b oligomers form through the C-terminal part of the C-terminal domain (CTD)
and not the S/T-rich region as previously thought [28,30]. The dramatic shift of the equilibrium toward
monomers seen with deletion of the S/T-rich region [28,30] was suggested to reflect a role for this
region in oligomer nucleation [28]. The deletion of the 10 C-terminal amino acid residues, specific to
the DNAJB6b isoform, totally abolished oligomerization [28]. An interesting implication is that the
oligomeric organization of DNAJB6a could be radically different. It is of note that while dimerization of
DNAJB6b has been suggested [48,50], the NMR structure did not provide further evidence for this [28].

Third, DNAJB6b alternates between open and closed conformations due to transient JD–CTD
interactions [28], which were also observed in cross-linking experiments [48]. Based on their findings,
Karamanos et al. proposed a DNAJ–HSPA cycle model where the autoinhibitory interaction of the
α5 helix to JD is released upon client binding, allowing the binding of HSPA to the JD. After ATP
hydrolysis, the α5 helix displaces HSPA, releasing it from DNAJ [28].

2.1.2. Functions of DNAJB6

Although functional studies have concentrated on DNAJB6b, both DNAJB6 isoforms have
been implicated in a wide range of cellular functions. We will here focus on the ones relevant for
neuromuscular disease.

Cochaperone Function

DNAJB6b has been shown to bind and stimulate the constitutively expressed family member
HSPA8 (Hsc70, Hsp73) [11,43] and physically interact with HSPA6 [51], but its role(s) as a cochaperone
are still incompletely understood. The failure of DNAJB6b to support the recovery of luciferase activity
after heat shock suggests that it supports degradation rather than refolding [51].

The association of DNAJB6 with BAG3 and HSPB8 [2,14] links it to the chaperone-assisted
selective autophagy (CASA, which is discussed in detail below) [14], but its possible role in this
degradative pathway remains uncharacterized. Interactions with other BAG proteins in addition to
BAG3 [2] are compatible with the idea that DNAJB6 has cochaperone functions related to multiple
pathways. Some experimental evidence indicates that DNAJB6 may promote proteasomal degradation
of clients [30,52], and this is supported by its interaction with the proteasome subunit PSMD2 [2].

Antiaggregation and Cytoprotection

DNAJB6 belongs to a DNAJB subfamily characterized by potent antiaggregation activity and
it is, together with its close homolog DNAJB8, probably the most efficient of human JDPs in this
respect [30]. Consequently, it has been suggested to protect cells from the aggregation of protein
fragments generated in catabolic processes [53].

The best-characterized clients of DNAJB6b are polyglutamine (polyQ)-containing proteins and
peptides, and amyloid-β42 (Aβ42), whose amyloid aggregation DNAJB6b efficiently suppresses
in vitro and in vivo [11,30,47,50,53–55]. This antiaggregation activity is an intrinsic property of
DNAJB6b, which is independent of HSPA [30,47,53,55]. The minor J-domain-dependent activity
on polyQ-huntingtin seen in cultured cells was thought to reflect the HSPA-mediated proteasomal
turnover of the client [30].

Hageman and colleagues initially identified the antiaggregation activity to depend on the S/T
region (then called “SSF-SST”) [30]. The critical role of this region on polyQ and Aβ42 antiaggregation
has been confirmed [53,56]. Specifically, the hydroxyl side chains of the conserved Ser/Thr residues
are thought to inhibit aggregate nucleation by forming competing hydrogen bonds [56]. Consistently,
DNAJB6b inhibits efficiently the primary and secondary nucleation of amyloid but is less efficient
against the growth of existing aggregates [47,50,53]. The anti-amyloid activity is also evident in yeast,
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where DNAJB6b was shown to inhibit polyQ toxicity and cure prions in a manner independent of
Hsp70 but dependent on the S/T region [57].

DNAJB6b possesses antiaggregation activity also toward other clients, and this depends at least
partially on mechanisms distinct from S/T-dependent anti-amyloid activity. DNAJB6b has been shown
to inhibit prion-like aggregation of TDP-43 (TARDBP, transactive response DNA binding protein
43 kDa) to nuclear stress bodies upon heat shock in a partially J-domain-dependent manner [58].
Along the same lines, overexpression of the Drosophila DNAJB6 ortholog dMRJ suppressed cytoplasmic
prion-like aggregation of mutant Hrb98DE, which is a Drosophila ortholog of human hnRNPAs [59].

Similar to several other cytosolic DNAJs, DNAJB6b was shown to reduce both the aggregation
and steady-state levels of parkin p.C289G mutant in a cell model [31,60]. While some of this activity
seemed to be HSPA-independent, as demonstrated by HSPA1 knockdown and pharmacological HSPA
inhibition, the full effect was disrupted by J-domain inactivation or deletion [31,60]. Using DNAJB8,
the effect was also demonstrated to be independent of the S/T region, indicating a mechanism totally
distinct from polyQ antiaggregation [31].

The antiaggregation effect of DNAJB6b on α-synuclein in cells and in vitro was shown to be HSPA-
and JD-dependent and largely independent of the hydroxyl groups of the S/T region [61]. Very recently,
further studies confirmed the increased susceptibility of DNAJB6-deficient cells to seeded α-synuclein
aggregation and suggested that DNAJB6 promotes proteasomal turnover of α-synuclein [52].

It is of note that while DNAJB6b efficiently prevents aggregate formation, it is not able to
dissolve existing polyQ aggregates in cultured cells [30]. This is in line with the fact that the
DNAJB6-like subfamily does not form DNAJA–DNAJB interclass dimers involved in HSPA-mediated
disaggregation [33].

The antiaggregation activity of DNAJB6b toward several clients, many of which are clinically
interesting, is reflected in cytoprotective effects observed in vivo. Brain-specific DNAJB6b
overexpression inhibits inclusion formation, delays disease, and improves motor function in a
mouse model of Huntington’s disease [53]. Likewise, in Drosophila, the neuronal overexpression of
dMRJ or human DNAJB6b protects from polyQ-induced cytotoxicity [54,62] and, remarkably, astrocytic
DNAJB6b expression also provided non-cell-autonomous protection against neuronally expressed
polyQ [62].

DNAJB6b may protect cells against polyQ toxicity independently of its antiaggregation capacity,
as some studies have dissociated cytoprotection from aggregate formation [11,54,63]. This could
indicate that the co-aggregation of DNAJB6b modifies the aggregate structure or reflect a decreased
abundance of toxic soluble preamyloid oligomers [54,63]. As suggested by Li et al. [64], a cytoprotective
effect could be mediated by myeloid leukemia factors (MLF1 and MLF2), which have been shown to
interact with DNAJB6 [2,64,65] and to modify the structure and toxicity of polyQ aggregates [66,67].
Notably, in Drosophila, the complex of MLF and DnaJ-1 plays a role in transcriptional regulation [65,68],
suggesting that also in mammals, the functions of MLF1/2 with DNAJB6 could be diverse.

Cytoskeletal Maintenance

The interaction of DNAJB6b with keratin 18 (KRT18), and defects of the keratin cytoskeleton
associated with DNAJB6b overexpression or deficiency have indicated that DNAJB6b plays a role in
the maintenance of the keratin filaments [43,44]. DNAJB6 was proposed to mediate the proteasomal
turnover of keratin [44], but its function could also be related to cycling of keratin subunits.

In skeletal muscle, the major intermediate filament (IF) is desmin, which attaches adjacent
myofibrils at the Z-disc level and links them to the sarcolemma, mitochondria, and myonuclei [69].
Keratins 18 and 19 seem to assemble with desmin to the same IF networks, where their amount
is clearly lower yet functionally significant [70,71]. The localization of DNAJB6 to Z-discs [14,49],
together with the myofibrillar pathology resulting from both desmin and DNAJB6 mutations [72,73],
is compatible with a role related to desmin or keratin filaments in muscle. However, an interaction
with DNAJB6b and desmin was not seen in two-hybrid and cosedimentation studies [43]. Kedia and
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colleagues recently demonstrated that desmin contains amyloidogenic regions, and its aggregation
to cytotoxic amyloid is promoted by desminopathy mutations [74]. In the light of the anti-amyloid
function of DNAJB6b discussed above, an interesting possibility is that DNAJB6b serves to inhibit the
seeding of desmin amyloids in the Z-disc.

Whereas DNAJB6b is associated with the IF cytoskeleton, recent research has demonstrated for
DNAJB6a a role in microtubule organization during mitosis [75,76].

DNAJB6a in ER Stress Protection

An unexpected role in the ER was recently demonstrated for DNAJB6a [41]. In addition to the
known intranuclear localization, Ding and colleagues saw perinuclear DNAJB6a-GFP localization
in zebrafish heart and detected endogenous DNAJB6 at the nuclear envelope in murine heart and
cultured cardiomyocytes [41]. In H9c2 cells, ER stress induced by tunicamycin promoted a punctate
colocalization of DNAJB6 with the ER chaperone HSPA5 (Grp78/BiP) [41].

Zebrafish deficient for the DNAJB6a orthologue showed increased cardiac ER stress, whereas
DNAJB6a overexpression inhibited ER stress in zebrafish and protected mice from doxorubicin-induced
cardiomyopathy [41]. Of the DNAJB6a-specific variants identified in human cardiomyopathy patients,
p.S316W was defective against ER stress and cardiomyopathy in zebrafish studies, indicating that
DNAJB6a mediates clinically relevant protection against ER stress in the heart [41].

The molecular mechanism of this protective effect is not known, but it could depend on the
intrinsic antiaggregation activity of DNAJB6a and/or a cochaperone function for HSPA5. It is also
completely unknown what determines DNAJB6a localization (intranuclear/NE/ER) and how this
relates with the different reported functions of the isoform.

Signal Transduction and Gene Regulation

In addition to PQC, DNAJB6 has been shown to function in signal transduction and gene regulation
at multiple levels—from cell surface receptors to transcription factors and chromatin structure in the
nucleus—and through a variety of molecular mechanisms [42,45,77–81]. Many of the affected pathways
have roles in the regulation of cell proliferation and differentiation and, accordingly, DNAJB6 affects
processes such as stem cell self-renewal [82] and tumorigenesis [83]. Interestingly, the functions of the
two isoforms appear to be at least partially opposing. DNAJB6a suppresses malignancy [42,80,81],
whereas the constitutive nuclear targeting of DNAJB6b has been shown to promote a cancerous
phenotype in cell cultures [46].

As far as neuromuscular disease is concerned, the most relevant regulatory role of DNAJB6 is
the activation of glycogen synthase kinase 3β (GSK3β), which has been recently implicated in the
pathogenesis of DNAJB6-related myopathies (see below) [84]. DNAJB6a, in complex with HSPA8 and
protein phosphatase 2A, has been shown to maintain the active dephosphorylated state of GSK3β [81],
which negatively regulates both β-catenin and NFATc3 (nuclear factor of activated T cells cytoplasmic 3)
pathways [85]. Recently, Findlay and colleagues demonstrated the importance of these pathways in the
regulation of myogenesis. DNAJB6-deficient C2C12 myoblasts show increased GSK3β phosphorylation
and concomitant increase in β-catenin and NFATc3 activity, in association with enhanced fusion and
increased myotube size [84]. DNAJB6 can repress calcineurin/NFATc3-dependent gene expression
also through direct interactions with NFATc3 and type II histone deacetylases (HDACs), which serve
to recruit HDACs to NFAT-regulated promoters and induce chromatin remodeling [45]. While the
the latter functionality was studied by Dai and colleagues using DNAJB6b constructs, the region
interacting with NFATc3 and HDACs is common to both isoforms [45].

2.1.3. DNAJB6 Mutations in Muscle Disease

Mutations in the DNAJB6 gene cause dominantly inherited muscle diseases with variable clinical
presentations. DNAJB6 mutations were first described in patients with dominant limb-girdle muscular
dystrophy (LGMD) [14,86]. According to the revised LGMD nomenclature [87], this entity is now
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known as “LGMD D1 DNAJB6-related” (MIM #603511). Previously, both designations LGMD1D
and LGMD1E have been used in the literature to refer to the DNAJB6-associated LGMD subtype.
While most of the described DNAJB6 mutations lead to a LGMD phenotype, some mutations are
associated with a distal phenotype [88–90].

To date, 18 pathogenic mutations have been reported in DNAJB6 (Table 2, Figure 2). Until recently,
all the identified mutations clustered within a short stretch of amino acids in the G/F region, with
multiple mutations affecting the same codons, highlighting the region as a mutational hot spot for
muscle disease. The importance of the G/F region is further underlined by a splice site mutation that
eliminates the entire domain and causes a severe, early onset disease [88].

The first unequivocally pathogenic mutations in the J domain of DNAJB6 were recently described
by our group [90]. The p.A50V and p.E54A mutations are both located in the α3 helix, which according
to the recently described structure is in direct contact with the α5 helix of the G/F region [28,90].

In the cohort of 48 French patients with protein aggregate myopathy, six (12.5%) had a mutation
in DNAJB6 [91]. In the large-scale study of Nallamilli and colleagues, DNAJB6 mutations accounted
for 3% of molecular diagnoses in a cohort of 4656 LGMD patients from the U.S. [92]. Notably, 13 novel
DNAJB6 missense variants, located throughout the gene, were identified in the same patient cohort [92];
functional studies would be required to evaluate their pathogenicity.

Table 2. DNAJB6 mutations causing neuromuscular disease.

Domain cDNA Change Protein Change Phenotype References

J
c.149C>T p.A50V distal [90]

c.161A>C p.E54A proximo-distal [90]

G/F

c.265T>A p.F89I LGMD [14,92–94]

c.271T>A p.F91I LGMD (severe) [88,95]

c.271T>G p.F91V mild [92,96]

c.271T>C
p.F91L LGMD (severe)

[95,97]

c.273C>G [88,92]

c.277T>A p.F93I LGMD [98]

c.277T>C

p.F93L LGMD

[14,86]

c.279C>A [14,92]

c.279C>G [14,88,89,92,98,99]

c.284A>T p.N95I LGMD [89]

c.287C>G p.P96R distal–proximal [86]

c.287C>T p.P96L [100–102]

c.293_295delATG p.D98del distal [89]

c.298T>A p.F100I [103]

c.298C>A p.F100V distal onset [88]

c.346+5G>A p.G79_F115del severe, early onset [88]

Reference sequences: NM_058246.4 (nucleotide), NP_490647.1 (protein).

2.1.4. Clinical and Pathological Features

As evident from Table 2, there are clinical differences between the patients with the various
DNAJB6 mutations. Most mutations cause classical adult late onset LGMDs, but some mutations (e.g.,
p.F91I and p.F91L) are associated with an earlier onset and much more severe pathology, whereas
others (e.g., p.D98del and p.F100V) show a distal onset [88,95,97]. Moreover, inter- and intrafamilial
variability may be considerable [14,73,96].
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However, on the tissue level, all described DNAJB6 mutations result in similar changes
characterized by protein accumulations and the aggregation of several Z-disc proteins, leading to the
pathological classification as myofibrillar myopathy (MFM). The human pathology is recapitulated
in the transgenic mouse model expressing DNAJB6b p.F93L [49]. Early changes are central
myofibrillar lesions and Z-disc streaming that proceed to severe myofibrillar disintegration, and
at later stages, autophagic rimmed vacuoles can be observed [73]. The protein accumulations in
human and mouse muscles may be positive for structural proteins (desmin, myotilin, α-actinin,
keratin 18) [14,49,88], RNA-binding stress-granule proteins (hnRNPA1, hnRNPA2/B1, TIA1) [49,89,90],
TDP-43 [86,88,90], as well as chaperones and cochaperones (HSPA8, CRYAB, HSPB8, SQSTM1, BAG3,
STUB1) [14,88,89,95,98]. The rimmed vacuoles are positive for SQSTM1 and the autophagosome
marker LC3 (microtubule-associated proteins 1A/1B light chain 3), illustrating their autophagic
origin [14,88,95]. The vacuoles do not stain for the lysosomal marker LAMP2, suggesting problems
with autophagosome–lysosome fusion [73].

Dysphagia has been reported with several mutations [88–90,94,95,97,101–103].
Respiratory involvement is rare, but patients with the severe p.F91I and p.F91L mutations
had respiratory failure requiring mechanical ventilation [95]. On the other hand, the p.F91V mutation
is not apparently affecting respiration and has a much milder phenotype and progression [96]. So far,
there has been no report of cardiomyopathy in DNAJB6 patients, but given the proposed role of
DNAJB6a in cardiomyopathy [41], monitoring of heart function is recommended.

Despite the prominent expression of DNAJB6 in the CNS [11,41], neurological involvement is not
a part of the phenotype in LGMD D1 patients. One single case of frontotemporal dementia in a p.F93L
patient has been reported [104], which could just be a coincidental “double trouble” finding.

2.1.5. Pathomechanistic Effects of DNAJB6 Mutations

Studies utilizing in vitro systems and model organisms have revealed functional consequences of
disease mutations and offered some insight into the molecular pathomechanism of DNAJB6-related
myopathies (Table 3).

Altered Antiaggregation Function

First of all, disease-causing mutations have been shown to impair the antiaggregation function
and/or other activities of DNAJB6 toward different client proteins in a variety of experimental
systems (Table 3). Most of the mutations have been studied by filter trap assay (FTA), where
they consistently impair the ability of DNAJB6b to suppress the aggregation of polyQ-containing
huntingtin constructs [14,89,95,102]. We report here the results for two mutations (p.P96R and
p.F100I) for which FTA data have not been previously published (Figure 3). The severity of the
antiaggregation defect varies greatly in this experimental system, with no clear correlation to the
clinical phenotype [14,89,95,102]. The coexpression of DNAJB6b p.P96L was also shown to interfere
with the antiaggregation effect of the wild-type protein, demonstrating a dominant negative effect
for the mutation [102]. Moreover, the antiaggregation function of DNAJB6b toward parkin p.C289G,
which depends on a molecular mechanism distinct from polyQ antiaggregation, was also somewhat
impaired by the p.F93L mutation [31].

Stein and coworkers elegantly studied the effects of DNAJB6 mutations in a yeast system. In these
experiments, mutations corresponding to DNAJB6 p.F89I and p.P96R, when engineered into DNAJB1,
failed to complement the yeast JDP Sis1, while p.F93L was functional [105]. They also demonstrated
that the myopathy-associated mutations, in the context of a Sis1/DNAJB6 hybrid protein, differentially
affect the propagation and solubility of the yeast [RNQ+] and [PSI+] prions, with effects depending
on prion strain and mutation in question [105]. The results demonstrated that the disease mutations
specifically affect the processing of some conformers of client proteins [105].
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Table 3. Functional consequences of DNAJB6 mutations.

Protein
Change

PolyQ
Aggregation

PARK
p.C289G

Aggregation

Sis1
Complementation 1

[RNQ+]
Propagation 2

[PSI+]
Propagation/Solubility 2

TDP-43
Aggregation

hnRNPA2
p.D290V

Aggregation 3

Hrb98DE
Localization &
interaction 3

Myotoxicity
in Zebrafish References

A50V ††††† † [90]
E54A †††† † [90]
F89I †††† †† ††/† †† † † † ††† [14,59,105]
F91I †† [95]
F91L ††† ††† [95]
F93L † † – – – † † ††(†) [14,31,59,90,105]
N95I †††† [89]
P96R ††††† ††† †/– † † † [105], this paper
P96L ††† [102]

D98del †††† [89]
F100I ††††† this paper

Number of † symbols indicates severity of observed defect, – no defect observed, (empty) not reported. Results based on corresponding mutations in: 1 DNAJB1, 2 chimeric Sis1/DNAJB6
construct, 3 Drosophila dMRJ.
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Figure 3. Loss of antiaggregation effect due to DNAJB6 mutations. Various DNAJB6b constructs
were tested in a filter trap assay for their ability to prevent the aggregation of polyQ huntingtin.
Similarly to the previously tested p.F89I and p.F93L, both p.P96R and p.F100I mutations showed
impaired antiaggregation activity. Wild-type DNAJB6a (a wt) and DNAJB6b (b wt) serve as negative
and positive controls, respectively. The graph shows mean ± S.D. of eight to nine replicate transfections
from three separate experiments. Asterisks indicate statistically significant differences to b wt according
to the Mann–Whitney U test (** p < 0.01, *** p < 0.001).

The effects of DNAJB6 mutations on the prion-like proteins gained further support from TDP-43:
DNAJB6b mutant constructs enhanced the formation of nuclear TDP-43 aggregates upon heat shock
and impaired their clearance after stress, and this was also seen in fibroblasts of LGMD D1 patients [105].
Along the same lines, while the wild-type Drosophila DNAJB6 ortholog dMRJ was shown to inhibit the
aggregation of mutant hnRNPA2 in fly muscles; the mutations corresponding to p.F89I and p.F93L
prevented this effect [59]. Mutant dMRJ corresponding to p.F89I also failed to inhibit the cytoplasmic
translocation of the Drosophila RNA-binding protein Hrb98DE to stress granules upon heat shock,
and they showed reduced interaction with Hrb98DE in a pull-down assay [59].

DNAJB6 Turnover

Disease mutations have been shown to decrease the turnover rate of DNAJB6b in vitro
cycloheximide- or de-induction-based chase assays [14,49], and this turnover difference is reflected
in the increased steady-state levels of the mutant proteins in cell cultures and transgenic mouse
muscles [14,49]. In line with its dominant toxic effect, mutant DNAJB6b also decreased the turnover
rate of the coexpressed wild-type protein [14].

The turnover process affected by the mutations depends on the autophagy–lysosome pathway,
as demonstrated by its response to lysosomal inhibition [14], but whether it represents codegradation
of DNAJB6 with autophagic substrates or some other type of turnover is not known. The relationship
of the altered turnover and disease pathomechanisms is also unknown, although the increased level
of the mutant protein could contribute to the altered GSK3β signaling in the DNAJB6 F93L mouse
model [84] (see below). Of note, the p.F93L mutation also decreased the turnover of the DNAJB6a
isoform in cycloheximide assay [14], suggesting that the turnover difference is not the main factor
driving pathogenicity.

Dominant Toxicity

Independent lines of evidence indicate that the pathogenesis depends on a dominant toxic effect
mediated by the DNAJB6b isoform. In zebrafish embryos, the expression of different mutant DNAJB6b
constructs has been shown to have a myotoxic effect that is evident as breakage and detachment
of muscle fibers, while mutant DNAJB6a or wild-type constructs for either isoform have no such
effect [14,97]. Similarly, the transgenic mouse model overexpressing human DNAJB6b p.F93L in
skeletal muscle develops muscle weakness by the age of two months, whereas the corresponding
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DNAJB6a-expressing model does not [49]. Interestingly, the muscle defect caused by mutant DNAJB6b
in zebrafish is aggravated by the equimolar coexpression of wild-type DNAJB6b, but it is rescued by a
further increase in the wild-type/mutant ratio [14]. This is compatible with a model where the presence
of mutant monomers in the oligomeric DNAJB6 complex, if exceeding a certain proportion, confers
toxicity to the entire complex.

The recently published protein structure and the model of the DNAJ–HSPA cycle [28] suggest a
possible mechanism for the toxic effects of DNAJB6 mutations. All the mutations in the G/F region are
clustered in or near the α5 helix, whereas the two recently identified J-domain mutations are located
close to the JD/α5 interface (Figure 2) [28,90]. The mutations may hence disturb the interaction of the
α5 helix with the JD, interfering with DNAJB6 autoinhibition and leading to uncontrolled interactions
with HSPA.

An interesting parallel comes from the E. coli DnaJ protein. The G/F region of this DNAJB6 ortholog
contains three DI/VF motifs, whose counterpart in human DNAJB6 is the single motif located in the α5
helix [28]. Mutations in the DnaJ DI/VF motifs have a dominant toxic effect on bacterial growth [27].
The toxicity is dependent on DnaK (HSPA) and rescued by overexpression of the nucleotide exchange
factor GrpE, and it was therefore proposed to result from kinetically trapped complexes of DnaK
with DnaJ and/or client proteins [27]. The toxicity of mutant DNAJB6 could conceivably depend on
similar mechanisms.

Interestingly, the cochaperone BAG3 (discussed below in more detail) was implicated in the
pathomechanism of DNAJB6 mutations by the finding that the coexpression of wild-type BAG3 but not
the myopathy-linked p.P209L mutant exacerbated the toxicity of mutant DNAJB6b in zebrafish [14].
While this suggests that BAG3 plays an active role in the pathomechanism, its precise place in the
picture remains unknown. One possibility is that the ability of BAG3 to augment DNAJB6 toxicity
is related to modulation of the HSPA ATPase cycle, as the p.P209L mutant has been shown to be
defective in this respect [106]. Alternatively, the toxic effect of the stalled DNAJB6/HSPA complexes
could depend on the recruitment of BAG3.

GSK3β Signaling

Recent results from the Weihl laboratory have indicated that the pathogenic effects of DNAJB6
mutations are partially mediated by enhanced GSK3β signaling [84]. In the mouse model expressing
DNAJB6b p.F93L in skeletal muscle [49], Findlay and colleagues found dramatically reduced GSK3β
Ser-9 phosphorylation, i.e., an opposite effect compared to that seen in DNAJB6-deficient myoblasts [84].
Treating the animals with lithium chloride, an inhibitor of GSK3β, improved the muscle size, strength,
and myopathology, without reversing the accumulation of sarcomeric and RNA-binding proteins in
mutant muscle [84].

The molecular mechanism through which the DNAJB6b p.F93L mutation exerts its effect on
GSK3β signaling is unclear, but increased level of the mutant protein was proposed as one possible
explanation [84]. Interestingly, while the isoform originally linked to GSK3β was DNAJB6a [81],
these new findings suggest that both DNAJB6 isoforms may participate in GSK3β signaling and raise
intriguing questions on the roles of the isoforms in the pathomechanism of LGMD D1. Although direct
comparison of transgenic lines with different DNAJB6 expression levels has its limitations, according to
Bengoechea et al., the overexpression of DNAJB6a p.F93L does not cause muscle weakness in mice [49].
This would mean that either the disease mutations do not affect GSK3β signaling in the context of the
DNAJB6a isoform or that a DNAJB6b-specific effect combined to altered GSK3β signaling is required
to mediate the pathogenesis. To address these possibilities, it would be useful to review the status of
GSK3β signaling in the DNAJB6a p.F93L model.

Overall, functional studies have demonstrated that disease-causing mutations affect DNAJB6
function in multiple ways. Yet, more research is needed to elucidate the causal relationships between
these effects and their importance in the pathogenesis of DNAJB6-related myopathies. It seems likely
that the accumulation of various proteins in diseased muscle reflects the defective processing of client
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proteins, but it remains unknown whether the aggregation pathology is driven by one or a few selected
clients or a general impairment of chaperone function. Another open question is if the toxicity of
mutant DNAJB6 simply results from a dominant negative effect on the wild-type allele, or if the mutant
DNAJB6 complexes have additional toxic properties. In any case, the available data are compatible
with a scenario where DNAJB6 mutations cause disease through two or more parallel mechanisms
(Figure 4): The loss of protective chaperone effect and/or active toxicity of the mutant DNAJB6 damage
the myofibers, and at the same time abnormal GSK3β signaling interferes with muscle regeneration.
Interestingly, GSK3β was recently shown to promote the breakdown of desmin filaments in muscle
atrophy [107], providing another mechanism potentially contributing to the disease.
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Figure 4. The pathomechanism of DNAJB6 mutations. (A) Top: The suggested function of DNAJB6
in the HSPA cycle: (1) Client binding by DNAJB6. (2) HSPA binding to JD. (3) ATP hydrolysis and
client transfer to HSPA. (4) Displacement of HSPA by the G/F domain. Adapted from [28]. Bottom: A
model for the effect of myopathy mutations. The mutations interfere with the interaction between the J
and G/F domains, leading to uncontrolled interaction with HSPA. (B) Possible parallel downstream
pathways leading from DNAJB6 mutations to muscle disease.

An intriguing question still lacking explanation is the specific pathogenic effect of mutant DNAJB6
in skeletal muscle. Although DNAJB6 is highly expressed in the CNS [11], brain symptoms are not a
typical feature in DNAJB6-related diseases. Differences in protein expression are naturally a possible
explanation for the tissue selectivity. Muscle may express high levels of a key client protein whose
aggregation drives the pathogenesis or factors modulating the toxicity. One factor possibly contributing
to the tissue selectivity could be BAG3, which is highly expressed in muscle [108] and known to
augment the toxicity of mutant DNAJB6b in zebrafish [14].
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2.2. DNAJB2

DNAJB2, first described as HSJ1 [109], belongs to the class II (DNAJB subfamily) of J proteins and,
accordingly, contains an N-terminal J-domain followed by a G/F region [110] (Figure 5). As a unique
feature among human J proteins, the C-terminal region of DNAJB2 harbors two ubiquitin interaction
motifs (UIMs) that mediate binding to polyubiquitylated proteins and to the proteasome [21,111].
Alternative splicing produces two isoforms that differ in their C-termini and show different subcellular
localization: DNAJB2a (HSJ1a; 277 aa, 31 kDa) localizes to the cytosol and nucleus [110], whereas
DNAJB2b (HSJ1b; 324 aa, 36 kDa) is associated to the cytoplasmic face of ER by a C-terminal
geranylgeranyl anchor [110].
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are indicated.

2.2.1. DNAJB2 Expression

DNAJB2 is predominantly expressed in neurons, with the highest expression levels seen in
the neocortex [109,110]. A low level of the protein has been detected in other cells and tissues, as
well as in fibroblast cultures [110,112,113]. The clearly predominant isoform in neuronal tissues is
DNAJB2b [110,112–114].

Low DNAJB2 expression in cardiac and skeletal muscles was reported by Claeys and colleagues,
who saw DNAJB2 localized to the neuromuscular junction in mature muscle fibers and to the sarcoplasm
and sarcolemma in regenerating fibers [115]. However, studies on Dnajb2-deficient mice indicate that the
neuromuscular junction localization reported by Claeys et al. may be due to the cross-reactivity of the
commercial antibody used in that study (Michael Cheetham, personal communication). Nevertheless,
upregulation of DNAJB2 mRNA after eccentric exercise [116] supports the notion of physiologically
relevant DNAJB2 expression in muscle.

2.2.2. Functions of DNAJB2

As expected for a JDP, DNAJB2 acts as a cochaperone for HSPA: both isoforms have been shown
to stimulate the ATPase activity of HSPA8 and to modulate its client binding [10]. Instead of promoting
the refolding of HSPA clients, DNAJB2 is considered to primarily direct them to degradation by the
ubiquitin–proteasome system (UPS) [111,117]. To this end, DNAJB2 promotes the ubiquitylation of
client proteins by STUB1 (CHIP) and, by binding to the polyubiquitin chains, it protects them from
deubiquitylation [111]. Then, HSPA-bound ubiquitylated clients are targeted to the UPS [111,117], which
may be facilitated by the ubiquitylation of DNAJB2 itself and the DNAJB2-stimulated ubiquitylation
of HSPA [111]. The binding of ubiquitylated clients is negatively regulated by the phosphorylation
of UIM2 by protein kinase CK2 [118]. In addition to HSPA, DNAJB2 may act together with HSPC
(Hsp90). This is suggested by the interaction of the chaperones in vitro and their ability to transfer
client proteins between each other [119].

DNAJB2 has been demonstrated to suppress the aggregate formation of various client
proteins in different experimental systems. These effects depend on—as deduced from the effects
of deletion and mutant constructs—a combination of UPS-mediated degradation and other
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mechanisms [30,31,60,111,112,114,117,120–123]. Indeed, as demonstrated by its ability to suppress
luciferase aggregation in vitro, DNAJB2 has intrinsic chaperone activity that resides outside the
J–G/F-region and is independent of functional UIMs [111]. As DNAJB2 contains a short S/T-rich region
C-terminally from the G/F region—including the Ser/Thr residues most critical for DNAJB6 client
binding [53,56]—this region could be involved in the intrinsic chaperone function.

DNAJB2a has been in several studies shown to suppress aggregates of polyQ-containing huntingtin
and androgen receptor both in vitro [30,111,114,117] and in vivo [117,120] in a manner dependent on J
domain and UIMs [111,120]. DNAJB2a also reduced the aggregation and steady-state levels of parkin
mutant p.C289G, similarly to other cytosolic DNAJs [31,60]; this effect was partially dependent on
HSPA [31,60], but it did not require UIMs [60]. DNAJB2 counteracted the aggregation of SOD1 p.A4V
and p.G93A mutants in vitro [112,121] and improved the disease phenotype in the SOD1 p.G93A mouse
model of familial ALS [121]. In cell culture, SOD1 p.G93A ubiquitylation was UIM-dependent, whereas
the J-domain mutant p.H31Q promoted SOD1 ubiquitylation but failed to mediate its turnover [121].
Recently, DNAJB2a was also shown to decrease the aggregation of overexpressed TDP-43 in a cell
model [122]. In contrast to most other reported DNAJB2 functions, this effect was independent of
UIMs and UPS-mediated degradation but reflected refolding of TDP-43 in a J-domain-dependent
fashion [122].

While the effects of DNAJB2b against cytoplasmic and nuclear protein aggregation have
been variable [30,31,111,114], a number of studies indicate that the physiological functions of this
membrane-bound isoform are related to the quality control, handling, and degradation of secreted
and transmembrane proteins. DNAJB2b has been demonstrated to modulate rhodopsin processing in
neuroblastoma cells [110], to facilitate the proteasomal degradation of cystic fibrosis transmembrane
conductance regulator (CFTR) through the ER-associated degradation (ERAD) pathway [111], and to
reduce the total and cell-surface levels of melanocortin 4 receptor (MC4R) in a cotransfection setup [124].
DNAJB2 was also found to promote the lysosomal targeting of misfolded CFTR p.F508del from the
plasma membrane [125], although the isoform involved in this function was not determined.

Both DNAJB2 isoforms can inhibit HSPA-mediated uncoating of clathrin-coated vesicles
in vitro [126]. While this was suggested to reflect interference with another J protein such as auxilin [126],
the work of Borrell-Pagès and coworkers later demonstrated that DNAJB2b specifically promotes the
sorting of clathrin-coated vesicles from the Golgi apparatus [114]. This is important for the secretion
of brain-derived neurotrophic factor (BDNF)—and possibly other proteins—from the Golgi and has
implications on Huntington’s disease, where the process is impaired due to decreased DNAJB2b
levels [114].

2.2.3. DNAJB2 Mutations in Neuromuscular Disease

Recessive DNAJB2 mutations (Table 4) have been identified as a so far uncommon cause of
peripheral neuropathies, which may present as distal hereditary motor neuropathy (dHMN) or sensory
and motor neuropathy (Charcot–Marie–Tooth disease type 2, CMT2) [112,113,127–129].

Table 4. DNAJB2 mutations causing neuromuscular disease. CMT2: Charcot–Marie–Tooth disease
type 2, dHMN: distal hereditary motor neuropathy.

Mutation 1 Phenotype References

c.14A>G (p.Y5C) CMT2 [113]
c.229+1G>A (splice) dHMN [113]

c.310delC (p.R104Gfs*97) CMT2 [37]
c.352+1G>A (splice) dHMN, CMT2, parkinsonism [112,127,128]
c.619-1G>A (splice) CMT2 [37]

g.219277938_219281781del2 dHMN, parkinsonism [129]
1 Reference sequences: NM_001039550.1 (cDNA), NP_001034639.1 (protein), NC_000002.12 (genomic) 2 Annotation
based on Figure 1 in [129].
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DNAJB2 was first associated to disease by Blumen and colleagues [112], who identified a
homozygous c.352+1G>A splice donor site mutation in a family with dHMN. The same mutation, and
another recessive splice site change c.229+1G>A have since been reported in several families [113,128].
These mutations have been shown to lead to intron retention, premature termination, and severely
reduced or lost DNAJB2 protein expression in patient fibroblast cultures [112,113]. The mutation
c.619-1G>A, abolishing a splice acceptor site, and the single-nucleotide deletion c.310delC, leading
to cause frameshift and premature protein termination, have been found in homozygous state in
individual families [37].

A large (approximately 3.8-kb) homozygous deletion spanning the first four exons of DNAJB2
end extending approximately 1.3 kb upstream of the gene was identified by Sanchez et al. [129] in a
family with dHMN in two siblings and additional juvenile parkinsonism in one sibling. Involving
the first exon of DNAJB2, this deletion likely results in a null allele similarly to the reported splice
site mutations.

The only published missense mutation reported so far in DNAJB2 is c.14A>G (p.Y5C), which was
identified in homozygous state in a single family with a CMT2 clinical phenotype [113]. The mutation
affects the J domain, substituting a tyrosine residue conserved in J proteins throughout evolution [113].
Functional consequences of this mutation have not been reported, but segregation and prediction
algorithms support its pathogenicity [113]. The variant is also not found in gnomAD (The Genome
Aggregation Database).

2.2.4. Clinical Features of DNAJB2-Related Neuropathies

The main clinical phenotype resulting from the biallelic loss of DNAJB2 expression is peripheral
axonal neuropathy. The onset of symptoms is typically in the 2nd decade of life, and has been
reported to range from the late 1st to early 4th decades [112,113,127–129]. The initial diagnosis may
be pure motor neuropathy (dHMN) [112,113], which manifests as pareses, muscle weakness, and
atrophy appearing first in distal lower limbs and progressing slowly to proximal lower limbs and
arms [112,113,127–129]. Bulbar and respiratory symptoms may develop at the advanced stage [128].
Sensory symptoms such as decreased sensation appear with age in many if not all patients [127–129].
In terms of clinical findings, the p.Y5C missense change seems comparable with the DNAJB2 null
mutations [113].

Symptoms involving the central nervous system have been described in some patients with
DNAJB2 mutations. Early-onset parkinsonism has been reported in a few patients from different
families [128–130], whereas frontotemporal brain atrophy with behavioral changes [128] and cerebellar
ataxia [130] have been seen in individual patients. Due to the small number of cases, it remains unclear
whether the CNS symptoms in these patients are indeed due to the DNAJB2 mutations or additional
factors [128].

2.2.5. Pathomechanisms of DNAJB2 Mutations

The splice site mutations c.229+1G>A and c.352+1G>A have been demonstrated to disrupt
DNAJB2 expression in fibroblasts [112,113], and they presumably have the same effect in neurons.
In addition, c.619-1G>A and c.310delC are expected to result in a loss of DNAJB2 expression.
The pathogenesis of recessive DNAJB2-related neuropathies is hence most likely to depend on a
loss-of-function mechanism [113,129,131]. The client protein(s) and processes relevant for the disease
remain to be established: the pathomechanism could be envisioned to depend on cytotoxicity due to
impaired protein quality control and turnover or a specific defect in protein trafficking or secretion
caused by loss of DNAJB2b.

As the 3.8-kb deletion described by Sanchez et al. spans the DNAJB2 exons encoding the J domain,
the authors utilized a GFP-DNAJB2b construct lacking the J domain to study the functional effects of the
deletion [129]. When expressed in HEK-293 cells, this construct showed aggregation and induced cell
death, which was accompanied with increased LC3 expression [129]. The mutant construct was also
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reported to increase the expression of the DNAJB2a isoform on both RNA and protein levels, as well as
alter Tau expression and BDNF release [129], although the data presented in the paper do not exclude
alternative interpretations. Nevertheless, the apparent toxicity of N-terminally truncated DNAJB2b
may not in this case be pathomechanistically relevant: As also suggested by its recessive inheritance,
the deletion most likely totally prevents DNAJB2 expression and is hence comparable to the splice
mutations. Moreover, the deletion also affects a predicted isoform of the TUBA4A gene, mutations in
which are associated with ALS [132], and this could also contribute to the clinical phenotype.

In the absence of functional data, the pathomechanism of the DNAJB2 p.Y5C mutation can only
be speculated. Given its recessive inheritance and the phenotype comparable to the splice mutations,
the mutation is likely to produce a loss-of-function allele. In line with this, structural data supports the
idea that the variant could destabilize the J domain (Per Harald Jonson, unpublished observation).

3. Small Heat Shock Proteins

The small heat shock proteins (sHSP) are an ancient group of molecular chaperones that are present
in all kingdoms of life [4]. Of the 10 sHSPs (or HSPBs) encoded by the human genome [23,133,134],
four are currently known to be associated with neuromuscular disease [9]; these are HSPB1 (Hsp27),
HSPB3, αB-crystallin (CRYAB, HSPB5), and HSPB8 (Hsp22) (Table 1).

3.1. Structure and Function of sHSPs

The defining structural feature of sHSPs is the α-crystallin domain (ACD) that plays a key role
in client binding and mediates the dimerization of sHSPs into homo- or heterodimers. The ACD is
flanked by N- and C-terminal extensions that mediate the chaperone activity and are responsible
for the functional specificity of the family members [135]. The N-terminal domains (NTD) are long,
hydrophobic, in part intrinsically disordered or quasi-ordered (i.e., alternating between several defined
states), and highly variable between the different sHSPs, whereas the C-terminal domains (CTD) tend
to be polar and rather short [136–138].

Canonical sHSPs assemble further into large homo- and hetero-oligomeric complexes; this is
driven by binding of the ACD to the IxI/V motif present in the CTD, as well as NTD–ACD and
NTD–NTD interactions [138–141]. The architecture of the oligomeric complexes differs among the
family members. While some sHSPs form discrete oligomers, others—such as those formed by HSPB1
and CRYAB—are polydisperse and highly dynamic [17,142–144].

The canonical function of small heat-shock proteins is to act as the cell’s first-line response against
non-native proteins. sHSPs have often been described as “holdases” that bind partially unfolded
proteins and protect them from aggregation, keeping them available for refolding or degradation
by other chaperone families [4,137]. However, rather than keeping clients in a soluble state, sHSPs
complexed with their clients are often found to coaggregate with them. This prevents cytotoxicity
of the aggregates and facilitates later recovery and refolding or degradation of the aggregated
proteins [145–148]. Moreover, as best characterized with yeast Hsp42, sHSPs may even function as
“sequestrases” that actively drive the controlled aggregation of non-native proteins, thereby preventing
the overburdening of the refolding machinery during cellular stress [148–153].

While the sHSPs system is energy-independent and has a high client-binding capacity, allowing
an efficient first-line protection against unfolded proteins, sHSPs lack the ability to actively refold
clients [154–156]. For refolding or degradation, the client proteins stably complexed with sHSPs are
extracted by HSPA chaperones, potentially with the assistance of JDPs [154,155,157]. The cooperation
of sHSPs and HSPAs is facilitated by the cochaperone BAG3 that interacts with HSPAs [158] and
several sHSPs, providing a physical link between the chaperone families [2,15,16,18,159].

The interactions of sHSPs with their client proteins are complex: depending on the type of client
(e.g., amorphous versus amyloid aggregates) and the stage of protein aggregation, the interactions can be
stable “holdase”-type or transient, and involve different regions of the protein [144,160–167]. Some client
interactions are mediated by the ACD, whose local unfolding and dimerization status can, even in
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the context of the oligomeric complex, regulate the availability of client-binding surfaces [168–171].
Other client interactions depend on the extensions, especially the NTD, whose disordered nature is
thought to facilitate binding to a diverse spectrum of client structures [136,144,160,162].

The relationship of sHSP oligomerization and chaperone activity has been the subject of extensive
research, with partly contradictory results obtained with different sHSPs and clients [161,165,172–178].
In some setups, mutations or modifications favoring deoligomerization have been associated with
increased chaperone activity [161,165,177], while others have shown an opposite effect [161,172,173].
Moreover, oligomer dissociation and reassembly have been found to be variably required for chaperone
function [174–176,178]. These divergent results likely reflect the functional complexity of sHSPs, with
different binding modes being important for different clients, as well as genuine differences between
family members.

Overall, the current picture is that the dynamic oligomeric architecture allows, by regulating
the accessibility of the client-binding surfaces, sHSPs to flexibly utilize different binding modes
while protecting them from inappropriate interactions and aggregation [17,166,167,171,179,180].
The equilibrium between monomers, dimers, and oligomers, and hence the chaperone activity, can
be regulated by phosphorylation [138,161,167,169,172,176,181–184] and stress-related environmental
factors such as temperature [185,186], pH [179,187], metal ions [188], and the redox state [171].
The system can be fine-tuned by hetero-oligomerization, which is thought to offer an optimal
combination of stability and chaperone activity [17,180]. In addition, BAG3 binding has been recently
shown to dissociate HSPB1 oligomers, allowing it to modulate sHSP function [16]. Notably, some
sHSPs with non-canonical modes of action, e.g., HSPB8 discussed in more detail below, do not form
large oligomers [189,190].

In the following sections, will review the neuromuscular diseases caused by sHSP mutations,
focusing on the current understanding of the pathomechanisms. A concise overview of the functions is
provided for each of the proteins. The disease-associated sHSPs—especially CRYAB and HSPB1—have
been the subject of extensive research, and covering their vast range of normal functions is not possible
here. For additional details, we refer the reader to recent reviews [4,137,191–194].

3.2. αB-Crystallin (HSPB5)

αB-crystallin (CRYAB, HSPB5) is a major structural protein of the lens, but shows stress-inducible
expression also in other tissues where it acts as a multifunctional chaperone [191,192]. Its levels are
particularly high—up to 3% of soluble protein—in the heart and in skeletal muscle, where it shows
highest expression in slow fibers [195–198]. In addition to diffuse sarcoplasmic localization, CRYAB
associates with the Z-discs and I-bands and cardiac intercalated discs. The myofibrillar localization
is promoted in stress situations such as ischemia, stretch, and eccentric contractions, reflecting an
increased association of CRYAB with its client proteins desmin and titin [199–204].

The principal function of CRYAB is the stabilization of cytoskeletal and sarcomeric proteins [192].
It shows temperature- and pH-dependent association with desmin and other intermediate filaments,
promotes filament assembly, and inhibits their aggregation [192,205–210]. In addition, CRYAB is
known to chaperone actin [205,211–213] and tubulin [214–217]. In the sarcomeric I-band, CRYAB binds
the spring elements of titin: cardiac-specific N2B unique sequence (N2B-us), the N2A element, and
immunoglobulin (Ig) domains. This modulates titin elasticity, prevents the unfolding of the Ig domains,
and protects them from aggregation [201,202,204,218].

Many studies have implicated CRYAB in the regulation of apoptosis [213,219–221]. With potential
relevance for muscle disease, the upregulation of CRYAB during early myogenic differentiation protects
myoblasts from apoptosis by inhibiting caspase 3 activation, and this effect was shown to be blunted
by the p.R120G mutation (see below) [219].
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3.2.1. Neuromuscular Diseases Due to CRYAB Mutations

The first pathogenic CRYAB mutation, causing the p.R120G in the ACD, was identified in
1998 by Vicart and colleagues in a French family with dominantly inherited myofibrillar myopathy,
hypertrophic cardiomyopathy, and cataracts [222]. Based on the myopathology characterized by
desmin accumulation, the disease was described as a desmin-related myopathy [222] and is now
classified in the Online Mendelian Inheritance in Man (OMIM) database as myofibrillar myopathy 2
(MFM2, MIM #608810).

Additional dominant missense and truncating variants (Table 5) have been identified in patients
with comparable combination of phenotypes, i.e., myopathy and variable cardiac involvement,
often together with cataracts [223–227], and in some cases with isolated cardiomyopathy [228,229].
The myopathy phenotypes show variability in age of onset and muscle involvement: the weakness may
be widespread—including trunk, neck, velopharyngeal, and respiratory muscles in addition to proximal
and distal limb muscles—or show a more limited distal involvement [222–227]. Neuropathy has been
reported in isolated cases [223].

Pathologically, αB-crystallinopathy shows typical features of myofibrillar myopathies, with most
resemblance to primary desminopathy [230,231]. Histological hallmarks are protein accumulations,
which are notably positive for αB-crystallin and desmin, and vacuoles. Staining for oxidative enzymes
reveals “rubbed-out fibers”, with large areas devoid of mitochondrial activity. In electron microscopy,
granulofilamentous desmin accumulations, myofibrillar disorganization, with Z-disc streaming and
longitudinal Z-disc extensions [72,230,231]. Changes typical to αB-crystallinopathy are “sandwich
formations” where granulofilamentous material is seen sandwiched between mitochondria and
frequent early apoptotic myonuclei [72,230,231].

A distinct CRYAB-related disease is fatal infantile hypertonic myofibrillar myopathy (MIM
#613869), caused by recessively acting CRYAB mutations (Table 5). The truncating frameshift mutation
p.S21Afs*24 was first found to underlie an infantile muscular dystrophy described in Canadian
aboriginals [232], and two other mutations, p.S115Pfs*14 and c.3G > A (p.Met1?) have been identified
in patients from other populations [233,234]. The severe congenital disease, most severely affecting
truncal muscles, leads to death in infancy due to respiratory insufficiency [232–234]. Histopathological
changes indicate a severe MFM, with inclusions of Z-disc origin and rimmed vacuoles [232–234].

In addition to mutations causing cataracts in combination with neuromuscular disease, several
recessive or dominant CRYAB mutations have been associated with isolated cataracts.

3.2.2. Pathomechanisms of CRYAB Mutations

The pathomechanisms αB-crystallinopathy have been thoroughly investigated in functional
in vitro studies and animal models, which have demonstrated that CRYAB mutations lead disease
through pleiotropic effects.

Animal Models

Much of the present knowledge is based on mouse models with cardiac-specific expression of
p.R120G mutant CRYAB [235–237]. The “CryABR120G TG” model developed by the Robbins laboratory
was based on the murine Cryab gene [235], whereas the “hR120GCryAB” model of the Benjamin
laboratory utilized the human gene [237]. The models show some differences potentially due to
different expression levels or background mouse strains, and they have been hence suggested to reflect
different stages of human disease [238,239]. Nevertheless, the models have highlighted the multitude
of the possible downstream effects of CRYAB mutations, many of which are likely to contribute to the
pathogenesis also in skeletal muscle.

The common pathological features of the cardiac p.R120G models resemble human MFM, with
desmin mislocalization, the presence of desmin and CRYAB aggregates, disrupted Z-disc structure,
mitochondrial abnormalities, and fibrosis [235,237,240–242]. Both models develop cardiomyopathy
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and eventually die of congestive heart failure at 25–28 or 40–60 weeks of age, depending on the
model [235,237]. A notable difference is apoptosis, which is more prominent in the CryABR120G TG
model than in hR120GCryAB [238,241].

More recently, a knock-in (KI) model, expressing CRYAB p.R120G at a physiological level, was
developed [243]. These mice recapitulate the human cataract and skeletal myopathy phenotypes with
dose-dependent severity, but unlike the overexpression models, they do not show cardiac lethality [243].

Another relevant mouse model is the Cryab/Hspb2 dKO, with the disruption of both Cryab and
the neighboring Hspb2 genes [244]. These mice develop a myopathy phenotype most prominently
affecting axial and head muscles and the tongue, consistently with the highest expression of CRYAB in
slow muscles, and they die prematurely presumably due to feeding difficulties [244–246]. The affected
muscles show myopathological changes indicative of degeneration, including central nuclei, fibrosis,
fatty infiltration, increased desmin staining, vacuolization, and the accumulation of amorphous material
evident in EM [244], but the myofibrillar ultrastructure appears normal [244,245]. The regeneration
capacity of skeletal muscles is impaired, which was suggested a dependence on altered miRNA
signaling [247]. The heart appears normal in the baseline situation, although functional effects appear
in stress situations [245,246,248,249].

The importance of CRYAB for muscle integrity, and the dominant pathogenic effect of the p.R120G
mutation were recently also demonstrated in Drosophila, where the pathological changes associated
with CRYAB deficiency are remarkably similar to mammalian muscle [212].

Structural Effects

On the structural level, p.R120G has been shown to alter the secondary and tertiary structure
of CRYAB and decrease its thermal stability, causing the protein to unfold and precipitate over
time [208,250–253]. Destabilizing effects have also been reported for several other CRYAB mutations
(Table 5). The arginine residue affected by p.R120G is located at the dimer interface, and its substitution
disrupts a salt bridge with Asp109, alters the ionic interaction network on the dimer interface, and
interferes with the pH-dependent dimer dissociation that mediates chaperone activation [179,254,255].
The importance of these structural alterations is highlighted by the three disease mutations affecting
the interacting Asp109 residue (p.D109H, p.D109A, and p.D109G) [225–227]. These are likely to
have similar structural consequences as the p.R120G mutation, although different clinical phenotypes
suggest some mutation-specific effects or modulation by additional factors [225–227].

Oligomers formed by CRYAB p.R120G are enlarged and more polydisperse compared to the
wild-type protein [167,208,210,250,256], yet they show faster subunit exchange [256]. The same is seen
in hetero-oligomers with HSPB1; these are larger but dissociate more easily in oxidative stress [257].
The effects of other studied mutations on CRYAB oligomerization are diverse, most are reported to
cause smaller oligomers (Table 5). Here, an exception is the p.Q151* truncation, which was shown
to be totally unable to oligomerize on its own and from smaller oligomers when coexpressed with
wild-type CRYAB [258]. In addition, differentially altered interactions of mutant CRYAB with other
sHSPs (Table 5) have been proposed to explain some phenotypic differences of the mutations [259].

Chaperone Activity and Client Interactions

In in vitro chaperone assays utilizing various model clients, most of the analyzed mutations
have shown complex client-dependent alterations in chaperone function, with activity decreased
for some clients and increased for others (Table 5) [167,208,250–253,260,261]. Pathomechanistically
more clear-cut are the drastic effects of mutant CRYAB on desmin and other intermediate filaments,
the physiological clients of CRYAB. In vitro, CRYAB p.R120G shows increased binding to desmin and
GFAP filaments and promotes rather than inhibits filament–filament interactions [208–210]. In cultured
cells, while wild-type CRYAB promotes the assembly of desmin filaments, p.R120G fails to do so and
causes desmin aggregation, which is most severe in conditions involving IF remodeling [209,210,222].
Other IF types (vimentin and keratin) have been variably affected by CRYAB p.R120G in different
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experimental setups [210,262–264], possibly reflecting the sensitivity of IF aggregation on filament
status [209]. In addition to p.R120G, a few other CRYAB mutations have been shown to increase
binding to desmin filaments [258]. However, a direct pro-aggregation activity on desmin is not required
for pathogenicity, as the p.Q151* mutant was found to inhibit filament–filament interactions more
efficiently than wild-type CRYAB [258].

Interestingly, the findings of Elliott et al. suggested for desmin an active role in mediating
the pathogenic effects of mutant CRYAB, potentially contributing to the muscle specificity [210].
CRYAB p.R120G was found to decrease the viability of transfected MCF7 cells only when cotransfected
with wild-type desmin [210]. This effect, which is mimicked by expression of myopathy-causing
mutant desmin alone, was thought to depend on the reported function of caspase-6-cleaved desmin as
a pro-apoptotic molecule [210,265].

Besides desmin, titin is another muscle-specific CRYAB client affected by the mutations.
The p.R120G and p.R157H mutations have been demonstrated to decrease the binding of CRYAB
to titin N2B-us and the following Ig domains [228]. Consistently, the mutations diminish (p.R175H)
or totally abolish (p.R120G) the effects of CRYAB on the extensibility of N2B-us and unfolding of Ig
domains [218]. Hence, structural changes of titin spring elements may be yet another pathogenic factor
in αB-crystallinopathy. Notably, p.R157H showed a more pronounced effect on the interaction with
the heart-specific N2B-us, which was suggested to explain the cardiac-specific phenotype associated
with this mutation [228]. Indeed, as p.R157H does not appear to cause CRYAB aggregation, its subtly
altered activity toward titin could be envisioned to give rise to a unique pathomechanism leading to a
mild cardiac phenotype [228].

Finally, CRYAB has chaperone functions in the nucleus as well, and their impairment may also
contribute to the pathogenesis. Regulated by the phosphorylation at Ser59 and Ser45, CRYAB is
imported by the survival of motor neuron (SMN) complex to nuclei, where it localizes into nuclear
speckles and mitotic interchromatin granules [266,267]. Upon heat stress, CRYAB is released from
the speckles to the nucleoplasm, where it can exert chaperone activity on nuclear proteins [268,269].
Through a yet incompletely understood mechanism, the p.R120G mutation interferes with the nuclear
import of mutant CRYAB itself as well that of the wild-type protein, thus abolishing the protective
function in the nucleus [267,268]. Cytoplasmic inclusions formed by the hyperphosphorylated mutant
protein recruit SMN [267], which could also interfere with the nuclear import of small nuclear
ribonucleoproteins (snRNPs) or other SMN-dependent proteins. However, it is of note that most of
the above results on nuclear import and functions of CRYAB have been obtained from HeLa cells
and are not entirely consistent with the findings of Adhikari et al. from C2C12 cells [270]. In C2C12
myoblasts, heat shock induced the nuclear import of CRYAB and increased its colocalization with
lamin A/C in nuclear speckles, while in differentiated myotubes, stress-induced nuclear localization
was not seen [270]. Hence, further studies are required for evaluating the nuclear chaperone functions
of CRYAB in skeletal muscle and their role in αB-crystallinopathy.

Aggregation and Amyloid Formation

Propensity to aggregation in vitro and in vivo is a nearly universal feature of the analyzed CRYAB
mutations (Table 5), which has been demonstrated for p.R120G [222,262,263,271,272] as well as several
other mutations [227,258,259,272–274]. CRYAB p.R120G expressed in cells or transgenic tissues forms
aggregates that coalesce into perinuclear aggresomes [262,271]. Notably, for p.R120G, aggregation
has been shown to depend on the hyperphosphorylation of the NTD, which occurs both in cells and
in transgenic heart [267]. A nonphosphorylatable mutant version of CRYAB p.R120G does not from
inclusions and also shows normal oligomer size [267], suggesting that increased oligomer size and
aggregation are mechanistically linked. While p.Q151* and p.P155Rfs*9 have also been shown to be
hyperphosphorylated [259], it is not known whether this is a prerequisite for the aggregation for all the
different CRYAB mutants.
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The CRYAB aggregates are of amyloid nature, as first suggested by the presence of amyloid-specific
staining in the aggresomes of CryABR120G TG hearts [271]. Even wild-type CRYAB is amyloidogenic in
destabilizing conditions, and this property is enhanced by the structural changes caused by p.R120G
and presumably other disease mutations [275,276]. In fact, p.R120G was shown not to affect the final
structure of the CRYAB amyloid fibrils; in contrast, it actually delays fibril growth, suggesting its
prolonged existence in the soluble preamyloid oligomer stage, which is considered to be the most
cytotoxic protein species [276]. Indeed, the preamyloid oligomer rather than aggresomes has been
shown to be mainly responsible for cardiac lethality in CryABR120G TG mice [236,277]. Furthermore,
recombinant CRYAB p.R120G is acutely cytotoxic to cultured cells when added to media [278].

The downstream harmful effects of amyloid species may be mediated by multiple mechanisms such
as membrane damage, mitochondrial dysfunction, and impairment of the UPS [279]. Indeed, CRYAB
mutations have been linked to mitochondrial problems, which are briefly discussed below [239,241].
Likewise, proteasomal malfunction in cells expressing CRYAB p.R120G and in CryABR120G TG hearts
is attributable to amyloid accumulation [278,280], and this may have widespread effects from cellular
signaling to sarcomeric maintenance [280]. On the other hand, while aggregates are considered
less toxic than preamyloid oligomers, they may hamper cellular function by the sequestration of
essential proteins such as HSPB1 [257,273] and, obviously, desmin [242]. Aggregates have also been
suggested to physically impair the contractility and the alter cytoskeletal properties in CryABR120G

TG cardiomyocytes [239,241], although myofibrillar misalignment and the aggregation of titin spring
elements may also contribute to these changes [218,239].

The clearance of insoluble aggregates depends heavily on macroautophagy. However, autophagic
flux is impaired both in CRYAB p.R120G transduced cardiomyocytes and transgenic heart, which is
presumably due to increased mechanistic target of rapamycin (mTOR) signaling [242,281], and its
restoration has been associated with reversal of the pathogenic effects [242,281–284]. In several
studies, boosting autophagy in cultured cells or in vivo has promoted the clearance of CRYAB
p.R120G aggregates and/or preamyloid oligomer, resulting in improved cell viability, amelioration of
cardiac pathology, and prolonged mouse survival, whereas suppressing autophagy has exacerbated the
disease-related changes [238,242,281–284]. Strategies proven to be beneficial include the overexpression
of Bcl-2 [282], Atg7 [281,283], or TFEB [242,284]; voluntary exercise [277,283]; and intermittent
fasting [242]. Very interestingly, in a recent study, Ma and colleagues demonstrated that virally
mediated overexpression of TFEB—or stimulation of TFEB activity by intermittent fasting—improved
the cardiac pathology of the hR120GCryAB mice by two mechanisms: While the stimulation of
autophagic flux removed CRYAB aggregates, the upregulation of HSPB8 normalized sarcomeric
ultrastructure and desmin localization independently of autophagy, apparently by chaperoning the
desmin molecules released from aggregates to their correct localization [242].

In addition to autophagic stimulation, other strategies successfully used to decrease mutant
CRYAB aggregates and improve cardiac pathology in p.R120G transgenic mice include upregulation of
the UPS by overexpression of the proteasome 28 subunit α [285] and doxycycline treatment [286].

Mitochondria and Redox Status

The “rubbed-out” fibers in αB-crystallinopathic muscles suggest mitochondrial depletion at
an early stage [287]. In line with this, CryABR120G TG murine hearts show altered mitochondrial
ultrastructure and localization, and early impaired respiratory function [241]. The mitochondrial
abnormalities may be due to several upstream events, including the amyloid accumulation discussed
above [241,279]. Disruption of the desmin IFs is associated with mitochondrial mislocalization
and dysfunction also in primary desmin deficiency [288,289], and this was recently shown to be
normalized by CRYAB overexpression, leading to the conclusion that CRYAB has a mitoprotective
function supported by a functional desmin cytoskeleton [290]. Both desmin and CRYAB interact with
voltage-dependent anion channel (VDAC), which is a component of the mitochondrial permeability
transition pore (PTP) and the sarcoplasmic reticulum mitochondria-associated membranes [241,290].
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PTP opening and activation of the mitochondrial apoptosis pathway, which are possibly related to
an increased interaction of CRYAB p.R120G with VDAC, were shown to occur in CryABR120G TG
cardiomyocytes [241].

Mitochondrial dysfunction leads to increased reactive oxygen species (ROS) production, which
may cause further oxidative damage to mitochondria, leading to a vicious cycle. In CryABR120G

TG mice, antioxidant treatment improved mitochondrial morphology and respiratory function but
did not restore mitochondrial localization [239]. Efficient normalization of mitochondrial function
was achieved by TFEB transduction or intermittent fasting in hR120GCryAB mice, where stimulated
autophagic flux reallowed the mitophagic removal of depolarized mitochondria [242].

Perhaps counterintuitively, a key role in the cardiac pathogenesis in hR120GCryAB mice has been
demonstrated for the hyperactivation of antioxidant genes such as G6PD, leading to reducing stress (i.e.,
imbalance of reduced and oxidized forms of glutathione and NADPH) [237,291]. The process is thought
to initially result from increased ROS production; then, it is sustained by the sequestration of Keap1,
which is a negative regulator of the antioxidant response, into mutant CRYAB aggregates [237,291].
The reducing stress promotes protein aggregation and is linked to altered gene expression and
perturbations in the cytoplasmic thioredoxin system on multiple levels [237,292,293].

Conclusions

As discussed above, dominant mutations in CRYAB can cause a multitude of defects in the
target tissues. The pathogenesis of classical αB-crystallinopathy is likely to depend on a combination
of gain-of-function and loss-of-function mechanisms, whose most significant ultimate cause is the
amyloid aggregation of mutant CRYAB [242,258,271]. Although most of the mechanisms have been
studied in the heart, the same are likely to be relevant in skeletal muscle.

In line with the central role of CRYAB aggregation in the pathogenesis, mutations leading to
dominant skeletal and/or cardiac muscle disease affect either the ACD, which is predicted to disrupt
the dimer interface, or the CTD (Table 5). The mutations truncating the CTD have been proposed
to expose the client-binding site, increasing chaperone function toward some clients and at the
same time promoting CRYAB aggregation [258]. Similarly, the C-terminal missense mutations have
been suggested to affect CTD–ACD interactions [261]. For some mutations, such as p.G154S and
p.*176Wext*19, further functional studies would be welcome, as they could give insight into the more
atypical tissue manifestations.

Recessive αB-Crystallinopathy

The similar clinical and pathological phenotypes of the severe recessive infantile
αB-crystallinopathy cases strongly suggest for the three reported mutations a shared
pathomechanism [232–234]. As the recently described initiation codon mutation most likely prevents
the protein expression, the phenotype seems to result from a total loss of CRYAB [234]. In this light,
it is interesting that the two frameshift alleles (p.S21Afs*24 and p.S115Pfs*14) were reported to produce
low levels of truncated proteins [232,233].

Functional studies on p.S115Pfs*14 revealed that the mutant protein is extremely insoluble, but its
solubility is increased upon the coexpression of wild-type CRYAB [274]. Overexpression of the mutant
protein in BHK21 cells produced aggregates, some of which contained desmin, and it also elicited a
stress response [274]. Based on these findings, the pathogenic effect of p.S115Pfs*14 was suggested
to depend on loss of function due to the unavailability of the aggregating mutant protein, with an
additional toxic gain-of-function possibly contributing to the severity [274]. However, the similar
phenotype of the c.3G > A (p.Met1?) mutation now argues against a major contribution from a
gain-of-function component [234]. Despite interacting with wild-type CRYAB, the p.S115Pfs*14 protein
does not seem to interfere with its function in heterozygous carriers, although late-onset dominant
effects are not excluded [274].
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Table 5. αB-crystallin (CRYAB) mutations reported to cause muscle or heart disease, and functional characteristics.

Mutation 1 Phenotype 2 Inheritance
3

Thermal
Stability Aggregation Hyperphosphorylation Oligomer

Size
Hetero-oligom/

HSPB1
Hetero-oligom/

HSPB6
HSPB8

Interaction
Chaperone

Activity References

c.3G>A (p.M1?) infantile MFM R [234]
c.60delC (p.S21Afs*24) infantile MFM R [232]
c.325G>C (p.D109H) MFM + DCM + cat D [225]
c.2326A>C (p.D109A) MFM (+ DCM) + cat D [226]
c.326A>G (p.D109G) AxM + RCM D + [227]

c.343delT (p.S115Pfs*14) infantile MFM R + [233,274]
c.358A>G (p.R120G) MFM + HCM + cat D – ++ + + + – – – + – [167,222,250,253,257,267,272,294]
c.451C>T (p.Q151*) MFM D – + + – – – – – +/– [223,258,259,272]
c.460G>A (p.G154S) DM/DCM D – = = = +/– [224,229,261]

c.464_465delCT (p.P155Rfs*9) MFM D – ++ + – – – – +/– [223,258,259,272]
c.470G>A (p.R157H) DCM D – + – = – +/= [228,261]

c.527A>G (p.*176Wext*19) DCM + cat D [295]

1 Reference sequences: NM_001885.3 (cDNA), NP_001876.1 (protein) 2 MFM/AxM/DM, myofibrillar/axial/distal myopathy; DCM/RCM/HCM, dilated/restrictive/hypertrophic
cardiomyopathy; cat, cataract 3 D, dominant; R, recessive.
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Compared to the more benign adult-onset phenotype of the Cryab/Hspb2 dKO mice [244], the severe
infantile disease caused by these recessive mutations is interesting [234,274] and suggests that CRYAB
is more crucial for developing muscle in humans than in mice.

3.3. HSPB1

HSPB1 (also known as Hsp27 in humans, Hsp25 in rodents) shows chaperone activity toward a
wide range of clients [190,296,297]. It is the most widely expressed of the human sHSPs, with basal
and stress-induced expression in several tissues [19,190,195]. HSPB1 is mostly present as polydisperse
oligomers of 400–600 kDa [172,190], whose dramatic dissolution to smaller species is associated
with the phosphorylation of the NTD [172,176,297–299], increased temperature [299], and oxidative
conditions [300,301]. It interacts with CRYAB and HSPB6, and it forms hetero-oligomers in tissues
coexpressing these sHSPs [17,19,180,302,303]. In muscle, HSPB1 shows a similar expression pattern
and localization to CRYAB, albeit its absolute levels are lower [197,198,203].

A structural feature unique among the HSPB family is the single cysteine residue (Cys137), which
under oxidative conditions links the subunits of the HSPB1 dimer through a disulfide bridge [304–307].
Oxidation of the cysteine may provide structural stability [304,306], increase client binding [307],
and regulate HSPB1 oligomerization and activity [171,305]. The cysteine is crucial for the ability of
HSPB1 to confer cellular protection against oxidative stress, although the molecular background is
unknown [305,308].

The structure–function relationship of HSPB1 is complex [193]. Activation of the chaperone
function is generally associated with the dissociation of oligomers to dimers [144,176,298], and recent
research has demonstrated that the monomer is the most active chaperone, at least toward some
clients [171,184,187]. Dimer dissociation is promoted by low pH [187], phosphorylation [184],
and reduction of the intersubunit disulfide bridge [171]. However, sequential changes in the HSPB1
phosphorylation and oligomerization states following different stress treatments are complex, leading
to the idea that the protein acts as a molecular stress sensor with multiple modes of protective
action [193,300,309].

One such cytoprotective function of HSPB1 is protection against oxidative stress, which is mediated
by increased glutathione levels due to the increased activity of G6PD and glutathione-reducing
enzymes [300,308,310–313] and reduced iron uptake [273,308,314]. As mutating the Cys137
residue abolishes the protective function, it may act as a redox sensor or directly react with
oxidative species [305,308]. HSPB1 has also been described a potent anti-apoptotic molecule:
it suppresses apoptosis by regulating both the intrinsic and Fas-induced apoptosis pathways at
several stages [220,309,315–322].

Protection of the cytoskeleton from stress-induced damage and modulating cytoskeletal structure
and function are considered to be among the principal functions of HSPB1. Similarly to CRYAB,
HSPB1 shows stress-induced cytoskeletal and myofibrillar association [197,203,323], and it has been
shown to protect and modulate all major cytoskeletal systems: actin [184,323–329], intermediate
filaments [208,210,330,331], microtubules [332], and titin [204]. In this regard, of particular relevance
for muscle could be the recently characterized mechanosensitive functions: HSPB1, which is
phosphorylated in response to mechanical stress, was shown to promote actin remodeling in strained
regions of the actin cytoskeleton [329] and to modulate reversible unfolding upon filamin caused by
mechanical stress [184]. The failure in the latter function leads to the irreversible damage of filamin,
necessitating its removal by the CASA pathway [184].

3.3.1. HSPB1 in Neuromuscular Disease

Mutations in HSPB1 typically lead to hereditary peripheral neuropathy, which can manifest as
dHMN (classified as dHMN IIb) or axonal CMT (CMT2F). These are considered as a continuum, in
which mild sensory involvement becomes more prevalent with disease progression [333–338]. Of the
approximately 30 identified HSPB1 mutations, most have a dominant effect, although some recessive
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or semidominant mutations have also been described [334,337,339]. HSPB1 mutations are the most
frequent cause of hereditary neuropathy [338]; in the cohort of 510 dHMN index patients studied by
Echaniz-Laguna and colleagues, HSPB1 accounted for 5.5% the cases [337]. In a large CMT cohort
(17,880 patients), the proportion of HSPB1 was approximately 0.5% [340]. Disease mutations are
located throughout the gene; a selection of these is presented in Table 6.

Neuropathies caused by HSPB1 mutations are usually rather benign in their clinical course. In a
recent natural history study by Rossor and colleagues, the average age of onset was 40 [338], but there
is considerable variation between families [337,338,341]. From initial distal lower limb weakness,
manifesting as foot drop, the symptoms progress slowly in a length-dependent manner to distal upper
limbs and proximal legs [337,338,341]. CNS involvement, namely pyramidal or cerebellar symptoms,
is found in a small subset of patients [337].

A more dramatic, rapidly progressing ALS-like phenotype has been reported in some patients
with HSPB1 mutations [342,343]. A heterozygous variant in the heat shock element of HSPB1 promoter,
interfering with basal expression and stress inducibility of the gene, was also identified in an ALS
patient [344].

Recently, a vacuolar distal myopathy in combination with motor neuropathy has been described
in a few patients, expanding the phenotypic range to myogenic symptoms [339,345].

3.3.2. Pathomechanisms of HSPB1 Mutations

The effects of disease-causing HSPB1 mutations have been characterized in various systems,
from basic biochemical studies to cell and animal models. These studies have revealed the diverse
effects of the mutations on the functions and properties of HSPB1 (Table 6). As the studies have utilized
different methodologies and most have included only a few variants, a detailed comparison of the
mutations is not feasible. However, some unifying themes emerge from the findings.

Properties of Mutant Proteins

Several pathogenic missense mutations are clustered at the β5 and β6+7 strands of the ACD
and the intervening loop [171]. Many of these variants affect the dimer interface [170,171,346,347],
and some have been shown to affect the homodimerization of HSPB1 [170] or its heterodimerization
with HSPB6 [346]. In line with the role of the dimer interface in client binding, the reduced dimerization
of p.R127W and p.S135F was found to be accompanied with potentiated chaperone function toward
some clients and increased binding to client proteins, and it was even reflected in improved cells
survival after heat shock [170,347]. Of the ACD mutations not located in the dimer interface, most
reside in other regions showing dynamic structure in the active HSPB1 monomer, underlining the
important role of these regions for HSPB1 function [171].

The p.R140G mutation, although located at the dimer interface, does not disrupt ACD dimerization
and was found to significantly decrease the chaperone activity of HSPB1 in vitro [346]. This mutation
corresponds to the pathogenic p.R120G change in CRYAB (see above), and it could therefore have
similar molecular consequences. Indeed, the p.R140G mutation impairs the ability of HSPB1 to inhibit
desmin gel formation, although the defect is less severe than that seen with CRYAB p.R120G [210].
Both mutant proteins show increased oligomer size and aggregation propensity [262,294,346]; however,
amyloid formation by HSPB1 p.R140G has not been reported. As the p.R120G mutation interferes with
the dissociation of CRYAB dimers in low pH [179,254,255], the same could be true for HSPB1 p.R140G
and possibly other ACD mutations involving basic residues [187].

Interestingly, the C-terminal extension p.A204Gfs*6, which is associated with an ALS phenotype,
was found to cause impaired dimer dissociation as well: this mutant protein sequesters wild-type
HSPB1 to stable heterodimers with impaired chaperone function [343]. Of the other HSPB1 mutations
outside the ACD, some have been demonstrated to decrease the chaperone activity in in vitro assays,
whereas others have shown little or no effect (Table 6) [343,348–350].
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Biophysical and biochemical characterization has shown that many mutations affect HSPB1
oligomerization, which may contribute to the dysregulation of chaperone activity and/or other
functions of HSPB1. In size exclusion chromatography, analytical ultracentrifugation, and dynamic light
scattering experiments, several of the mutant proteins show enhanced heat-dependent self-association
and form larger oligomers [346–350]. However, the mutant oligomers differ in their dynamics.
Some dissociate more readily than the wild-type protein [346–349] and show increased sensitivity to
phosphorylation, causing the same level of phosphorylation to lead to a more pronounced dissociation
of the oligomer [347,348]. Others, in particular mutations affecting the NTD, show impaired oligomer
dissociation and attenuated response to phosphorylation [350]. The altered oligomerization properties
of some NTD mutants were recently explained on the structural level by their altered interactions with
the ACD [138].

The substitutions affecting Pro182 in the CTD stand out due to their effect on HSPB1
solubility. The mutant proteins form aggregates that may also recruit wild-type HSPB1 or client
proteins [170,349,351]. The mutated residue is part of the IPI/V motif that mediates the interaction of
the CTD with the ACD, and mutations presumably lead to increased interdomain interactions within
or between HSPB1 monomers [349].

Downstream Pathomechanisms

The dominant pathogenic effects of HSPB1 mutations have been demonstrated in vivo in several
mouse models. Mice with neuronal overexpression of human HSPB1 p.S135F or p.P182L developed
axonal motor neuropathy and muscle denervation, which is evident as progressively impaired
motor performance and a decrease in muscle strength [352]. While the motor phenotype was more
severe in the p.P182L model, the p.S135F mouse showed also sensory neuropathy, consistently
with the effects of these mutations in human patients [352]. The findings were corroborated by
another model overexpressing HSPB1 p.S135F, which, in addition to axonal neuropathy, showed also
demyelination [353]. Neuropathological and electrophysiological changes were also found in the
mouse overexpressing HSPB1 p.R136W in neurons, although this model did not develop a clinical
phenotype [354]. In contrast to the overexpression models, mice expressing the p.S135F or p.P182L
mutant proteins at a more physiological level did not develop even subclinical neuropathy [355].

There is substantial evidence that some of the pathogenic effects of HSPB1 mutations are mediated
by cytoskeletal abnormalities affecting the neurofilament (NF) and microtubule (MT) networks. A few
mutations have been shown to disrupt NF assembly in vitro [333,351,356], and NF alterations have also
been observed in mouse models expressing HSPB1 mutations [353,354]. These changes may depend
on the aggregation of NF proteins with mutant HSPB1 [333,351,356] or their reduced axonal transport,
which correlates with increased NF phosphorylation by Cdk5 [357]. Furthermore, in vitro studies
of Nefedova et al. hinted for several HSPB1 mutants an increased interaction with NFs, although
the differences did not reach statistical significance [331]. A direct role for NFs in the pathogenesis
was indicated by Zhai and colleagues, who showed that neurotoxicity of HSPB1 p.S135F for cultured
motoneurons was diminished in NFL-deficient cells [356].

HSPB1 plays a role in the formation of non-centrosomal MTs [332], and mutations at the dimer
interface have been shown to increase its binding to tubulin and MTs and disturb MT dynamics in
transfected cells and primary neurons by overstabilizing MTs [358]. Decreased tubulin acetylation is a
feature of mouse models expressing mutant HSPB1 [352,353,359], and this was suggested to reflect a
secondary change in response to MT hyperstability [358].

Cytoskeletal defects, tubulin hypoacetylation in particular, may lead to neurodegeneration by
disturbing the axonal transport of proteins and organelles. Indeed, a decreased proportion of moving
mitochondria and/or lower mitochondrial velocity have been reported in neurons derived from the
HSPB1 p.S135F mouse model [352] or from patient-derived induced pluripotent stem cells (iPSCs) [359]
or transduced with mutant proteins [360]. The defects are relevant for the pathogenesis and seem
to be at least partly due to MT hypoacetylation, as HDAC6 inhibitors can correct the mitochondrial
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transport in vitro [352,359,361] and reverse the neuropathic phenotype of the HSPB1 p.S135F mouse
model in vivo [352].

The role of mitochondrial defects in the downstream pathomehcanism of HSPB1 mutations
gained additional support from recent studies [360,362]. In the experiments of Kalmar and colleagues
on cultured motor neurons, the expression of HSPB1 mutants, most remarkably p.S135F, decreased
mitochondrial membrane potential in neurites and impaired complex I activity [360]. This was
accompanied with decreased glutathione levels and increased oxidative stress [360]. As the retrograde
transport of p75NTD was affected to a lower extent, a primary impairment in mitochondrial function,
rather than a cytoskeletal defect, was suggested to underlie the altered mitochondrial transport in this
model [360]. One mechanism for this was identified by Schwartz et al., who showed that an abnormal
interaction of mutant HSPB1 with ceramide synthase led to decreased mitochondrial ceramide content
and impaired respiration [362].

The lack of an overt phenotype in HSPB1-deficient mice [363] suggests that the pathomechanisms
of dominant HSPB1 mutations involves a gain-of-function component [352]. However, the loss of
cytoprotection is another potential consequence of HSPB1 mutations, which may contribute to the
pathomechanism in combination with dominant toxicity [364]. Impaired tolerance to thermal and
unfolded protein stress has been observed in patient fibroblasts [365]. HSPB1 was shown to protect
cells from ER-stress-induced apoptosis by facilitating the proteasomal turnover of BIM, and several
disease mutants are defective in this respect [322]. Recent research has demonstrated as well that
non-cell autonomous protective effects may be altered by the mutations: while wild-type HSPB1
expressed in astrocytes with SOD1 p.G93A protects co-cultured motoneurons from mutant SOD1
toxicity, the p.G84R and p.R136W fail to show such a protective effect [364].

The p.P182L mutation was recently shown to increase the interaction of HSPB1 to the RNA-binding
protein PCBP1, interfering with its ability to suppress the translation of its target genes—some which
are known neuropathy genes [366]. HSPB1 p.R127W did not show the same effects, suggesting a
mechanism specific for p.P182L and possibly other C-terminal mutations [366].

Very recently, autophagy was added to the list of mechanisms potentially affected by HSPB1
mutations. HSPB1 was shown to interact with SQSTM1/p62 and promote macroautophagy by
driving the formation of SQSTM1 bodies and phagophores [367]. HSPB1 mutants (p.R127W,
p.S135F, and p.P182L) showed stronger interaction with SQSTM1 and impaired autophagic flux [367].
Decreased autophagic flux was also seen in motor neurons derived from patient iPSCs, supporting the
relevance of this mechanism for the pathogenesis [367].

In summary, disease-causing mutations exert pleiotropic deleterious effects on the HSPB1 protein,
and the pathogenesis of CMT/dHMN is likely to depend on a combination of downstream mechanisms
that may be different for different mutations. Interestingly, a structural connection between the two
neuromyopathy-associated HSPB1 mutations suggests that the myopathy phenotype may involve
a distinct pathomechanism, which is possibly analogous to α-crystallinopathy [345]. The p.D129E
mutation affects the Asp residue predicted to form a salt bridge with Arg140 at the dimer interface,
similarly to the Asp109–Arg120 pair in CRYAB [345]. Therefore, Lewis-Smith and colleagues predicted
that mutations in Arg140 should also cause myopathy [345] and, indeed, p.R140G in the homozygous
state was identified in a patient with a neuromyopathic phenotype [339].
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Table 6. Functional consequences of HSPB1 mutations. NTD: N-terminal domains, CTD: C-terminal domains.

Domain Mutation
1

Inheritance
2

Oligomer
Size

Oligomer
Stability

Oligomer
Sensitivity to

Phosphorylation
Dimerization Chaperone

Function
Client
Binding

Thermal
Stability Aggregation Cytotoxicity

Cell
Stress

Tolerance

Effects on
Neurofilaments

Effects on
Microtubules

Susceptibility
to Proteasomal

Degradation
Mutant HSPB1

References

NTD P7S D = – + [337]
G34R D + + – – [336,350]
P39L D + + – ± + [334,350,360]
E41K D + + – – [336,350]
G53D R = – + [337]

L58Afs*105 D = + [337,340]
A61Rfs*100 D = + [337]

G84R D + – + – (+) [331,334,348]
S86L R [342]

ACD L99M R + – + – (+) [331,334,348]
R127W D + – + – + + – + + [170,333,347,358]
R127L D – [365]
Q128R D = – + [337]
D129E D [345]
S135F D + – + – + + = + + + + [170,333,347,356,358,360]

R136W D + – – + + = = + [170,333,347,358]
R140G SD ++/– – ≈ – – + + (+) [210,331,334,339,346,360]
K141Q D (+) – – – (+) [331,346,368]
T151I D = = = = = [170,333,358]
T164A D – = [349,369]

M169Cfs*2 D = – – [365]
CTD T180I D ≈ [335,349]

P182S D + + = – + (+) [331,349,370]
P182L D + = = + – + = [170,333,351,358]
S187L D = + – [337]

R188W D – – = [336,349]
A204Gfs*6 D + – [343]

The table shows a selected subset of HSPB1 mutations for which functional information is available. 1 Reference sequence NP_001531.1 2 D, dominant; R, recessive; SD, semidominant.
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3.4. HSPB3

HSPB3 is, at 17 kDa, the smallest member of human HSPBs [19,371]. It shows by far the highest
expression in heart, followed by skeletal muscle and, accordingly, its expression is induced in vitro in
myotube differentiation [18,19]. In addition, HSPB3 has been detected in smooth muscle and different
fetal tissues [371], regionally in the CNS [372–374], and both in sensory and motor neurons in the
peripheral nervous system [375].

3.4.1. Functions of HSPB3

In contrast to other sHSPs, HSPB3 does not seem to homodimerize [19]. Instead, HSPB3 associates
with HSPB2, which is another sHSP prominently expressed in cardiac and skeletal muscles [19,376].
The proteins form heterotetramers with a HSPB2:HSPB3 subunit ratio of 3:1, and these assemble into
distinct oligomers [377,378]. As the majority of HSPB3, at least in striated muscles, is associated with
HSPB2 [19,377], the functions of the two chaperones need to be considered together.

In muscle, HSPB2 has been detected at or near the Z-discs, in cardiac intercalated discs, and in
neuromuscular junctions [197,376,379]. While HSPB2 and HSPB3 are not heat-inducible in contrast to
canonical sHSPs [19], a role in proteotoxic stress management is supported by their upregulation in the
SBMA mouse model expressing a polyQ-expanded androgen receptor [380]. In different experimental
setups, HSPB2 and HSPB3 alone or in complex have shown varying degrees of client-dependent
chaperone activity in vitro or in cultured cells [376,377,381–384], and overexpressed HSPB2 also
improved the thermotolerance of transfected cells [385].

The association of HSPB2 with mitochondria in myotubes [385] and interaction with a large number
of mitochondrial proteins [384] have suggested that HSPB2 has a role in protecting mitochondria from
stress. Indeed, the cardiac overexpression of HSPB2 was shown to confer mitochondrial protection in
an ischemia/reperfusion model [384], whereas HSPB2 deficient-mice showed altered mitochondrial
function in cardiac overload [386]. On the other hand, the stress-induced association of HSPB2
and/or HSPB3 with sarcomeric and cytoskeletal structures suggests a role in the stabilization of
these proteins [197,376,387,388]. This notion is supported by the interactions of HSPB2 with several
myofibrillar and cytoskeletal components, including actin, myosin, titin, and filamin [384].

The role of HSPB2/HSPB3 in developing muscle was recently elucidated by Morelli and
colleagues, who showed that the intrinsically disordered C-terminal region of HSPB2 mediates
its compartmentalization into droplet-like membraneless organelles through liquid–liquid phase
separation [389]. Overexpressed HSPB2 was found to form nuclear compartments that altered the
distribution of lamin A and chromatin and suppressed transcription, and this could be prevented by
HSPB3 coexpression [389]. In differentiating myotubes, endogenous HSPB2 was shown to form both
cytosolic and nuclear foci, and the authors proposed that this compartmentalization mediates the
nuclear remodeling known to take place during muscle differentiation [390]. The important role of
HSPB3 in this context appears to be the negative regulation of HSPB2, preventing its inappropriate
phase separation [389]. Interestingly, the absence of HSPB3 from nuclear HSPB2 foci [389] suggests
that a yet unidentified factor may regulate the phase separation of HSPB2 by modulating its interaction
with HSPB3. Another interesting question is whether the functions of HSPB2/HSPB3 in mature muscle
depend on the phase separation of HSPB2.

Given the causative role of HSPB3 mutations in neuropathies (see below), its expression and
functions in the nervous system are of interest. In peripheral neurons, HSPB3 showed, in addition to
cytosolic localization, association to the actin and neurofilament cytoskeleton, and mitochondria [375].
A functional role in neuron survival was supported by in ovo studies on chicken embryos, where singly
overexpressed HSPB3 decreased the number of motor neurons, but it showed a neuroprotective effect
in the limb bud removal assay [375].

It is not known if the functions of HSPB3 outside striated muscles are related to its complex with
HSPB2. As the expressions of HSPB3 and HSPB2 do not always correlate [19,373], it seems plausible
that HSPB3 could in some situations complex with other partners; however, no definitive evidence
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exists for binary interactions with other sHSPs [19,391]. La Padula et al. speculated that HSPB3 could
in neurons associate with HSPB8 [375]. While yeast two-hybrid studies did suggest binding of HSPB3
to HSPB8, this was not supported by FRET [391].

Another unclear issue is whether HSPB2 and HSPB3 can engage into physiologically relevant
interactions with BAG3. In vitro, singly expressed HSPB2 shows weak binding to BAG3, but this is
disrupted in the presence of HSPB3 [18]. HSPB8, in turn, interacts with the binding site in BAG3 with
higher affinity than HSPB2 [18]. Consequently, in myotubes, where on one hand highly expressed
HSPB8 competes with HSPB2 for BAG3 binding, and on the other hand HSPB3 competes with BAG3 for
HSPB2, the only complex present in detectable amounts was that of HSPB8 with BAG3 [18]. However,
the competing interactions could in some conditions produce alternative complexes [18].

3.4.2. HSPB3 in Neuromuscular Disease

Dominant mutations in HSPB3 are a rare cause of neuropathy and myopathy: since the
identification of first pathogenic HSPB3 mutation by Kolb and colleagues 10 years ago [392], only a few
additional ones have been published (Table 7) [389,393]. The missense changes p.R7S and p.Y118H
have been reported in single families with dominantly inherited axonal neuropathy, the clinical
phenotype ranging from motor-predominant with mild sensory involvement to a sensorimotor CMT
phenotype [392,393]. Two additional dominant HSPB3 mutations, p.L34Ffs*50 and p.R116P, were
reported in patients with myopathy [389]. The patient with the frameshift mutation was described
as having shoulder-girdle weakness and atrophy, whereas the p.R116P missense patient presented
with muscle weakness and axonal neuropathy, and in EM showed myofibrillar disarray and a range of
other abnormalities, including deformed nuclei [389]. At this stage, the small number of cases and
the limited detail of the published clinical descriptions [389,392,393] do not allow determining if the
“neuropathy” and “myopathy” patients represent distinct diseases or a phenotypic continuum, nor
evaluating possible genotype–phenotype correlations.

Table 7. HSPB3 mutations causing neuromuscular disease.

Mutation 1 Phenotype Effects Ref

c.21 G>T (p.R7S) dHMN slightly altered oligomerization [378,392]

p.L34Ffs*50
(p.A33Afs*50 in [389]) myopathy unstable protein, loss of HSPB2

regulation [389]

p.R116P myopathy with
axonal neuropathy

aggregation, loss of HSPB2
interaction and regulation [389]

c.352T>C (p.Y118H) CMT2 not determined, likely loss of
HSPB2 interaction and regulation [393]

1 Reference sequences: NM_006308.3 (cDNA), NP_006299.1 (protein).

The HSPB3 mutations apparently cause disease through distinct pathomechanisms. The missense
mutations p.R116P and p.Y118H affect closely spaced residues at the ACD β6+7 strand, which is
located at the HSPB2/HSPB3 heterodimer interface [378,393]. Of note, the former involves the highly
conserved basic residue homologous to the mutation hotspot in several sHSPs (HSPB1, CRYAB and
HSPB8). Morelli and colleagues demonstrated that p.R116P causes the aggregation of HSPB3 as well as
abolishes its interaction with HSPB2, thereby preventing the ability of HSPB3 to regulate HSPB2 phase
separation [389]. In an experimental setup, the inappropriate phase separation of HSPB2, which was
not inhibited by mutant HSPB3, led to the formation of excessive HSPB2 compartments in the cytosol
and nucleus, sequestering lamin A to the nuclear foci and interfering with gene expression [389].

The frameshift allele produces an abnormal protein that is subject to rapid degradation by the
proteasome and hence is unable to regulate HSPB2 [389]. Hence, this mutation seems to share
the downstream pathomechanism with p.R116P and probably p.Y118H. The nuclear abnormalities
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observed in p.R116P patient muscle are in line with the idea that the inappropriate nuclear phase
separation of HSPB2 plays a pathogenic role in the human patients [389]. It is of note that the dominant
effect of the mutations suggests that the regulation of HSPB2 is highly sensitive to the correct levels of
functional HSPB3. In addition, as pointed out by the authors, a toxic gain-of-function related to HSPB3
aggregation may also contribute to the pathomechanism of the p.R116P mutation [389].

In contrast to the other reported mutations, p.R7S does not disrupt the interaction with HSPB2 [389].
The R7 residue is located in HSPB3 NTD, which is close to the IXI/V motifs thought to mediate
oligomerization, and the mutation was shown to have a relatively mild effect on higher-order
HSPB2/HSPB3 oligomer formation [378]. The functional consequences of this alteration remain to be
been characterized. In the in ovo experimentation by La Padula et al., some differences in neuron survival
were seen between wild-type and p.R7S, although these did not reach statistical significance [375].

3.5. HSPB8

HSPB8 (Hsp22) shows widespread expression, with the clearly highest levels observed in cardiac
and skeletal muscles [394–396], and it is induced in proteotoxic stress [397–402]. Unlike most other
sHSPs, HSPB8 does not seem to form homo-oligomers nor hetero-oligomers with other sHSPs: HSPB8
homodimers form larger oligomers only at high concentrations [189,190], and while interactions of
HSPB8 with several other sHSPs have been detected in experimental conditions [20,391,394,403], these
are relatively weak [404,405].

An important functional partner of HSPB8 is BAG3, which associates with an HSPB8 dimer to a
2:1 complex [15]. Although BAG3 is able to bind multiple different sHSPs, the special relationship of
HSPB8 and BAG3 is illustrated by the high affinity of the two proteins and the decreased stability of
HSPB8 in the absence of BAG3 [15,16,406]. Therefore, BAG3 has been considered an obligate partner
for HSPB8. However, interestingly, recent research has demonstrated that some of the functions of
HSPB8 are actually independent of BAG3 [407–409]. Hence, it is not clear to what extent the reported
functions and effects of HSPB8 depend on BAG3-dependent and independent pathways.

HSPB8 shows phosphorylation-regulated chaperone activity in vitro [169,189,190,262,381,410–
413]. While HSPB8 was the most effective of the chaperones tested by Bruinsma et al. in
preventing α-synuclein fibrillization [381], purified HSPB8 is generally not a particularly effective
chaperone in vitro, suggesting specificity for certain clients [190]. However, in the cellular context,
HSPB8 has been shown to efficiently promote the autophagic clearance of misfolded and/or
aggregation-prone proteins, including many disease-associated mutant proteins such as mutant
SOD1, polyQ-expanded androgen receptor and huntingtin, TDP-43, and C9ORF72-derived dipeptide
repeat proteins [15,397,400,409,411,414–419].

The function of HSPB8 in promoting autophagy depends on its interaction with BAG3.
Autophagic degradation of ubiquitinated client proteins through the CASA pathway (discussed
in more detail below) is directly mediated by the HSPB8–BAG3 complex, to which HSPB8 is thought
to provide client-binding capacity [15,420,421]. In addition, HSPB8 and BAG3 may also stimulate
pro-autophagic signaling and suppress protein translation by promoting eIF2α phosphorylation, which
is a pathway demonstrated to contribute to their effect against polyQ aggregates [422].

Upstream of autophagy, HSPB8 promotes the early sequestration of client proteins to ubiquitinated
microaggregates in a BAG3-independent manner, and through interactions with BAG3 and SQSTM1,
it promotes the transport of clients to the aggresome [408]. Notably, the common functions of HSPB8
and BAG3 are not limited to sequestration and degradation: at least in vitro, the two proteins act
together to promote the refolding activity of HSPA [16].

Recent work by Li et al. indicated for HSPB8 a function also in mitophagy [423], and this was
suggested by the authors to contribute to the protective effects of HSPB8 in ischemia–reperfusion and
oxidative stress models [424–427]. BAG3 has been shown to promote mitophagy as well [428], and it is
not known whether the two proteins act together in this function. With regard to mitochondria, analysis
of cardiac-specific HSPB8-deficient and overexpressing mice has shown that HSPB8 has a stimulatory
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effect on respiration, which is mediated by effects on STAT3-dependent stress signaling and the
HSPB8-dependent mitochondrial localization of iNOS [429,430]. These changes in the mitochondrial
function are considered to underlie the increased susceptibility of HSPB8-deficient mice to heart failure
after pressure overload and, on the other hand, hypertrophy and increased oxidative stress in the
overexpressing model [429,431]. In this context, it should be mentioned that Drosophila Hsp22—a
constitutively mitochondrial sHSP in the fly—is not the closest functional ortholog of HSPB8 [432,433],
and the mitochondrial functions of the two need not necessarily be the same.

In addition to autophagy, HSPB8 may also play a role in proteasomal degradation. This was
suggested by the increased proteasome expression and activity in the cardiac HSPB8-overexpressing
mouse model and the physical interaction of HSPB8 with the proteasome [434].

3.5.1. HSPB8 in Neuromuscular Disease

Mutations in HSPB8 typically lead to a continuum of hereditary neuropathies ranging from
dHMN (type IIa) to CMT (type 2L), which are highly variable in the clinical course [337,435–437].
The clinical phenotypes are very similar to the neuropathies caused by HSPB1 mutations, as discussed
above [336,337]. Remarkably, the disease mutations (Table 8) most often affect the single hotspot
residue Lys141 (corresponding to Arg140 of HSPB1 and Arg120 of CRYAB; see above): mutations
leading to four different missense changes of this residue (p.K141N, p.K141E, p.K141T and p.K141M)
have been so far identified [337,435–437]. Two missense mutations affecting other residues, p.P90L
and p.N138T, were described in dHMN patients only recently [337].

Apart from the typical pure neuropathy phenotype, HSPB8 mutations may cause myopathy,
with or without neurogenic involvement [438–441]. Ghaoui and colleagues first identified the
heterozygous mutations c.421A>G (p.K141E) and c.515dupC (p.P173Sfs*43) in patients featuring motor
neuropathy in combination with distal-onset myopathy [438]. Both of these variants have been later
found in additional families [440,441]. Another frameshift mutation c.508_509delCA (p.Q170Gfs*45),
resembling the previously reported one on the protein level, was identified by Echaniz-Laguna and
colleagues in several unrelated families with axial and distal myopathy [439]. These patients showed
muscle involvement similar to that reported for p.P173Sfs*43 [438] with additional involvement of
paraspinal muscles, but there was no associated neuropathy [439]. The reported pathological features
in all HSPB8-related myopathies have been similar: dystrophic changes and MFM pathology with
protein aggregates (desmin, myotilin, CRYAB, dystrophin, HSPB8, DNAJB6, myotilin, BAG3, TDP-43,
and ubiquitin) and rimmed vacuoles [438–441].

3.5.2. Animal Models

Different mouse models have been established to study the effects of HSPB8 deficiency and
mutations in vivo [396,429,442,443]. The most informative of these are the knock-in (KI) model recently
described by Bouhy and colleagues, and the knockout (KO) model created in parallel [443].

The KI model, with the p.K141N mutation introduced in murine HSPB8, recapitulates well the
effects of HSPB8 mutations in human patients [443]. Homozygotes develop a motor neuropathy with
progressive axonal degeneration. The neuropathology, with the accumulation of mitochondria and
other degenerating organelles, is suggestive of impaired axoplasmic flux [443]. On the physiological
level, the disease manifests as declining strength and locomotor performance, which is apparent from
9 months of age [443]. The electrophysiological and neuropathological changes and locomotor deficit
are similar to those reported by Zhang et al. in a transgenic mouse model ubiquitously overexpressing
human HSPB8 p.K141N [442].

In addition to the neuropathy, homozygous p.K141N KI mice develop a myopathy phenotype,
which is presumably of myogenic origin and thus independent of the motor neuron defect [443].
In line with human patients with HSPB8-related myopathy, the muscle pathology shows features
of human myofibrillar myopathy, with Z-disc disintegration, accumulation of granulofilamentous
material, aggregates positive for HSPB8, CRYAB, and desmin, and rimmed vacuoles [443].
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Although heterozygous p.K141N KI animals showed normal performance in functional tests,
ultrastructural analysis of nerves and muscles revealed similar pathological changes as seen in
homozygotes [443]. Importantly, HSPB8 KO animals did not develop a motor phenotype nor
myofibrillar myopathology, indicating that the main phenotypic features seen in the homozygous KI
mice were due to a dominant toxic effect of the HSPB8 p.K141N rather than loss of function [443].

Very interestingly, the two reported Hspb8 KO models have normal lifespan with no overt disease
phenotype [429,443]. However, Bouhy et al. observed an accumulation of abnormal mitochondria
in the muscles of their KO animals [443], and this is in line with the functional alterations in cardiac
mitochondria reported by Qiu et al. [429].

Recently, Jabłońska and coworkers developed Drosophila models based on the muscle-specific
overexpression of fluorescently tagged Hsp67Bc, which is the fly ortholog for HSPB8 [433,444]. In this
context, the mutations p.R126E and p.R126N (equivalent to HSPB8 p.K141E and p.K141N) had
different phenotypic outcomes [444]. The p.R126E mutant flies showed changes such as myofibrillar
disorganization, altered neuromuscular junctions, and mitochondrial disruption and depolarization,
which were reflected in impaired muscle function [444]. On the other hand, the p.R126N mutation
caused a massive aggregation of the mutant protein but less severe sarcomeric alterations and no
signs of mitochondrial abnormalities [444]. In functional assays, these flies showed normal muscle
performance [444].

3.5.3. Pathomechanisms of HSPB8 Mutations

Functional studies, mostly done with p.K141E and p.K141N, have demonstrated for HSPB8
mutations a combination of gain-of-function and loss-of-function effects (Table 8), with many similarities
to HSPB1 and CRYAB mutations.

Chaperone Activity and Autophagy

In vitro work utilizing purified proteins demonstrated that the chaperone activity of HSPB8
p.K141E is, depending on the client, normal or clearly impaired [189,413]. While these studies have
assayed the holdase function with specific clients, cell-culture-based experiments have offered a more
comprehensive view on the effects of mutations—the flipside being that the specific pathway(s)
responsible for the defects are more difficult to pinpoint. Using different aggregation-prone
clients (polyQ proteins, mutant SOD1, HSPB1, p.P182L), such studies have shown that the disease
mutations impair the ability of HSPB8 to prevent the formation of aggregates and/or promote their
clearance [397,411,433,438,445]. These effects may partially be due to compromised client binding and
partially to defective autophagy. Indeed, Kwok et al. showed that while wild-type HSPB8 stimulates
autophagy in NSC34 cells, the p.K141N mutant suppresses it compared to the baseline situation, which
is due to blocked autophagic flux at the level of autophagosome–lysosome delivery or fusion [445].

Aggregation and Cytotoxicity

When expressed in cultured cells, mutant HSPB8 constructs have been reported to exhibit varying
degrees of cytotoxicity [337,396,435,446,447]. Irobi and colleagues reported cytotoxic effects of p.K141N
and p.K141E in the N2a neuronal cell line [435] and in primary motoneurons, where transduced
cells showed neurite degeneration [446]. Less pronounced neurite degeneration was seen in primary
sensory neurons expressing the p.K141E mutant protein, whereas primary cortical neurons or glial
cells showed no signs of cytotoxicity [446], suggesting that motor neurons are most susceptible to the
toxic effects of mutant HSPB8 [446]. For the more recently described mutations, mild cytotoxicity
has been reported in cardiomyocytes, as well as SH-SY5Y and N1E-115 neuroblastoma cells [337,396].
Neurotoxic effects are supported by the decreased number and morphological abnormalities of sensory
neurons in patient skin biopsies [448].
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Table 8. HSPB8 mutations causing neuromuscular disease.

Mutation 1 Phenotype 2 Self-Interaction HSPB1
Interaction

CRYAB
Interaction

BAG3
Interaction

In Vitro
Chaperone

Act.

In Vivo
Chaperone

Act.
Aggregation Cytotoxicity References

P90L NP = (–) (+) [337]
N138T NP = (–) (+) [337]
K141E NP/NMP + + + (–) +/– – + ++ [20,397,411,433,435,438]
K141M NP + (–) (+) [337]
K141T NP [437]
K141N NP ++ ++ + +/– – +/(–) + [20,337,396,397,411,433,435,448]

Q170Gfs*45 MP [439]
P173Sfs*43 NMP [438]

1 Reference sequence NP_055180.1; 2 NP, neuropathy; MP, myopathy; NMP, neuromyopathy.
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The cytotoxicity of mutant HSPB8 has been suggested to depend on its aggregation propensity,
which was observed for p.K141E and p.K141N in several in cell models [20,396,435,447,448],
including primary patient fibroblasts [448], as well as in vivo in HSPB8 p.K141N-expressing mouse
models [396,443]. However, the relationship of aggregation with cytotoxicity is not entirely clear.
The cytotoxic effects seen for various mutant constructs in SH-SY5Y cells [337] and primary motor
neurons [446] were not associated with microscopically detectable aggregation. Similarly, in Drosophila
models, the visibly aggregating Hsp67Bc p.R126N protein was associated with a less severe phenotype
than p.R126E [444]. These observations could be in line with the idea that the most cytotoxic species is
a soluble preamyloid oligomer, which is thought to be the case with CRYAB [236,277]. Indeed, Sanbe
and colleagues demonstrated that recombinant HSPB8 p.K141N forms amyloid oligomers in vitro
similarly to CRYAB and shows cytotoxic effects when added to cell culture media [396]. However, the
mild effects of HSPB8 compared to CRYAB mutations led the authors to suggest that the amyloidogenic
properties are not fully correlated with cytotoxicity [396].

Aggregates of mutant HSPB8 may also recruit other proteins of the PQC machinery,
as demonstrated with HSPB1 and HSPA [435,448]. Along these lines, the p.K141N and p.K141E
mutations have been found to increase the binding of HSPB8 with HSPB1, CRYAB, and HSPB8
self-association [20,435]. Regarding the HSPB8–BAG3 interaction, the picture is unclear: while some
mutations have shown no effect on BAG3 binding, others have indicated decreased or increased
binding with partly contradictory results [15,183,337,433].

Mitochondria and Oxidative Stress

Several lines of evidence suggest that one of the downstream pathways mediating the pathogenic
effects of HSPB8 mutations is mitochondrial dysfunction, which can be due to loss of protective or
stimulatory functions or toxicity of the mutant proteins, or perhaps both. In addition to the fly models
discussed above, alterations in mitochondrial function have been observed in patient fibroblasts [448],
SH-SY5Y cells transfected with HSPB8 p.K141N [447], as well as in hearts of p.K141N-overexpressing
mice [396]. Sanbe and colleagues also noted an increased mitochondrial localization of HSPB8 p.K141N
in cardiomyocytes and transgenic hearts, and—similarly to CRYAB p.R120G—increased interaction
with VDAC, although the functional significance of these changes is unclear [396]. On the other hand,
the ability of recombinant HSPB8 p.K141N to suppress the oxidative phosphorylation of isolated
mitochondria clearly speaks for direct toxicity of mutant HSPB8 [396].

In SH-SY5Y cells expressing HSPB8 p.K141N, the aggregation of mitochondria and the mutant
HSPB8 was accompanied by mitochondrial depolarization, increased ROS levels, and reduced cell
viability [447]. Interestingly, HSPB8 p.K141N expression in this model was associated with a reduced
nuclear level of NRF2, which is the transcription factor driving antioxidant response. This suggests that
the mutation may—as recently suggested for the BAG3 p.P209L mutation—interfere with the ability
of HSPB8–BAG3 to regulate the p62–KEAP1–NRF2 pathway [408,447]. Notably, NRF2 localization,
mitochondrial parameters, and cell viability were reversed by the antioxidant L-3-n-butylphthalide,
which is a treatment that also increased the neurite number in motor neurons transduced with
HSPB8 p.K141N, further supporting the relevance of this pathway in the pathomechanism of HSPB8
mutations [447].

RNA Metabolism

HSPB8 mutations may also have downstream effects on RNA metabolism. This is suggested by
the altered binding of mutant HSPB8 (p.K141N and p.K141E) to the RNA helicase DDX20 [449].
This component of the SMN (survival of motor neuron) complex and snRNPs is involved in
transcriptional regulation and RNA processing, with functional connections to proteins associated
with motor neuron degeneration, such as TDP-43 [450,451]. Along the same lines, decreased TDP-43
expression and altered splicing of TDP-43 target genes was recently reported in a muscle samples from
patient with HSPB8-related neuromyopathy [440].
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HSPB8-Related Myopathy

The two frameshift mutations, p.Q170Gfs*45 and p.P173Sfs*43, appear to preferentially affect
muscle, as they have been so far only reported in (neuro)myopathy patients [438,439,441]. With the
24–27 C-terminal amino acids of HSPB8 replaced by 43–45 erroneous residues, the protein products of
these mutant alleles are nearly identical, and they very likely act through a shared pathomechanism,
which could be partially distinct from the missense mutations. These mutations are associated with a
40–60% decrease of HSPB8 protein in patient muscles and fibroblast cultures, with no sign of expression
of the extended species [439,441]. As nonsense-mediated mRNA decay should not be triggered by
these mutations located in the last exon of HSPB8, the data suggest rapid degradation of the mutant
proteins [439,441].

Based on the decreased HSPB8 expression, the pathogenicity of p.Q170Gfs*45 was suggested
by Echaniz-Laguna and colleagues to depend on haploinsufficiency [439]. However, in light of the
KI and KO mouse models discussed above [429,443], a gain-of-function is perhaps a more likely
explanation, notwithstanding the apparent absence of the mutant protein. This enigma might be
related to the findings of Al-Tahan et al., whose immunofluorescence analyses revealed increased
HSPB8 protein levels in p.P173Sfs*43 patient fibroblasts after heat shock [441]. While this could simply
reflect slower clearance of HSPB8-decorated aggregates due to impaired autophagic flux, it could
indicate accumulation of the mutant protein itself.

Given the role of HSPB8 in the CASA pathway, which is reported to be essential for muscle
maintenance [421], HSPB8-related myopathy has been proposed to be due to impaired CASA
function [438,441]. This connection to CASA is supported by the myofibrillar/rimmed-vacuolar
changes that resemble the pathology caused by BAG3 mutations [438,439]. Moreover, LC3B and
SQSTM1 accumulation in patient fibroblasts suggests impaired autophagic flux [441]. However,
the benign of phenotypes of Hspb8 KO mice [429,443] again indicate that a simple loss of CASA does
not result in MFM pathology, or that other sHSPs may compensate for the lack of HSPB8, at least
in mice.

Whereas a muscle-specific pathomechanism can be envisioned for the frameshift mutations,
the myopathy phenotype caused by HSPB8 p.K141E, which is typically associated with neuropathy,
is more intriguing [438,440]. The muscle involvement in these patients could be determined by genetic
modifiers, as exemplified by the recently demonstrated digenic effect of TIA1 and SQSTM1 [452],
or environmental factors. Moreover, as pointed out by Ghaoui et al., the considerable involvement of
proximal muscles sometimes seen in HSPB8-related neuropathy patients could be explained by an
undetected myopathy component [438].

4. BAG3

The cochaperone BAG3 (Bcl-2-associated athanogene 3, or BAG family molecular chaperone
regulator 3) is a member of the BAG-protein family, which is defined by the presence of at least one
BAG domain. In humans, there are six BAG genes: BAG1–BAG6 [158,453–455]. Of these, BAG1–BAG5
contain canonical BAG domains, whereas BAG6 has a BAG-like domain with a separate function [456].
Still, BAG6 has been shown to interact with HSPA in coimmunoprecipitation experiments [457] and is
by most considered a BAG-family protein. Apart from the common BAG-domain, the BAG proteins
are structurally very different and have distinct cellular functions.

All canonical BAG proteins interact directly with the ATPase domain of HSPA chaperones through
the BAG domain. Upon binding, the BAG protein acts as a NEF and stimulates the release of bound
ADP from HSPA [158]. In turn, this causes the release of the client protein from the client-binding
domain of HSPA [458], thereby preparing HSPA for a new cycle of chaperonal activity. Apart from the
interaction of the BAG domain with ATPase domain, other parts of BAG3 have been found to interact
with the client-binding domain of HSPA, promoting client release in vitro [459].

Each of the BAG proteins has different affinity for HSPA; this was studied in detail for HSPA1A,
which was found to bind BAG3 with higher affinity than the other BAG proteins [458]. Using the
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combined expression of various JDPs and BAG proteins, it was also shown that the in vitro ATPase
activity of HSPA1A depends on JDP identity and the stoichiometry of JDP versus BAG [458]. The same
has also been shown for BAG3 and HSPB8, where a clear stoichiometric optimum exists for optimal
HSPA activity [16]. This clearly shows the importance of the cellular background for functional studies,
and it could be one reason for functional assays giving different results in different experimental setups
and cell lines, as well as explain the tissue specificity of certain diseases.

For further information of the BAG family members, we refer to a recent review by Behl [453] and
references therein, and we will focus on the only BAG protein where disease-causing mutations have
been identified: BAG3.

4.1. Structure and Functions of BAG3

BAG3 is a protein of 575 amino acids, with a theoretical molecular weight of 61.6 kDa, but it
consistently migrates at a higher weight in Western blots—normally at approximately 75 kDa. BAG3 is
highly conserved and is expressed in all mammalian tissues, with highest expression in cardiac and
skeletal muscle, but also in many cancer tissues [108,460–463]. In skeletal muscle, BAG3 primarily
localizes to the Z-disc and the sarcolemma [108,464].

BAG3 has several defined domains and binding motifs: from the N-terminal, there is a WW
domain, two Ile-Pro-Val (IPV) and two Arg-Ser-Gln-Ser (RSQS) sequence motifs, and a PXXP repeat,
which is finally followed by the BAG domain (Figure 6). These allow BAG3 to work as a scaffold that
brings together a wide range of interacting proteins for a plethora of cellular functions [16,465].
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The WW domain interacts with proline-rich proteins containing the motif [AP]-P-P-[AP]-Y,
and in the context of this review, the interaction with PPPY in SYNPO2 (also known as myopodin)
is of particular interest [466]. The WW domain also allows BAG3 to bind to YAP/TAZ inhibitor
proteins [466,467], thereby affecting the Hippo signaling pathway and also the expression of the actin
cross-linking protein filamin. BAG3 also contains a second WW domain annotated in UniProt and
clearly fulfilling the domain definition, but this domain has not been studied and is not considered in
most reports on BAG3. Thus, the role of this second potential WW domain remains elusive.

The two IPV motifs bind to small heat shock proteins of the HSPB family [159]. The various HSPB
proteins have different affinity for BAG3, and HSPB8 has been shown to be the preferred partner [18].
In addition, HSPB1 has been observed to colocalize with filamin C (FLNC) and BAG3 in sarcomere
lesions in mice [468]. Functional interactions between HSPB6 and HSPB8 with BAG3 have been studied
using a polyQ-HTT client protein, and the presence of IPV motifs is essential for the polyQ-HTT
degradation activity of HSPB6 and HSPB8 [159]. However, all HSPB proteins are able to bind to BAG3,
and the removal of both IPV elements by either mutation or deletion is required to abolish binding [16].

The two RSQS motifs bind 14-3-3 proteins [469,470]. This allows 14-3-3 proteins to connect
BAG3 with the intermediate chain of the dynein complex, facilitating HDAC6-independent aggresome
formation [469]. Mutational analysis showed that the mutation of p.S136 reduces binding, whereas
p.S173 mutations removed binding to the 14-3-3γ protein [469].
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The PXXP repeat region allows BAG3 to interact with SH3-domain-containing proteins [471].
The microtubule motor protein complex dynein interacts directly with the PXXP domain of
BAG3 [470,472], allowing the transport of BAG3-bound client along microtubules to the aggresome for
degradation. Deletion of the PXXP domain disrupts this function [470] and abolishes the ability of
BAG3 and HSPB8 to prevent polyQ-HTT aggregation [15]. Similarly, the depletion of BAG3, HSPB8,
or HDAC6 prevents aggresome formation under prolonged proteasomal inhibition, and depleted cells
show dispersed ubiquitin-positive cytoplasmic puncta [408].

The BAG domain, as already mentioned, is mostly responsible for the interaction of BAG3 with
HSPA, and for the NEF activity [158]. The domain also interacts with e.g., the anti-apoptotic protein
BCL2 [460] and the transcription factor HSF1 [473].

BAG3 has several reported or predicted sites for post-translational modifications. Lys445 in
the BAG domain is identified as a SUMOylation site and cross-links with small ubiquitin-like
modifiers SUMO1 [474] or SUMO2 [475]. BAG3 can also be ubiquitinated by STUB1 [421].
Several phosphorylation sites have been identified. Of particular importance are the phosphorylation
sites at Ser136 and Ser173, which directly affect binding to the 14-3-3γ protein [469]. In addition, two
methylation sites are predicted from similarity with mouse Bag3. However, the precise functional role
and regulation of these sites are not known. A caspase cleavage site is located at Asp347; cleavage at
this site causes the loss of the anti-apoptotic function of BAG3 [476].

4.1.1. Regulation of BAG3 Expression

BAG3 is the only stress-inducible BAG protein [477]. Transcription factors such as HSF1 bind to
BAG3 upon stress and translocate to the nucleus, inducing the expression of a range of heat shock
proteins, including BAG3 itself [461,473,478]. BAG3 expression is also modulated by the nuclear factor
κB (NF-κB) during stress recovery [479].

Proteasome inhibition induces autophagy [470,480,481], and increased expression of the BAG3
gene has been observed with a reduced level of BAG3 protein consistent with co-degradation of BAG3
during autophagy [421,482]. On the other hand, lysosomal inhibition does not affect BAG3 expression,
but consistent with autophagic turnover, it leads to an increased level of the BAG3 protein [421].
Since BAG3 expression is upregulated by proteasomal inhibition and leads to the redirection of
proteasome-targeted clients to macroautophagy, a mechanism been called BiPASS (“BAG-instructed
Proteasomal to Autophagosomal Switch and Sorting) has been suggested [399].

The level of BAG3 is regulated during mitosis by HSPB8, and the HSPB8–BAG3 complex is
important for actin handling during cytokinesis [483].

BAG3 shows higher expression in several aggressive tumor types and is upregulated under
oxidative as well as proteotoxic stress [484]. In cancers, high expression of BAG3 has been linked to
resistance to chemotherapy and knockdown with increased sensitivity [485].

4.1.2. Regulation of Expression by BAG3

BAG3 modulates the mTORC signaling pathway by sequestering the mTORC1 inhibitors TSC1
and TSC2, allowing for the simultaneous local activation of autophagy and protein synthesis during
mechanical strain and exercise [486]. BAG3 binds TSC1 and TSC2 via the WW domain [486], which
is the same domain that also binds SYNPO2 [466]. Hence, the WW domain is of critical importance
for the regulation of transcription as well as CASA, and interestingly, no disease mutations have
been identified in this region. The depletion of SYNPO2 releases BAG3 from its autophagic roles and
upregulates YAP/TAZ-mediated transcription [466]. It was recently reported that the BAG3–HSPA
complex is critical in the LATS1/2-mediated phosphorylation of YAP, which is indicative of Hippo
pathway activation [487].

It has been shown that some of the beneficial effects observed by BAG3–HSPB8 overexpression is
via the eIF2α signaling pathway, leading to induced autophagy and inhibited protein synthesis [422].
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4.1.3. BAG3 Proteostasis and Transport

Through interactions with HSPA proteins and SQSTM1, BAG3 is directly linked to the proteostasis
machinery. The depletion of BAG3 in cells elevates the basal level of polyubiquitinated proteins and
also redirect client proteins to proteasomes for degradation [488].

The aggresome is a collection of accumulated proteins located around the microtubule organizing
center (MTOC). BAG3 has been shown to promote the sequestration of ubiquitinated client proteins to
the aggresomes [470]. These proteins are retro-transported by dynein complexes along microtubules
and collected for later autophagosomal degradation. However, also non-ubiquitinated proteins are
found in the aggresome, and BAG3 has been suggested to be involved in the ubiquitin-independent
process as well [470]. HDAC6 is important for binding poly-ubiquitinated proteins to the dynein motors,
and HDAC6-deficient cells fail to form aggresomes and remove misfolded cytoplasmic proteins [489].
Both the BAG3-mediated as well as the HDAC6-mediated client transport to aggresomes depend on
dynein. HSPB8-bound ubiquitinated client proteins are upon binding between HSPB8 and BAG3
targeted to the aggresomes, but interaction between HSPB8 and BAG3 is not strictly required for
aggresome formation [408]. The results presented by Guilbert et al. showed that BAG3 interacts with
SQSTM1 independently of HSPB8 SQSTM1 [408], but the interaction between HSPB8 and BAG3 is
required for the efficient coupling of SQSTM1 bodies (p62 bodies) for transport to aggresomes under
proteasomal stress [408]. Proteasomal inhibition increased the level of phosphorylated SQSTM1, which
is important for the control of ubiquitinated inclusion formation, and this was partially reduced by
the silencing of either HSPB8 or BAG3, and they concluded that HSPB8 and BAG3 facilitates the
stress-induced sequestering activity of SQSTM1 [408].

In cell studies, the chemical inhibition of dynein function was shown to counteract the autophagy
induction caused by trehalose, indicating that dynein repression causes autophagy reduction [417].
Inhibition of retrograde transport was, as expected, found to reduce the aggregation of mutant proteins
in the aggresome but also to increase their clearance [417]. The inhibition correlated with a strong
induction of BAG1, indicating a switch to the proteasomal degradation of mutant proteins when the
preferred autophagosomal pathway and transport to the aggresome was blocked [417]. Studies of
mutant SOD1 have shown that the HSPA-bound mutant SOD1 is transported to the aggresomes by
BAG3 and dynein, and that a BAG3-derived construct containing only the dynein-binding PxxP-motif
and the HSPA-binding BAG domain is sufficient for this function [470].

4.1.4. BAG3 in Autophagy

Chaperone-assisted selective autophagy (CASA) is a selective/targeted degradation pathway
guiding chaperone-bound ubiquitinated proteins to the lysosome [421]. It was originally described as
a pathway mediated by Starvin, the Drosophila BAG3 ortholog; hence, BAG3 is a crucial partner of this
pathway, which also contains HSPB8, HSPA8, STUB1, and SQSTM1 [421].

During CASA, client proteins are recognized by BAG3, HSPA8, and HSPB8; then, the client
protein is ubiquitinated by the E3 ligase STUB1, followed by sequestration to the aggresome [466,482].
SQSTM1 links the CASA complex to the phagophore membrane following SYNPO2 interaction with
BAG3 autophagosome formation around the CASA complex, resulting in the eventual co-degradation
of CASA proteins with their clients [466,482].

CASA is important for maintaining the structural integrity of muscle cells [421,490] and senses
mechanical tension through interaction with the client protein filamin [466]. CASA components are
induced upon strenuous physical exercise [482,491]; also the electrostimulation of isolated muscle
fibers increases BAG3 levels and high-molecular-weight ubiquitin conjugates [421]. These conjugates
accumulate in microaccumulations that partially co-stain with LC3, suggesting CASA induction [421].

Trehalose has been recently used in studies for the reduction of aggregation phenotypes in both
cells and animals [419,492,493]. Trehalose induces transient lysosomal enlargement, and damaged
lysosomal membranes are visible by electron microscopy [494]. Trehalose also induces the expression
of BAG3, HSPB8, and SQSTM1 [494]—all key components of the CASA pathway. The induction of
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SQSTM1 expression was found to be TFEB-dependent, whereas BAG3 and HSPB8 induction were
not [494]. In C2C12 cells, the inhibition of autophagy by bafilomycin A reverted the aggregate-reducing
function of trehalose, illustrating that the effect of trehalose is mediated by autophagy [419].

The kinase STK38 was recently shown to inhibit CASA activity by binding to BAG3, causing a loss
of interactions with SYNPO2 and HSPB8 but without affecting binding to HSPA8 [495]. This inhibitory
role is dependent on the phosphorylation of Thr444 in STK38 [495].

4.1.5. Stress Granules and Defective Ribosomal Products

Stress granules (SGs) are stress-induced ribonucleoprotein complexes that sequester mRNA
temporarily for translation at a later time. The dynamics of stress granules are highly important for
proper cellular function, and there are several reports of disease caused by mutations affecting SG
dynamics [496–498]. Whereas normal SGs dissolve after stress, releasing their mRNA and protein
content for other functions, aberrant SGs that have lost their dynamic behavior need to be removed
by autophagy [407]. The accumulation of defective ribosomal products (DRIPs)—translated proteins
unable to reach a native state for any reason—has been shown to promote an aberrant behavior of
SGs [407].

The HSPB8–BAG3–HSPA complexes are important for proper SG function and restore proteostasis
by promoting degradation of DRIPs [407]. Ganassi and coworkers induced SG formation by arsenite,
causing oxidative stress, or MG132, causing proteotoxic stress by proteasomal inhibition [407]. HSPB8
was found in all TIA1-positive SGs, whereas BAG3 was only rarely present [407]. However, BAG3 was
found in DRIP-containing stress-induced SGs that were largely devoid of HSPB8 [407]. The proposed
mechanism involved HSPB8 acting as a chaperone inside SGs and preventing DRIP aggregation,
allowing for later degradation by the BAG3–HSPA machinery [407].

Even if the disassembly of SGs and targeted degradation of aberrant proteins are preferred,
some SGs, especially if they contain DRIPs, are transported by BAG3 and SQSTM1 to aggresomes for
degradation [407]. This illustrates that at least under certain conditions, there is a clear link between
proteins containing prion-like domains and the autophagic machinery.

The effect of BAG3 on SGs and its role in neurodegenerative disorders was recently reviewed by
Duggan et al. [499].

4.1.6. BAG3/BAG1 Ratio and Aging

Whereas BAG3 targets clients to the autophagosome and prevents proteasomal degradation of
HSPA-bound clients, BAG1 directs them to the proteasome [12]. Both BAG1 and BAG3 interact with
many of the same chaperone partners, leading to competition between the two BAG proteins for binding
sites. Therefore, the levels of functional BAG1 and BAG3 in the cells are important for the balance
between proteasomal and lysosomal turnover. The BAG3/BAG1 ratio changes during aging—with
samples from older individuals showing increased BAG3 and decreased BAG1 levels—causing a shift
from proteasomal toward autophagic degradation [399,488]. A similar shift from BAG1 to BAG3
expression and from proteasomal to autophagic degradation has also been observed in several cell
types under stress conditions, e.g., in cells adapted to peroxide-induced oxidative stress [399,484].

The accumulation of oxidized proteins is a feature of cellular aging. These proteins are also more
likely to form cross-links, thereby largely preventing proteasomal degradation and leading to a greater
importance of the autophagic pathways.

The increase in BAG3 expression is mirrored by an increased expression of SQSTM1 [488].
However, this increase in SQSTM1 level is not induced by changes in the BAG3 level, as knock-down
of BAG3 in old cells induces a stress response including the increased expression of SQSTM1 [488].
In brain, the increased BAG3/BAG1 ratio is followed by increased cathepsin activity as well as LC3-II
levels [488].
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Maintaining a proper balance between proteasomal (BAG1) and autophagic (BAG3) degradation
in relation to soluble and insoluble client proteins could be of greater importance than the absolute
cellular level of (co-)chaperones [488].

4.1.7. Other Functions of BAG3 in Muscle Cells

BAG3 has also other roles in muscle cells. It has been shown to regulate myofibril stability through
HSPA8, causing a tight interaction between F-actin and CAPZ [500]. BAG3 is the driver for HSPA8
localization to the juxtamembrane region, where CapZ and F-actin are enriched, and this function is
dependent on the BAG domain of BAG3 [500]. The absence of BAG3 causes the misslocalization and
proteasomal degradation of CapZ proteins [500].

BAG3 is also, at least in cardiomyocytes, involved in contraction and affects calcium signaling
through interactions with calcium channels [501,502]. Whether BAG3 is similarly involved in calcium
signaling in skeletal muscle is not known.

4.2. BAG3 in Neuromuscular Disease

The first report of disease-causing mutations in BAG3 appeared more than 10 years ago when
the same p.P209L mutation was identified as a de novo change in three unrelated patients in a cohort
of undiagnosed MFM patients [464]. Since then, many mutations in BAG3 have been published
(Table 9). All mutations reported so far have been in heterozygous state, and the vast majority is
found in dilated cardiomyopathy cases. However, mutations affecting Pro209 and Pro470 cause
myopathy [106,464,503–514]. The cardiomyopathy mutations and the role of BAG3 in the heart
have been recently reviewed by others [485,515,516]. We will focus here on the mutations causing
neuromuscular disease.

Table 9. BAG3 mutations reported to cause neuromuscular or cardiac disease.

Mutation 1 Phenotype 2 References

c.211C>T (p.R71W) DCM [517]
c.268C>T (p.R90*) DCM [517]

c.326A>G (p.H109R) DCM [517]
c.367C>T (p.R123*) DCM [517]

delEx3-4 DCM [518]
delEx4 DCM [517]

c.625C>T (p.P209S) CMT [519,520]
c.626C>T (p.P209L) MFM [464,505–514]
c.626C>A (p.P209Q) MFM [503,504]
c.652C>T (p.R218W) DCM [521,522]

c.652delC (p.R218Gfs*89) DCM [517]
c.727delC (p.H243Tfs*64) DCM [523]
c.752delA (p.Q251Rfs*56) DCM [524]

c.784G>A (p.A262T) DCM [517]
c.913delC (p.M306*) DCM [525]
c.925C>T (p.R309*) DCM [524]

c.1055delC (p.Q353Rfs*10) DCM [518]
c.1135delG (p.G379Afs*45) DCM [518]

c.1153_1160delTCTTCCCC (p.S385Qfs*56) DCM [524]
c.1181_1182delGA (p.R395fs*48) DCM [524]

c.1353C>A (p.T451*) DCM [518]
c.1363G>A (p.E455K) DCM [518,524]
c.1385T>C (p.L462P) DCM [521]

c. 1402G>A (p.V468M) DCM [524]
c.1408C>T (p.P470S) MFM [106]

c.1430G>A (p.R477H) DCM [517]
1 Reference sequences: NM_004281.3 (cDNA), NP_004272.2 (protein) 2 DCM, dilated cardiomyopathy; CMT,
Charcot–Marie–Tooth; MFM, myofibrillar myopathy.
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Most reported p.P209L patients show an early disease onset (first or second decade), rapid
progression, and a severe pathology—including cardiomyopathy often requiring hearth transplantation,
as well as respiratory involvement. Of the three patients in the original report, one received a heart
transplant at age 13 and one died at age 13 following a respiratory infection [464].

So far, only one published case of a classical BAG3 p.P209L myopathy is described without
cardiomyopathy at age 25, which is an age where all other p.P209L patients had either died or had clear
cardiomyopathy [509]. However, occasionally, BAG3 p.P209L patients present with non-myopathic
symptoms, and several axonal neuropathy cases have been reported [507,508,512]. These patients tend
to get an initial diagnosis of CMT and often present with rigid-spine syndrome and sensory-motor
neuropathy. Upon deeper clinical evaluation, they do show myopathic features and clear ultrastructural
changes such as Z-disc streaming and filamentous accumulations, and some are reported without
signs of cardiomyopathy [508,512].

The severity of classical BAG3 myopathy is illustrated by the fact that the p.P209L mutation
has been found to be de novo in all but two reported cases. In one family, the allele that was found
mutated in two affected brothers was inherited from the non-mutation carrying father, indicating
mosaicism [505]. In another family, the father and one sister of the index patient had a similar, but much
milder, phenotype, indicating another case of potential mosaicism [507]. However, in the latter report,
the relatives were not available for clinical or genetic evaluation [507].

The p.P209Q (c.626C>A) mutation has been reported in one patient with relatively mild myopathy
and no cardiomyopathy at age 43 [503]. On the cellular level, typical MFM findings were seen:
Z-disc streaming, granulofilamentous accumulations, desmin-positive protein deposits, and vacuoles.
The patient did also have axonal sensorimotor polyneuropathy, which was in line with several of the
p.P209L cases described above. Genetic analysis of the parents showed that the c.626C>A mutation
was de novo [503].

The p.P209S (c.625C>T) mutation has been identified in one individual [504], two large families
with peripheral neuropathy [519], and one family with axonal CMT [520]. No involvement of heart or
skeletal muscle was observed in the two families, but the pedigrees included persons who died of
cardiac disease and cardiac problems could not be ruled out [519]. The single individual was reported
with adolescence-onset polyneuropathy, with signs of atrophy of the lower legs [504].

The p.Pro407Ser mutation, located in the BAG domain, was recently reported in two unrelated
cases as a cause of MFM [106]. The mutation was proven de novo in one case, but as only one of the
relatives was available for the other patient, the inheritability in the latter case is unknown. In both
cases, the onset was around age 30, and the biopsies showed typical MFM findings such as sarcoplasmic
inclusions and rimmed vacuoles. Both patients had neurogenic changes, but no heart-related pathology
was reported [106].

4.2.1. BAG3 Animal Models

BAG3-Deficient Models

In zebrafish, BAG3 knock-down by morpholino injection has been found to cause cardiac
phenotypes [517] and contraction-dependent myofibrillar disintegration [526]. On the other hand,
zebrafish model haploinsufficient for BAG3 showed elevated levels of ubiquitinated proteins, indicating
impaired autophagic flux, and developed dilated cardiomyopathy (DCM) [527]. Transcriptome analysis
of heart samples identified the upregulation of the mTOR signaling pathway, and crossing the mutant
fish with an mTOR-haploinsufficient mutant restored levels of ubiquitinated proteins, restored life
span, and reduced the cardiac phenotype, demonstrating that modulation of the mTOR pathway can
be beneficial for BAG3 haploinsufficiency [527].

In mice, homozygous disruption of the Bag3 gene showed that BAG3 is not required for the
normal development of heart and skeletal muscle [108]. At birth, the BAG3-deficient mice are normal,
but they soon start to develop clear signs of myopathy starting with disturbed Z-discs and sarcomeric
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disarray already at day 4 [108]. This progresses to also include apoptotic features after 2 weeks,
ultimately leading to death by day 25 [108]. The observed pathologies were limited to myofibers,
and the severity of muscle damage correlated with muscle use, indicating that BAG3 is especially
important for maintenance of the muscle integrity in actively used muscles [108]. No evidence for
muscle necrosis and only few regenerating fibers were identified in the BAG3-deficient mice, and the
creatine kinase level was within normal range consistent with a lack of sarcolemmal damage [108].
In addition, no evidence of neuropathy was observed in this mouse model [108].

In another BAG3-deficient mouse model with an introduced deletion of exon 4 in Bag3,
there was little evidence of apoptosis, but instead a dramatic metabolic shift was observed [528].
These BAG3-deficient mice were hypoglycemic and had lipid accumulations in the liver indicating
nutrient insufficiency, but no muscle pathology of note was observed [528]. The BAG3-deficient mice
had reduced growth, and all homozygous deletion mice died before age 3 weeks [528]. Why the two
mouse models were phenotypically different is not known, but Youn and coworkers suggested that
differences in the gene-targeting method could be the reason [528].

The cardiac phenotype observed in patients as well as the mouse model developed by
Homma et al. [108] was recapitulated in a cardiac-specific homozygous knock-out model [406].
These mice suffer from cardiomyopathy, but with normal BAG3 expression in skeletal muscle survives
until around 10 months [406]. Another, heterozygous cardiac-specific haploinsufficiency model
recapitulated the DCM phenotype seen in patients with BAG3 truncations or deletions [472].

BAG3 Mutation Models

The BAG3 myopathy mutation p.P209L was studied extensively in zebrafish by muscle-specific
overexpression of GFP-tagged human BAG3 under the acta1 promoter [526]. Both mutant and
wild-type BAG3 were localized to the sarcomeric Z-disc, but the mutant fish also showed small,
granular accumulations from 32 hours post fertilization [526]. Consistent with the Pro to Leu mutation
being predicted to reduce thermostability, keeping the fish at 37 ◦C compared to the normal 28 ◦C
increased the size of the accumulations [526]. Further studies of the accumulations revealed both
wild-type BAG3 as well as FLNC [526]. The presence of wild-type BAG3 suggests that part of
the pathologies observed might come from haploinsufficiency [526]. In fluorescence recovery after
photobleaching (FRAP) analysis, the recovery of mutant BAG3 was reduced, but it was not significantly
different from the wild-type [526]. Autophagy inhibition by chloroquine resulted in a significant
increase in the fraction of fibers with BAG3 accumulations, whereas induction by rapamycin caused a
significant decrease, showing that the observed pathologies in the fish are not a result of autophagic
dysfunction [526].

The recently reported mouse model with a p.P215L mutation in Bag3 (equivalent to the p.P209L
in human BAG3) showed neither a cardiac phenotype at 16 months of age nor any change in other
measured parameters such as life span, weight, or growth even in homozygous state [529]. This lack of
phenotypes lead Fang et al. to suggest that the pathologies caused by p.P209L in humans are species
specific [529].

4.2.2. Pathomechanisms

It is intriguing that the mutations in BAG3 affecting skeletal muscle are constrained to two Pro
residues at positions 209 and 470. Pro209 is in the second IPV-motif, which is important for interactions
with the HSPB-family proteins; therefore, mutations in this location might directly affect the binding of
HSPBs. In CoIP experiments, the p.P209L mutation was indeed found to reduce binding efficiency, but
binding was observed, and hence a simple loss of HSPB-binding was suggested to not be the direct
cause of disease [106].

Most morphological studies on BAG3 myopathy have been performed on skeletal muscle biopsies.
However, a recent analysis of an explanted heart from an 8-year-old patient with a p.P209L mutation
indicated altered autophagy as the main reason for cardiomyopathy and for the quick progression seen
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in this patient [514]. Western blotting showed substantially increased levels of ubiquitinated proteins,
SQSTM1 and LC3-I, but not LC3-II, suggesting insufficient autophagic induction [514].

The p.P209L mutation has been shown to impair the differentiation of the murine skeletal muscle
cell line C2C12, but it does not affect the H8c2 cardiomyocyte cell line nor neonatal rat cardiomyocytes
(NRCs) [521]. However, there is no indication that myogenesis per se is affected by BAG3 mutations.
In NRCs, the p.P209L mutant protein is located to the Z-disc in the same way as wild-type, but this is
in stark contrast to cells expressing cardiomyopathy mutations that have been found to localize in the
nucleus [521]. The cardiomyopathy mutations also affected sensitivity to apoptosis and the Z-disc
assembly, whereas the myopathy mutation p.P209L did not [521].

Mutant BAG3 sequesters the wild-type BAG3 protein to aggregates, causing a further loss of
functional BAG3 [526]. In zebrafish, the resulting protein accumulations could be reduced by induction
of autophagy [526]. Ruparelia and coworkers suggested that even if the myofibrillar disintegration is
the direct cause of muscle weakness, the aggregation of mutant BAG3 and sequestration of large parts
of the proteostasis machinery is the root cause [526].

Samples from HeLa cells expressing BAG3 p.P209L showed higher levels of BAG3, SQSTM1,
and HSPB8 in the insoluble fractions compared to wild-type expressing cells, indicating that the mutant
protein sequesters significant parts of the CASA complex and also deregulates the phosphorylation of
SQSTM1 [408]. The deregulation of phosphorylation of Ser349 in SQSTM1 cause the mutant BAG3
protein to aberrantly sequester KEAP1 and thereby impair the stress-sensing mechanism that regulates
SQSTM1-KEAP1-Nrf2 signaling [408].

The sequestering of chaperone protein partners by BAG3 p.P209L mutant was shortly after
confirmed in HEK293 cells by Meister-Broekema and coworkers, who in addition to BAG3 and HSPB8
found DNAJB6b, HSPA1A, and HSPA8 in the insoluble fraction [106]. They also found the p.P209Q,
p.P209S, and p.P470S mutations to sequester the same proteins, thereby extending the finding to all
myopathy-causing mutations in BAG3 [106]. The p.P470S mutation was found to reduce the binding
of BAG3 to HSPA, but it did not abolish it [106]. An engineered p.R480A mutation in the BAG domain
of BAG3 did abolish BAG3-HSPA binding [106]. The aggregation phenotype in cell culture was found
to be driven by interaction between BAG3 and HSPA; hence, the sequestration could be prevented
genetically by introducing the p.R480A change to mutant BAG3 [106] or chemically by blocking the
BAG3–HSPA interaction with JG98 [106] or YM1 [487].

The DCM-causing mutation p.E455K is located in the BAG domain and has in cardiomyocytes
been found to abolish the binding of BAG3 to the NBD of HSPA1A/B and reduce the binding of BAG3
to HSPA8 [406].

In cell experiments with cardiomyocytes, no Z-disc disturbances are observed with the p.P209L
mutation, but these disturbances are easily observed in patient muscle biopsies and in the zebrafish
model of Ruparelia et al. [526]. A likely explanation for this is the lack of mechanical stress in cultured
cells, which is present in all muscles and probably is needed to induce structural disturbance.

4.3. New Results on the Effects of BAG3 p.P209L on DNAJB6

As described above, LGMD-causing mutations in DNAJB6 are associated with slower DNAJB6
turnover [14,49]. On the other hand, wild-type but not p.P209L mutant BAG3 was suggested by
zebrafish studies to augment the toxicity of mutant DNAJB6 [14]. To determine if this effect of BAG3
could be through the modulation of DNAJB6 turnover, we coexpressed DNAJB6b and BAG3 constructs
in an inducible cell system and followed DNAJB6b turnover after construct deinduction. In this system,
DNAJB6b p.F89I, as expected, showed slower turnover compared to the wild-type construct, but this
was not significantly affected by coexpression of wild-type BAG3 (Figure 7). In contrast, BAG3 p.P209L
caused a dramatic block to the turnover of both wild-type and mutant DNAJB6b.
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Figure 7. Effect of BAG3 p.P209L on DNAJB6. (A) Coexpression with BAG3 p.P209L similarly blocks
the turnover of wild-type and p.F89I mutant DNAJB6b. Graph shows mean± S.D. from 4–5 experiments
performed in triplicate, with exponential trendlines fitted to the data points. (B) Representative Western
blots showing DNAJB6b-V5 wt and p.F89I (V5) and tubulin (tub) levels at different time points. (C) Both
DNAJB6a and DNAJB6b are recruited to cytoplasmic aggregates formed by BAG3 p.P209L in HeLa
cells. (D) BAG3 p.P209L causes increased cytoplasmic localization of DNAJB6a in HeLa cells. Box plots
show the cytoplasmic/nuclear V5 mean intensity ratio in n = 552–2291 cells per group.

We reasoned that mutant BAG3 might affect DNAJB6b turnover by sequestering it to aggregates.
This was supported by microscopic analyses, where DNAJB6b colocalized with BAG3 p.P209L in
cytoplasmic puncta (Figure 7). Also the nuclear DNAJB6a isoform was in some cells recruited to
BAG3 aggregates, and this observation was confirmed by image analysis (Figure 7). In parallel to
our experiments, similar results were obtained by Meister-Broekema et al., who also observed the
sequestration of DNAJB6b to insoluble BAG3 p.P209L aggregates [106]. While their findings did
not indicate the recruitment of DNAJB6a to the aggregates, our data suggest that also this isoform
may in some conditions be affected by BAG3 p.P209L, with potential downstream consequences on
DNAJB6a-mediated functions such as cardiac protection against ER stress [41].



Int. J. Mol. Sci. 2020, 21, 1409 47 of 78

5. Conclusions

As evident from the functional work discussed here, mutations in chaperones and cochaperones
can cause neuromuscular diseases through a variety of mechanisms. Most mutations appear to
affect multiple parallel pathogenetic pathways, which most often involve toxic gain-of-function of the
mutated protein. Indeed, of the diseases discussed here, only DNAJB2-related neuropathies seem to
depend on pure loss of function. However, in many cases, a loss of protective chaperone function is
likely to contribute to the disease pathomechanisms. As a result of the interconnections in the PQC
network, mutations in one component will inevitably affect the others, potentially leading to shared
pathomechanisms. This is well illustrated by the downstream effects of BAG3 mutations on DNAJB6
and a number of other PQC proteins.

The chaperone-associated diseases are a piece of a larger puzzle of protein conformational
disorders, which can either result from mutations predisposing the mutated proteins to aggregation or
from defective quality control. Here, of growing interest are diseases associated with aberrant phase
separation and the aggregation of prion-like domains, which are present in many SG components and
other RNA-binding proteins. Mutations interfering with SG dynamics are associated with myopathy, as
well as diseases of the multisystem proteinopathy (MSP) spectrum, which are characterized by protein
aggregation pathology variably affecting different tissues [496,497,530]. The mechanistic connections of
chaperonopathies to these diseases are highlighted by the accumulation of PrD-containing proteins in
affected tissues and the demonstrated ability of DNAJB6, HSPB8 and BAG3 to regulate PrD aggregation
and SG dynamics [59,105,407]. The recently reported digenic distal myopathy caused by a SQSTM1
mutation and a variant in the PrD protein TIA1 [452] further demonstrates how a combined effect
of variants in PQC and client proteins together can determine the phenotypic outcome. It is likely
that similar epistatic effects underlie the differences in expressivity and penetrance also in other cases,
especially when same mutations are associated with distinct phenotypes.

6. Materials and Methods

6.1. Filter Trap Assay

Filter trap assay was performed essentially as described [14].

6.2. DNAJB6 Turnover Assay

For studying the effect of BAG3 on DNAJB6 turnover, T-Rex 293 cells (Life Technologies)
were cotransfected with inducible pcDNA5/TO-DNAJB6b-V5 (wt or p.F89I) constructs [14] together
with constitutively expressed BAG3 constructs (wt or p.P209L) or an empty plasmid (pHTC).
DNAJB6 expression was induced with tetracyclin (1 µg/ml) and after 16 h of expression, de-induced
by tetracyclin washout. Cells were harvested 4 h (set as t=0), 8 h, 12 h, and 20 h after Tet washout.
Remaining DNAJB6-V5 was quantified from total cell extracts by western blotting and normalized
to tubulin.

6.3. Microscopy and Image Analysis

HeLa cells cultured on coverslips were cotransfected with wild-type pCDNA5/TO-DNAJB6a-V5
or DNAJB6b-V5 together with pCDNA5/TO-Myc-BAG3 (wt or p.P209L) or the empty pCDNA5/TO
vector. For the analysis of DNAJB6 and BAG3 (co)localization, PFA-fixed cells were stained with
antibodies against the V5 and Myc tags and imaged with widefield fluorescence microscopy using
a 63× oil immersion objective. For quantitative analysis of DNAJB6a-V5 localization, the cells were
stained with anti-V5 and Hoechst and imaged using a 10× objective. A home-written ImageJ macro
was used for automated quantification of nuclear and cytosolic V5 fluorescence intensity from cells
showing moderate DNAJB6a-V5 expression (based on mean nuclear fluorescence intensity).
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Abbreviations

ACD α-crystallin domain
ALS amyotrophic lateral sclerosis
AxM axial myopathy
CASA chaperone-assisted selective autophagy
CMA chaperone-mediated autophagy
CMT Charcot–Marie–Tooth disease
CNS central nervous system
CTD C-terminal domain
DCM dilated cardiomyopathy
dHMN distal hereditary motor neuropathy
DM distal myopathy
DRIP defective ribosomal product
ERAD endoplasmic-reticulum-associated degradation
FRAP fluorescence recovery after photobleaching
FTA filter trap assay
G/F region glycine/phenylalanine-rich domain
HCM hypertrophic cardiomyopathy
HPD motif histidine–proline–aspartate -motif
IF intermediate filament
IPV Ile-Pro-Val motif
JD J domain
JDP J-domain protein (Hsp40)
KI knock-in
KO knockout
LGMD limb-girdle muscular dystrophy
MFM myofibrillar myopathy
MSP multisystem proteinopathy
MT microtubule
MTOC microtubule organizing center
N2B-us N2B unique sequence (in titin)
NEF nucleotide exchange factor
NF neurofilament
NRC neonatal rat cardiomyocytes
NTD N-terminal domain
polyQ polyglutamine
PTP permeability transition pore
RCM restrictive cardiomyopathy
ROS reactive oxygen species
SG stress granule
sHSP small heat shock protein
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SMN survival of motor neuron
S/T region serine/threonine-rich region
UIM ubiquitin interaction motif
UPS ubiquitin-proteasome system
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