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Abstract: Background: With the advent of next-generation sequencing in genetic testing, predicting the
pathogenicity of missense variants represents a major challenge potentially leading to misdiagnoses
in the clinical setting. In neurofibromatosis type 1 (NF1), where clinical criteria for diagnosis may
not be fully present until late infancy, correct assessment of variant pathogenicity is fundamental
for appropriate patients’ management. Methods: Here, we analyzed three different computational
methods, VEST3, REVEL and ClinPred, and after extracting predictions scores for 1585 NF1 missense
variants listed in ClinVar, evaluated their performances and the score distribution throughout the
neurofibromin protein. Results: For all the three methods, no significant differences were present
between the scores of “likely benign”, “benign”, and “likely pathogenic”, “pathogenic” variants
that were consequently collapsed into a single category. The cutoff values for pathogenicity were
significantly different for the three methods and among benign and pathogenic variants for all methods.
After training five different models with a subset of benign and pathogenic variants, we could reclassify
variants in three sharply separated categories. Conclusions: The recently developed metapredictors,
which integrate information from multiple components, after gene-specific fine-tuning, could represent
useful tools for variant interpretation, particularly in genetic diseases where a clinical diagnosis can
be difficult.
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1. Introduction

In the past few years, the availability of high throughput sequencing technologies (Next Generation
Sequencing, NGS) has dramatically increased the number of variants identified in disease-causing
genes (DCGs). The majority of these variants are deposited in locus specific databases, such as ClinVar,
an NIH-funded database, where observed variants and clinical annotations are reported. While for
several DCGs pathogenicity could be the consequence of either loss-of-function or gain-of-function
mutations, some other genes can be functionally impaired by more subtle mechanisms in combination
with additive effects. In fact, both hypermorphic and hypomorphic alleles were recently reported in
patients with dominant axonal Charcot-Marie-Tooth disease [1], and FMF-associated MEFV mutations
were experimentally demonstrated to be of hypermorphic nature [2].

Therefore, although for many DCGs ClinVar hosts prevalently missense variants causing amino
acid changes in proteins, for a large subset of these missense variants correct classification and
interpretation remain elusive [3,4]. In addition, misclassification of variants can represent a serious
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challenge in gene testing results interpretation, due to several factors, such as clinical misdiagnosis,
wrong assumptions about pathogenicity mechanisms, outdated entries [5].

To reduce uncertainty in variants classification, the American College of Medical Genetics (ACMG)
and the Association for Molecular Pathology (AMP) jointly released interpretation guidelines that have
been thoroughly assessed and refined in recent years [6–11]. The ACMG/AMP guidelines are based on
the combination of multiple lines of evidence with variable rank translating a qualitative evaluation
into a five-tier classification system. These guidelines have been a fundamental step in establishing
a common set of interpretation rules. However, they did not eliminate discordancy across molecular
genetics laboratories [7,12,13].

To further decrease ambiguity and to develop consensus methods for specific DCGs different working
groups and expert panels tried to provide more specific criteria at single gene-disease level [14–16].

Tackling the still unresolved issue of accurate variant classification, has been the goal of a growing
number of in-silico computational methods based on evolutionary conservation, protein structure
and/or sequence homology. The first generation of these algorithms was usually focusing on specific
features, as the likelihood that a specific amino acid change would affect protein function [17–21],
or measuring the degree of conservation at specific amino acid positions [22–24]. A different set
of computational methods has been specifically developed to assess the putative consequences of
nucleotide changes on splicing proficiency [25–28]. A more recent, second generation of prediction
tools combine and integrate information deriving from multiple methods evaluating different features
as possible mechanisms leading to pathogenesis [29–31]. These in silico tools have been generally
referred to as “ensemble methods” or “metapredictors”. However, both first- and second-generation
computational methods have been trained on rather large sets of human genomic variants. Hence,
their performances and predictions reliability may vary when applied to specific disease-causing
genes. The utility of gene-specific tailoring using in-silico prediction tools is becoming progressively
recognized [32], and has been considered useful to help in reducing the number of variants of uncertain
significance (VUS). However, VUS still represents the large majority of variants reported in several
human variants databases, including ClinVar [33].

Neurofibromatosis type 1 (NF1), caused by pathogenic variants in NF1, is an autosomal dominant
disease which causes mainly cutaneous clinical manifestations, including cafè-au-lait (CALs) macules,
axillary and/or inguinal freckling, neurofibromas, Lisch nodules of the iris, and subcutaneous or
plexiform neurofibromas. A clinical diagnosis of NF1 is suspected when the minimum internationally
recognized criteria set by NIH are present [34]. The NF1 gene encodes for a protein called neurofibromin,
and since its cloning [35,36], little progress has been made on its function. Neurofibromin, a huge
2818 amino acid (327 kDa) protein, is expressed ubiquitously although a higher level of expression is
present in the adult peripheral and central nervous system [36]. In the central part of the protein is
present, a 360 amino acids region named NF1-GRD (GAP-related-domain) homologous to the catalytic
domain of the GTPase activating protein (GAP). This domain confers neurofibromin the ability to
down-regulate the RAS pathway, thus, acting as a negative regulator of signals for cell proliferation and
differentiation. For this reason, NF1 is considered a tumor-suppressor. The oncosuppressor activity
of NF1 has been later confirmed by the findings of somatic NF1 mutations in many human cancers,
including breast cancer [37], ovarian cancer [38], lung cancer [39], glioblastoma [40] and acute myeloid
leukemia [41]. This role has been reinforced by recent large pan-cancer genomic sequencing studies
which revealed the presence of NF1 alterations in 6% of patients’ tumors. Further, NF1 was mutated in
as many as 54 cancer types with the highest frequency occurring in different types of melanomas [42].

However, inferring the putative pathogenic role of variants causing neurofibromatosis type 1,
which is associated with an increased risk of some peculiar cancer types, but mainly oculo-cutaneous
features [43], is a challenging task. In fact, in 50% of cases, disease-causing mutations arise
de-novo making co-segregation studies (an important asset in variant interpretations) not possible.
In addition, NF1 clinical diagnosis is usually suspected early in childhood, while internationally
recognized diagnostic criteria are not fully met until teenager years [44,45]. Thus, when non-obvious
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disease-causing mutations are identified, especially in children, genetic counsellors face gene testing
results whose interpretations may remain uncertain at best, or until patient fully develop symptoms.

Here, we aimed at assessing the performance of three recently developed metapredictors, VEST3,
REVEL and ClinPred, applied to NF1 gene missense variants reported at ClinVar. Indeed, of the 4464
NF1 variants listed at ClinVar, nearly half have an uncertain significance classification, with most of
them being missense variants.

We performed a comprehensive analysis of the NF1 missense variants listed at ClinVar to verify
the ability of these three in silico tools in correctly predicting variants’ pathogenic consequences, and we
propose a more straightforward classification. We opted to select these three predictors, since they have
been demonstrated to outperform, singularly or in combination, most currently available prediction
algorithms [30–33]. Our findings may assist clinicians and diagnostic laboratories in selecting one
or more computational tools as an aid to correctly interpret the pathogenicity of missense variants.
Further, our approach may have a wider application in developing specific interpretation guidelines
for other disease-causing genes.

2. Results

2.1. VEST3, REVEL and ClinPred Prediction Score Distribution for NF1 Missense Variants

First, we extracted the VEST3, REVEL and ClinPred scores for 1585 NF1 missense variants
(49 BENIGN/LIKELY BENIGN, 1364 VUS, 50 CI, and 122 LIKELY PATHOGENIC/PATHOGENIC)
deposited at ClinVar. Next, we verified whether VEST3, REVEL and ClinPred scores for the
classes “likely benign” vs. “benign”, and “likely pathogenic” vs. “likely pathogenic/pathogenic” vs.
“pathogenic” were significantly different.

In no cases, the medians of the two benign classes, and of the three pathogenic classification
groups demonstrated statistically significant differences (Mann-Whitney test not significant for
“benign” vs. “likely benign” comparison, Kruskal-Wallis test not significant for non-parametric
ANOVA of “likely pathogenic” vs. “likely pathogenic/pathogenic” vs. “pathogenic”). Therefore,
in the remaining statistical analyses, the NF1 missense variants classified at ClinVar as “benign”
and “likely benign” were merged into the category “LEANING BENIGN”. Similarly, the “likely
pathogenic”, “likely pathogenic/pathogenic”, and “pathogenic” classes, were combined into the
“LEANING PATHOGENIC” category. Variants classified as VUS and with conflicting interpretation
(CI) maintained their respective ClinVar classification.

Since for all four categories “LEANING BENIGN”, “VUS”, “CI” and “LEANING PATHOGENIC”
and for all predictors, the score distributions were again not normal (Shapiro-Wilk test,
Supplementary Table S1), we proceeded to assess medians and 95% confidence intervals.

The distribution of the VEST3, REVEL and ClinPred scores, medians, 95% confidence intervals
are reported in Figure 1 and in Table 1.
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Figure 1. Prediction scores of the three computational methods for the LB (LEANING BENIGN),
VUS (variants of uncertain significance), CI (conflicting interpretations), and LP (LEANING PATHOGENIC)
NF1 missense variants. Median and 95% confidence intervals are reported for each category. The P value of
non-parametric ANOVA is reported for each predictor (Kruskal-Wallis test).

The non-parametric one way ANOVA of prediction scores distribution among categories was
highly significant for all three metapredictors (p < 0.0001 for all predictors with VEST3 Kruskal-Wallis
statistic K = 156.1, REVEL Kruskal-Wallis statistic K = 113, ClinPred Kruskal-Wallis statistic K = 168).
The greatest difference between medians was among categories LEANING BENIGN vs. LEANING
PATHOGENIC for all three metapredictors, and differences were highly significant in all cases.
The widest variation was present between the LEANING BENIGN and LEANING PATHOGENIC
categories for ClinPred (−0.599, p = 0.0004), while the smallest margin was observed between VUS
and CI for both VEST3 and REVEL (0.063 and 0.107, respectively). In contrast, the difference between
medians of ClinPred scores for the VUS and CI categories was the second-highest for this metapredictor
(0.5105, p < 0.0001). The results of all comparisons, including statistical significance, are reported in
Table 2.
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Table 1. Descriptive statistics of ClinVar NF1 variants prediction scores by VEST3, REVEL, CLINPRED.

VEST3 REVEL ClinPred
LB VUS CI LP LB VUS CI LP LB VUS CI LP

Number of Values 49 1363 50 122 49 1360 50 122 48 1364 50 122
Minimum 0.02 0.067 0.09 0.347 0.038 0.018 0.021 0.026 0.005 0.019 0.004 0.596

25% Percentile 0.2435 0.584 0.434 0.8728 0.1145 0.2103 0.1585 0.5203 0.1318 0.6915 0.124 0.9828
Median 0.528 0.77 0.707 0.948 0.216 0.381 0.274 0.7395 0.394 0.914 0.4035 0.993

75% Percentile 0.742 0.885 0.9558 0.989 0.365 0.645 0.683 0.8848 0.944 0.9810 0.9823 0.998
Maximum 0.978 1.000 0.998 0.9990 0.785 0.987 0.909 0.9890 0.998 1.000 1.000 1.000

95% CI of Median
Actual Confidence Level 95.56% 95.00% 96.72% 96.31% 95.56% 95.00% 96.72% 96.31% 97.07% 95.00% 96.72% 96.31%
Lower Confidence Limit 0.423 0.755 0.558 0.936 0.168 0.356 0.216 0.681 0.176 0.905 0.156 0.991
Upper Confidence Limit 0.67 0.783 0.815 0.972 0.298 0.401 0.494 0.809 0.828 0.927 0.889 0.995
Coefficient of Variation 51.5% 32.39% 43.51% 12.93% 73.59% 60.89% 72.6% 34.83% 78.04% 31.97% 80.05% 6.651%

LB = Leaning Benign; VUS = Variant of uncertain significance; CI = Conflicting Interpretation; LP = Leaning Pathogenic.
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Table 2. Pairwise comparison between scores of variants with different classification at ClinVar.
Results of Dunn’s test corrected for multiple comparisons with the Benjamini-Hochberg method are
shown. In bold and italics are highlighted results of pairwise comparisons between the LEANING
BENIGN and LEANING PATHOGENIC categories showing the widest medians difference for all the
three predictors.

Medians Difference Adjusted p Value

VEST3

LEANING BENIGN vs. VUS −0.242 <0.0001
LEANING BENIGN vs. CI −0.179 0.0022

LEANING BENIGN vs. LEANING PATHOGENIC −0.42 <0.0001
VUS vs. CI 0.063 0.578

VUS vs. LEANING PATHOGENIC −0.178 <0.0001
CI vs. LEANING PATHOGENIC −0.241 <0.0001

REVEL

LEANING BENIGN vs. VUS −0.165 <0.0001
LEANING BENIGN vs. CI −0.058 0.0284

LEANING BENIGN vs. LEANING PATHOGENIC −0.5235 <0.0001
VUS vs. CI 0.107 0.3313

VUS vs. LEANING PATHOGENIC −0.3585 <0.0001
CI vs. LEANING PATHOGENIC −0.4655 <0.0001

ClinPred

LEANING BENIGN vs. VUS −0.52 <0.0001
LEANING BENIGN vs. CI −0.0095 0.3826

LEANING BENIGN vs. LEANING PATHOGENIC −0.599 0.0004
VUS vs. CI 0.5105 <0.0001

VUS vs. LEANING PATHOGENIC −0.079 <0.0001
CI vs. LEANING PATHOGENIC −0.59 <0.0001

To verify if the missense variants scores were influenced by proximity to splicing junctions,
we examined the score distribution for 106 NF1 missense variants with likely effects on splicing,
since located ±3 nucleotides from splicing junctions. Of these 106 variants, the ClinVar classification
was likely benign (1), VUS (85), CI (1) and leaning pathogenic (19). The score median of the 106 splicing
variants was significantly higher than the median of LEANING BENIGN variants (VEST3 = 0.265,
p < 0.0001; REVEL = 0.203, p = 0.0021; ClinPred = 0.5411, p < 0.0001) and significantly lower than the
median of LEANING PATHOGENIC variants (VEST3 = −0.161, p < 0.0001; REVEL = −0.318, p = 0.0021;
ClinPred = −0.0359, p < 0.0001). However, the removal of these variants from the dataset did not
change either the score distribution, or the statistically significant differences between categories.

Overall, we observed a rather wide variability in the predictions scores for the three computational
tools, with REVEL scores being generally the lowest and ClinPred showing the highest values. To further
investigate the degree of relatedness between VEST3, REVEL and ClinPred scores, we performed
a correlation analysis. In general, a loose correlation was present, with a decreasing correlation level of
VEST3 vs. REVEL (ρ = 0.744, p < 0.0001), VEST3 vs. ClinPred (ρ = 0.699, p < 0.0001), and REVEL vs.
ClinPred (ρ = 0.684, p < 0.0001) (Supplementary Figure S1).

Next, we measured the area under the receiver operating characteristic (AUC) curves for all the
three metapredictors. VEST had the highest AUC (0.9252) followed by ClinPred (AUC = 0.8939) and
REVEL (AUC 0.8896) (Figure 2).
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Figure 2. Overall performances of the three predictors on the NF1 missense variants. The area under
the curve (AUC) is reported for each predictor.

Supplementary Figure S2 shows the sensitivity and specificity values from the AUCs,
corresponding to different predictors thresholds as cutoff for pathogenicity, which resulted quite
different for VEST3, REVEL, and ClinPred. In Supplementary Table S2 the cutoff values best performing
as the threshold for pathogenicity according to different performance indicators are reported.

To investigate whether the prediction score values were correlated to functional domains within
the neurofibromin protein, we examined the distribution of missense variant scores of different
categories along the NF1 coding sequence. Score values appeared non-randomly distributed with
specific clustering more evident for REVEL scores (Supplementary Figure S3). Thus, we proceeded to
verify if the score medians were significantly different among functional domains of the NF1 protein
annotated at INTERPRO (https://www.ebi.ac.uk/interpro/beta/search/text/P21359/).

For all three computational tools, and for all domains, prediction scores were again not
normally distributed (Supplementary Table S1). The non-parametric one way ANOVA demonstrated
a statistically significant difference in score distribution among neurofibromin functional domains for
all three metapredictors (VEST3 K-statistic = 107.3, REVEL K-statistic = 247.1, ClinPred K statistic =

80.5, and p < 0.0001 in all tests, Figure 3).

Figure 3. Prediction score values in the principal NF1 functional domains annotated at InterPRO
(RAS-GTPase aa 1210–1549; CRAL-TRIO LIPID BINDING DOMAIN aa 1581–1726; PH-LIKE Pleckstrin
homology domain aa 1727–1837; Armadillo type fold aa 1849–2676; NO FUNCTION all amino acid not
comprised in the previous domains). Medians with 95% confidence intervals are reported. The P value
of non-parametric ANOVA is reported for each predictor (Kruskal-Wallis test).

https://www.ebi.ac.uk/interpro/beta/search/text/P21359/
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In addition, the score medians in the RAS-GAP domain of neurofibromin were significantly higher
compared to medians of scores in other functional domains and in protein regions where no functions
have been assigned yet (VEST3 median = 0.892, REVEL median = 0.6805, ClinPred median = 0.974).
The only exception was represented by the PH-Like pleckstrin domain where the score medians, for all
metapredictors, were not significantly different, although slightly lower than medians in the RAS-GAP
domain, (Table 3).

Table 3. Pairwise comparison of score distribution in the NF1 protein domain. Results of Dunn’s test
corrected for multiple comparisons with the Benjamini-Hochberg method are shown.

VEST3 Scores Score Comparison
INTER DOMAINS Median Difference Adjusted p Value

RAS-GAP vs. CRAL-TRIO 0.133 <0.0001
RAS-GAP vs. PH LIKE 0.061 0.1102

RAS-GAP vs. ARMADILLO 0.126 <0.0001
RAS-GAP vs. NO FUNCTION 0.1595 <0.0001

CRAL-TRIO vs. PH LIKE −0.072 0.0498
CRAL-TRIO vs. ARMADILLO −0.007 0.7220

CRAL-TRIO vs. NO FUNCTION 0.0265 0.3105
PH LIKE vs. ARMADILLO 0.065 0.0405

PH LIKE vs. NO FUNCTION 0.0985 0.0009
ARMADILLO vs. NO FUNCTION 0.0335 0.0174

REVEL Scores Score Comparison
INTER DOMAINS Median Difference p Value

RAS-GAP vs. CRAL-TRIO 0.3435 <0.0001
RAS-GAP vs. PH LIKE 0.0365 0.1087

RAS-GAP vs. ARMADILLO 0.3695 <0.0001
RAS-GAP vs. NO FUNCTION 0.3445 <0.0001

CRAL-TRIO vs. PH LIKE −0.307 0.0001
CRAL-TRIO vs. ARMADILLO 0.026 0.5751

CRAL-TRIO vs. NO FUNCTION 0.001 0.3637
PH LIKE vs. ARMADILLO 0.333 <0.0001

PH LIKE vs. NO FUNCTION 0.308 <0.0001
ARMADILLO vs. NO FUNCTION −0.025 0.4453

ClinPred Scores Score
Comparison INTER DOMAINS Median Difference p Value

RAS-GAP vs. CRAL-TRIO 0.0365 0.013
RAS-GAP vs. PH LIKE 0.056 0.066

RAS-GAP vs. ARMADILLO 0.03 0.0002
RAS-GAP vs. NO FUNCTION 0.101 <0.0001

CRAL-TRIO vs. PH LIKE 0.0195 0.8558
CRAL-TRIO vs. ARMADILLO −0.0065 0.8558

CRAL-TRIO vs. NO FUNCTION 0.0645 0.0283
PH LIKE vs. ARMADILLO −0.026 0.8558

PH LIKE vs. NO FUNCTION 0.045 0.0253
ARMADILLO vs. NO FUNCTION 0.071 <0.0001

The PH-Like pleckstrin region showed the second-highest score median among INTERPRO
annotated domains, again for both VEST (0.831) and REVEL (0.644), being significantly higher than
score medians of all the other remaining regions. Similarly, even in ClinPred the PH-Like pleckstrin
domain had significantly higher score median than the median in the non-functional region (0.918 vs.
0.873). In contrast, ClinPred demonstrated a rather diverse scores clustering, with score medians of
variants in CRAL-TRIO and ARMADILLO domains significantly higher than score medians in the
non-functional region (Table 3).
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2.2. Development of a Classifier for Classification Fine-Tuning

Since the score medians differences between the “LEANING BENIGN” and the “LEANING
PATHOGENIC” categories of missense variants were highly significant for all metapredictors, we tested
five different models to identify an accurate model for predicting variants pathogenicity potential
based on scores distributions for the three computational methods. To this end, for each predictor and
for each model, 80% of the subset of LEANING BENIGN and LEANIGN PATHOGENIC missense
variants was used for training models, and 20% for validation. Accuracy on the validation set was
used to measure each model performance. Next, we ran the best performing classifier (LDA for VEST3,
accuracy = 0.85; SVM for REVEL, accuracy = 0.82; kNN for ClinPred, accuracy = 0.83) on a different
subset of variants which included the validation set plus all VUS and CI variants. Medians, upper and
lower 95% confidence intervals of scores from variants predicted as benign or pathogenic by these
classifiers were used to proceed in variants’ reclassification. Specifically, missense variants were
classified as LEANING BENIGN if they had scores below the upper 95% confidence interval of the
predicted benign median, and as LEANING PATHOGENIC when the score was above the lower 95%
confidence interval of the predicted pathogenic median. All variants with scores contained between
the two boundaries were reclassified as VUS.

2.3. Reclassification Results after Training

The distribution of newly classified variants’ scores showed a much better separation than before
training for all the three predictors (Figure 4).

Figure 4. Prediction score values after reclassification of NF1 missense variants in the three categories
LEANING BENIGN, VUS, and LEANING PATHOGENIC. For each category, median and 95%
confidence intervals are reported.

In detail, with VEST3 only 6 of 171 LEANING BENIGN and LEANING PATHOGENIC missense
variants switched to the opposite category, while the number of VUS and CI variants was reduced
from 1364 down to 707 (Table 4).
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Table 4. Classification categories of variants before and after training predictors. # = number.

METAPREDICTOR Variant Classification
at ClinVar

# of Variants
Reclassified as
Leaning Benign

# of Variants
Reclassified as VOUS

# of Variants
Reclassified as

Leaning Pathogenic

VEST3

B, LB, B/LB 20 24 5
VUS 251 641 471
CI 14 19 17

LP, LP/P, P 1 23 98
TOTAL 286 707 591

REVEL

B, LB, B/LB 23 21 5
VUS 322 644 394
CI 17 19 14

LP, LP/P, P 6 33 83
TOTAL 368 717 496

CLINPRED

B, LB, B/LB 23 14 11
VUS 136 659 569
CI 24 12 14

LP, LP/P, P 0 18 104
TOTAL 183 703 698

Similar results were obtained using REVEL scores for classification. In this case, 11 variants in
total changed to the opposite category, while 777 variants were classified as VUS. Finally, for ClinPred,
no variants previously classified as LEANING PATHOGENIC variants changed sign, whereas,
11 LEANING BENIGN were reclassified as LEANING PATHOGENIC. In addition, compared to VEST3
and REVEL, 107 and 202 more variants, respectively, were reclassified as LEANING PATHOGENIC in
ClinPred (Table 4).

The previous NF1 missense variants classification at ClinVar, and the novel classification for each
predictor after training is presented in the Supplementary Table S3.

The distribution of reclassified variants along the neurofibromin protein reinforced the non-random
distribution we observed before. In fact, no newly classified LEANING PATHOGENIC variants were
present beyond amino acid 2550 for REVEL (2700 for VEST3) (Figure 5 and Supplementary Figure S4).
Once more, REVEL demonstrated the most skewed distribution with only two LEANING
PATHOGENIC variants after amino acid 2400 and three between amino acids 600-700. Also, in
these regions clustered several LEANING BENIGN variants (94 and 22, respectively, 33% of all
LEANING BENIGN variants overall, Figure 5).

In contrast, ClinPred did not show a similar uneven distribution of variants along neurofibromin
(Supplementary Figure S5). Further, non-functional regions of neurofibromin which showed clustering
of missense variants with low pathogenicity scores presented also looser evolutionary conservation
(Supplementary Figure S6).
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Figure 5. REVEL prediction score values distribution throughout the NF1 protein. Above, the location
of the four NF1 InterPRO domains (RAS-GTPase aa 1210–1549; CRAL-TRIO LIPID BINDING DOMAIN
aa 1581–1726; PH-LIKE Pleckstrin homology domain aa 1727–1837; Armadillo type fold aa 1849–2676).
Green triangles are LEANING BENIGN scores, yellow diamonds VUS scores, red circles LEANING
PATHOGENIC scores. Shaded in red are regions with clustering of LEANING PATHOGENIC variants
with high prediction scores (aa 1200–1440, and 1725–1250), while green shading indicates regions where
no or few LEANING PATHOGENIC variants are present (aa 2530–2849 and 600–700, respectively).

3. Discussion

With the advent of massive sequencing technologies, the number of variants identified,
while screening disease-causing genes has steeply increased. Thus, variant interpretation represents the
most challenging and time-consuming step in the NGS workflow analyses [46]. Correct identification
of disease-causing variants is fundamental in precision medicine, and several prediction tools are
currently available to aid in variant interpretation. However, some mendelian diseases may exhibit more
complex genetics being caused by mutations having both subtle and/or additive effects responsible for
pathogenicity. Here, we aimed to fine-tune prediction tools at a single gene level and improve predictions
accuracy, while simplifying the variant interpretation process. In fact, several recent studies have
compared individual predictors performance on large heterogeneous databases of variants [32,33,47].
However, their performances at single gene level have not been thoroughly investigated.

We used the NF1 variant spectrum, since neurofibromatosis type 1 clinical diagnosis is usually
suspected in early years of life when canonical symptoms may not be present or fully developed [48].
The later onset of NF1 clinical features, in combination with the 50% rate of de novo non-segregating
mutations, makes variant interpretation particularly challenging. Indeed, nearly half of variants
deposited at ClinVar, and almost 90% of the missense changes are of uncertain significance. This scenario
is further complicated by the milder phenotype observed in patients with either missense variants
and/or in frame deletions and insertions [49–51].

Our analysis focused on investigating and comparing the performances of three recently developed
prediction tools that have been tested on large datasets and less frequently on single disease-causing
genes. First, we noticed that NF1 missense variants scores for the three predictors VEST3, REVEL and
ClinPred were loosely correlated. ClinPred scores were higher on average than corresponding VEST3
and REVEL scores. Despite the poor correlation, the three computational methods had comparable
performances applied to the NF1 missense variant dataset. It is possible that different criteria used
to categorize variants, especially those classified as benign, based on different allelic frequencies for
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filtering variants, or using untested score values as cutoffs between benign and pathogenic variants
may account for these differences.

Indeed, the score values performing better as the cutoff for pathogenicity were rather diverse
between the three predictors, and unlike values originally reported [30,31]. These results suggest
the need to tailor gene-specific thresholds to achieve a more accurate pathogenicity assessment.
The utility of establishing gene-specific thresholds has been already reported previously. Also,
several computational methods, including REVEL and VEST3, have been demonstrated reliable even
when tested on unbalanced datasets (i.e., unequal number of benign and pathogenic variants) [32,52].
It should be said that selecting a precise cutoff for pathogenicity is a subjective choice. In fact, individual
users may want to customize their own acceptable tradeoff between putative pathogenic variants
identified, and the rate of false positive predictions.

In our analyses, we found no significant differences between scores of variants with a “likely”
assertion and those with a definitive “benign” or “pathogenic” classification. For this reason, we merged
the “likely” and “definite” classes into a single category that we named “LEANING”. The same
approach has been demonstrated, not affecting performances of several prediction tools [32]. Moreover,
from a clinical point of view, no different actions are usually taken in patients’ management when gene
testing results reveal a “likely” variant rather than a “definite”.

Next, we aimed to reduce the number of VUS variants (88% of the dataset) with the same strategy
already utilized to improve MEFV gene variants classification in Familial Mediterranean Fever (FMF),
a disease where clinical misdiagnosis can be as frequent as in NF1 [53].

We obtained a much sharper separation between the LEANING BENIGN, VUS, and LEANING
PATHOGENIC categories scores for all the three prediction tools. Further, we were able to halve the
number of VUS variants (down to 51.5% with ClinPred, 52% with REVEL, and 52.6% with VEST3),
while only a marginal number of variants switched to the opposite classification category (6 in VEST3,
11 in REVEL and in ClinPred).

We noticed that while in the original reports recommended thresholds were not provided
(VEST3 and REVEL) or a 0.5 value had been used (ClinPred), gene-specific cutoffs can be variable and
optimized for a better predictions’ accuracy. This approach may be extremely useful in a disease context,
such as NF1, where clinical information could be missing or weakly supportive. In previous studies,
a combination of different prediction tools has been suggested [47]. However, we observed a weak
correlation between the three metapredictors scores of NF1 missense variants. Hence, we hypothesize
that combining different computational methods may lead to a loss of information which may be
critical at least for assessing pathogenicity of specific NF1 variants.

A recent study investigated the performances of several predictors, including VEST3 and REVEL,
on different NF1 datasets with pathogenic variants extracted from the Leiden Open Variation Database
(LOVD) [54]. The authors of this paper considered benign any variant with an allelic frequency above
0 in the 1000Genomes Project, The Exome Aggregation Consortium (ExAC), the Genome Aggregation
Database (gnomAD), and not previously reported as pathogenic [54]. Further, NF1 variants affecting
splicing junctions were also used, and the localization to the NF1 armadillo domain was demonstrated
to increase the likelihood for a variant of being pathogenic. In our work, on a different dataset (all
NF1 missense variants deposited at ClinVar), we evidenced a higher median score difference between
the LEANING BENIGN and LEANING PATHOGENIC variants, for both VEST3 and REVEL (0.42 vs.
0.19, and 0.523 vs. 0.24, respectively) compared to the one reported by Isakov et al. [54]. In addition,
our variant reclassification evidenced a preferential clustering, in the neurofibromin RAS-GAP and
PH-LIKE domains, of REVEL leaning pathogenic scores. In contrast, no variants with pathogenic scores
were present in the last 300 amino acid of the protein and in a narrow region of 50 residues (600–650).
A similar, albeit less marked non-random distribution was observed for VEST3 scores, while ClinPred
scores were rather evenly spread along neurofibromin. Overall, variant reclassification resulted in
a sharp separation of prediction scores throughout the whole coding sequence of NF1 protein for all
three metapredictors. Interestingly, non-functional NF1 regions with few or no variants predicted as
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pathogenic, had also a looser evolutionary conservation compared to the rest of unannotated portions
of NF1.

The validity of the approach presented here, is demonstrated by scores of missense variants located
in NF1 amino acid 844-848. These variants have been associated prevalently to superficial plexiform
neurofibromas, symptomatic spinal neurofibromas, and a higher risk of developing malignancies [51].

Twelve variants in this interval were listed at ClinVar, and classified as pathogenic (7),
with conflicting interpretation (1) or VUS (4). After reclassification, 10/12 variants were in the LEANING
PATHOGENIC category for both VEST3 and ClinPred (8 for REVEL), and only 2 were reclassified as
VUS (4 in REVEL). More in detail, the two variants Leu847Val and Leu847Phe classified as VUS by both
VEST3 and ClinPred were not among those responsible for the severe NF1 manifestations reported
by Koczkowska et al. [51]. In contrast, variants Leu847Pro and Leu847Arg, present in 78 individuals
with this severe phenotype were scored as LEANING PATHOGENIC by all three predictors. Similarly,
the Arg1809Cys, Arg1809Leu, Arg1809Pro, Arg1809Ser, and Arg1809Gly, responsible for a peculiar NF1
phenotype with the frequent association to short stature and pulmonic stenosis, but lacking cutaneous
and plexiform neurofibromas [55], had all very high scores computed by the three algorithms (average
0.97). Lastly, one of the only three variants predicted as pathogenic by REVEL in the NF1 region
between amino acids 600–700 (Leu691Arg), was found in a six years-old child with >6 café-au-lait
macules and brain neurofibromatosis [56]. This variant also had high pathogenic scores computed by
both VEST3 and REVEL. Hence, it appears that VEST3, REVEL and ClinPred quite reliably predict the
pathogenic potential of variants even when associated with the non-classical form of NF1.

A possible issue of analyses, such as those performed in this work, may derive from circularity in
data used [57]. However, both VEST3 and REVEL were originally trained on a Human Gene Mutation
Database (HGMD) dataset different from the one we used. The ClinPred original training dataset
included 11082 benign and pathogenic missense variants downloaded from ClinVar on January 2016,
with review status of “criteria provided” from submitter or “reviewed by expert panel,” and not added
to ClinVar before January 2013. Only 12 variants fulfilling these criteria were present in our training
dataset and were already submitted to ClinVar prior to January 2016. Thus, our initial dataset of
NF1 benign and pathogenic variants (n = 171) might have, at best, overlapped with ClinPred training
set for 0.1% (12/11082). This makes type 1 circularity problems for ClinPred results highly unlikely.
Since in our NF1 variant sample, benign and pathogenic variants were rather even in number, a type 2
circularity should be less likely. Thus, while we cannot exclude that some circularity problem may
remain, the balanced gene-specific subset we analyzed should limit its influence on our results.

The 2015 ACMG/AMP guidelines for variant classification remains the mainstay and an invaluable
resource in variant interpretation. In this work, we present evidence that the prediction scores of NF1
variants classified as “benign” or “likely benign”, and “likely pathogenic”, or “pathogenic” do not
differ significantly. In NF1, some of the ACMG/AMP classification criteria cannot be used, and patients’
management does not usually differ when variants fall into” likely” rather than “definite” categories.

Thus, specifically for NF1, we propose a simpler classification that may help in a more streamlined
adoption of proper clinical management of NF1 patients after genetic testing.

4. Materials and Methods

4.1. Dataset of Missense Variants

The analyzed dataset was represented by all the missense variants for the NF1 gene (NM_000267.3,
NM_001042492.2, both transcripts are indifferently used in ClinVar) listed at ClinVar [58]. Because only
eight missense variants classified as either “benign” and “likely benign” were present in the NF1
ClinVar database, we supplemented these categories with 8 NF1 missense variants classified as benign
or likely benign and uniquely present at the LOVD-NF1 database [59]. In addition, 33 further NF1
missense variants listed as VUS in ClinVar were reclassified as benign or likely benign in agreement
with their classification at LOVD. All databases were last accessed on 31 May 2019. In total, 1585 NF1



Int. J. Mol. Sci. 2020, 21, 721 14 of 18

missense variants were analyzed. Missense variants whose classification in ClinVar was not provided
were excluded from the analysis.

4.2. Statistical Analyses

We extracted the VEST3 prediction scores uploading all the variants in the analyzed dataset at the
server website [60]. For both REVEL and ClinPred prediction scores are precomputed for each sequence
position on the hg19 (GRCh37) human genome build, and available at REVEL [61] and ClinPred [62],
respectively. The prediction scores for all NF1 missense variants analyzed, their initial classification
at ClinVar, and proposed novel classification are available in the Supplementary Table S3. Means,
medians, SD, and the 95% confidence interval of the medians were assessed for each ClinVar category.

Normality of the scores’ distribution for all ClinVar classes was initially assessed with the
Shapiro-Wilk test. Next, the differences between “likely benign” vs. “benign”, and “likely pathogenic”
vs. “likely pathogenic/pathogenic” vs. “pathogenic” were assessed with Mann-Whitney test and
Kruskal-Wallis test of non-parametric ANOVA, respectively.

After the merging into “LEANING BENIGN” and “LEANING PATHOGENIC” novel categories,
the normality of score distribution for all categories and predictors was again checked with Shapiro-Wilk
test. The statistical significance of score distribution differences between categories was evaluated
by non-parametric One-Way ANOVA with Kruskal-Wallis test. Next, pairwise correlations between
categories were assessed with Dunn’s test corrected for False Discovery Rate by Benjamini-Hochberg
method. To evaluate the association between VEST3, REVEL and ClinPred scores, the non-parametric
Spearman’s correlation coefficient was used. All tests of statistical significance were two-tailed,
and P-values were considered statistically significant if <0.05.

The measures used for predictors’ performance evaluation and to build the ROC curve are reported
in Supplementary File S4.

All statistical analyses were performed using Prism v.8.3.0 (GraphPad Software, LLC, San Diego,
CA, USA)

4.3. Five Model Classification

Five different models were tested to perform classification, specifically: Linear Discriminant
Analysis (LDA), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector
Machines (SVM) with a linear kernel, and Random Forest (RF). This set of algorithms was chosen as it
represents a good combination of linear and non-linear models to test. The dataset used for training
models, was represented for each predictor by the “LEANING BENIGN” (n = 49) and “LEANING
PATHOGENIC” (n = 122) variants present in our dataset. Therefore, the resulting 171 variants dataset
was split into two parts, 80% was used to train the models through 10-fold cross validation, and 20% was
used as a validation test set. All models were weighted using the “accuracy” metric. The parameters
used for training models in Caret were: Method = “repeatedcv”; number = 10; repeats = 5; classProbs
= T; set.seed (7). Computations were performed in R (version 3.6.1) using the Caret (v.6.0-84) package.

5. Conclusions

The focus of our study was to improve NF1 missense variants interpretation and classification,
considering that 66.2% (1045/1579) of missense variants listed at ClinVar were reported by single
submitters with little supportive evidence for classification criteria. Thus, the results presented in this
article may serve as a useful resource for laboratories involved in NF1 genetic testing, as well as an aid
in developing variant interpretation guidelines for additional gene-disease systems.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/3/721/s1.
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