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Damage to kidney cells can occur due to a variety of ischemic and toxic insults and leads to
inflammation and cell death, which can result in acute kidney injury (AKI). Inflammation plays a key
role in the injury of renal cells, as well as subsequent cellular regeneration processes. However, persistent
chronic inflammation may trigger renal fibrosis. The investigation of the molecular mechanisms involved
in each individual injury is currently insufficiently elucidated. Whereas the kidney has a remarkable
capacity for regeneration after injury and may completely recover depending on the type of renal lesions,
the options for clinical intervention are restricted to fluid management and extracorporeal kidney support.
AKI is still associated with high morbidity and mortality incidence rates, and it also bears an elevated
risk of subsequent chronic kidney disease. Therefore, the development of novel therapies to improve
renal regeneration capacity after AKI, to preserve renal function, and to prevent AKI is urgently needed.
In this context, we wanted to offer a forum for the publication of new results on renal inflammation,
injury and regeneration, as well as for the review and discussion of existing studies from this interesting
research field.

This Special Issue covers research articles that investigated the molecular mechanisms of
inflammation [1–3] and injury [4,5] during different renal pathologies and renal regeneration [6],
diagnostics using new biomarkers [7–9], and the effects of different stimuli like medication or bacterial
components on isolated renal cells or in vivo models [10–12], all of which were summarized in a very
simplified manner. Furthermore, this Special Issue contains important reviews that dealt with the
current knowledge of cell death and regeneration [13,14], inflammation [15–18], and the molecular
mechanisms of kidney diseases [19–22]. In addition, the potential of cell-based therapy approaches that
use mesenchymal stromal/stem cells (MSCs) or their derivates is summarized [23–25]. This edition is
complemented by a series of reviews that deal with the current data situation on other very specific
topics like diabetes and diabetic nephropathy [26–28], as well as new therapeutic targets [29].

In this Special Issue, twelve original research articles are presented that dealt with different
questions and the research models used within. The findings of Mocker and co-workers demonstrate that
renal chemerin expression, a chemoattractant adipokine, is associated with processes of inflammation
and fibrosis during renal damage [2]. The protection of kidney function by attenuating induced renal
inflammation was shown with the use of Farnesiferol B, an agonist of a receptor that is expressed by renal
tubular epithelial cells [1]. The xanthin oxidase inhibitor febuxostat is shown to exert anti-inflammatory
action and protect against diabetic nephropathy development [3]. Kidney injury leading to focal
segmental glomerulosclerosis was shown by variants in the collagen 4A5 gene, demonstrating that
the molecular genetics of different players in the glomerular filtration barrier can be used to evaluate
the causes of kidney injury [5]. In addition, another study suggested that renal disease in colitis mice
might be associated with changes in glomerular collagens and glomerular filtration barrier-related
proteins [4].

No injury or inflammatory effects of two anti-diabetically used gliflozins on proximal tubular
epithelial cells that were cultured in hyperglycemic conditions were found [10]. Stimulations with
bacterial lipopolysaccharide were used to investigate acute renal fibrosis in a model of sepsis-induced
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AKI [11] and the inflammatory cascade of obese kidney fibrosis in a metabolic endotoxemia mouse
model [12].

A very interesting approach investigated the regeneration potential of MSC-derived extracellular
vesicles that were transfected with specific miRNA mimics [6]. Furthermore, others introduced a kidney
injury test for the noninvasive monitoring of IgA nephropathy progression [9]. Schiffer and co-workers
described CXCL13 blood levels as a biomarker in T-cell-mediated rejection [8]. The marker correlates
with B-cell involvement and might help to identify patients with a more severe clinical course of
rejection [8]. Others demonstrated that that specific IL-18 genotypes may play a role in the etiology
and progression of renal cell carcinoma and serve as useful early detection biomarkers.

Priante and co-workers reviewed the different modalities of apoptosis, necrosis, and regulated
necrosis in kidney injuries in order to find evidence for the role of cell death, which may pave the way for
new therapeutic opportunities [14]. Others discussed the molecular basis of injury and repair in distinct
cell types of the kidney during arterial hypertension [21]. In this context, the main mechanisms of kidney
regeneration, while focusing on epithelial cell dedifferentiation and the activation of progenitor cells
with special attention on the potential niches of kidney progenitor cells, were also lighted [13]. Three
reviews by Yun [25], Bochon [23] and Lee [24] summarized the therapeutic potential and efficacy of
MSCs, which are primarily associated with their capability to inhibit inflammation and initiate renal
regeneration. MSCs predominantly act through secreted factors, including microRNAs that are contained
within extracellular vesicles, cytoprotective effects anti-inflammatory effects, anti-apoptotic effects, and
the suppression of oxidative stress. In addition, further reviews summarized the inflammation-mediated
mechanisms or the inflammasome in various renal diseases [15–18,26,27]. Very interesting and new
approaches shed a light on the role of non-coding RNAs, either in the progression of glomerular or
tubulointerstitial kidney diseases [20] or as new therapeutic targets or biomarkers for fibrotic changes [29].
Another interesting work reviewed the involvement of salt-inducible signal transduction pathways in
AKI and discussed the possibility of new therapy options [22].
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