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Abstract: Lipid-derived plant hormone jasmonates are implicated in plant growth, reproductive
performance, senescence, secondary metabolite productions, and defense against both necrotrophic
pathogens and feeding insects. A major jasmonate is (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), which
is perceived by the unique COI1-JAZ coreceptor system. Recent advances in plant chemical biology
have greatly informed the bioscience of jasmonate, including the development of chemical tools
such as the antagonist COR-MO; the agonist NOPh; and newly developed jasmonates, including
JA-Ile-macrolactone and 12-OH-JA-Ile. This review article summarizes the current status of plant
chemical biology as it pertains to jasmonates, and offers some perspectives for the future.
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1. Introduction

Plant hormones are signal molecules present in low concentrations in plants that control all aspects
of plant growth and development. Historically, plant hormones have been identified by conventional
chemical isolation techniques combined with plant phenotype assays. However, postgenomic
biology has enabled the genetic identification of previously unknown plant hormones, such as the
carotenoid-derived hormone strigolactone, which was discovered by a combined biosynthesis/genetic
analysis approach [1,2], and some peptide hormones, by genetic analyses of the Arabidopsis genome [3].

Jasmonic acid (JA, Figure 1A) was first identified as a volatile component of jasmine in 1962 [4],
and has been considered a plant hormone since the discovery that it causes a variety of biological
responses in plants, including defense responses to attack by herbivorous insects or necrotrophic
pathogens, biological responses to injury, the enhanced production of secondary metabolites, male
sterility, sex-determination of plants, and growth inhibition [5–10]. The unique coreceptor system
of jasmonate was disclosed by Solano’s [11], Howe’s [12], and Farmer’s groups [13], and found to
entail protein–protein interactions between F-box protein CORONATINE INSENSITIVE 1 (COI1) and
repressor protein JASMONATE ZIM-DOMAIN (JAZ) to form the COI1-JAZ coreceptor (Figure 1B).
Subsequent degradation of JAZ repressor through a ubiquitination-guided 26S-proteasome mechanism
activates the expression of the downstream gene, which is repressed by JAZ repressor. More recently,
however, genetic studies concluded that (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile) is in fact the genuine
plant hormone to which JA is merely a precursor: the JAR1 enzyme belonging to GH3 enzyme family
which conjugates amino acids to diverse acyl acids is indispensable for activating the jasmonate
response [14], and the jasmonate receptor COI1-JAZ has a strong affinity for JA-Ile but not JA [12].
Additionally, stereochemical studies concluded that the biosynthetic (7S, 3R)-JA-Ile (also known as
(+)-7-iso) isomer is the genuine bioactive form that is easily epimerized to give a naturally occurring
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mixture of the thermodynamically stable (7R, 3R)-form and biologically active (7S, 3R)-form in a ratio
of 95:5 (Figure 1A) [15].

Figure 1. Jasmonic acid (JA) ligands and COI1-JAZ coreceptor. (A) Structures of JA, active/inactive
form of 7-iso-jasmonoyl-l-isoleucine (JA-Ile), coronatine (COR), and coronalone and (B) comparison of
the COI1 (green)/JA-Ile/JAZ1 (orange) complex (left, PDB:3OGL) and the COI1/COR/JAZ1 complex
(right, PDB:3OGM) at the ligand binding pocket. 89Phe and 444Tyr sidechains of COI1 are highlighted
in ball-and-stick.

Recent advances in plant hormone biology [16], especially a vastly improved understanding of the
unique coreceptor system [17], has enabled the development of chemical tools, including antagonists
and agonists. Such tools are needed to probe the precise mechanistic pathways by which plants
develop. The first of these was auxinole, an antagonist of auxin receptor TIR1/IAA, which paved the
way for agonist/antagonist rational design (Figure 2A) [18,19]. Chemical tools have greatly contributed
to our understanding and ability to control the signaling pathway of plant hormones. In this review
article, we will summarize the advances in the plant chemical biology on jasmonates, and offer some
perspectives for the future.

Figure 2. Cont.



Int. J. Mol. Sci. 2020, 21, 1124 3 of 14

Figure 2. Structure-guided antagonist design. (A) Auxinole is superimposed onto TIR1 (blue)-AUX/IAA
(purple) coreceptor (PDB:2P1Q), (B) COR-MO is superimposed onto COI1 (green)-JAZ1 (orange)
coreceptor (PDB:3OGM), and (C) AS6 is superimposed for PYR1 (brown)-HAB1 (green) coreceptor
(PDB: 3QN1 and 3WG8). The structures were modeled and rendered by MOE (Molecular Operating
Environment, 2011.10; Chemical Computing Group Inc., Montreal, QC, Canada, 2011).

2. The Conventional Chemical Tools for Jasmonate Bioscience

The most important chemical tool for the study of jasmonate bioscience is the phytotoxin coronatine
(COR, Figure 1A), produced by Pseudomonas syringae and first identified in 1977 [20]. COR is widely
known as “super strong JA”, having a similar bioactivity profile to JA but an enhanced potency [21].
This enhanced potency can be understood in terms of the structure of COR, which incorporates a sTable
5-6-conjugated ring system mimicking the structure of JA-Ile, but one that cannot isomerize into (7R,
3R)-form; the analogous isomerization of (7S, 3R)-JA-Ile into the (7R, 3R)-form leads to loss of potency.
In addition, the crystal structure of COI1-COR-JAZ1 complex suggests a strong hydrophobic interaction
between the 5–6-conjugated ring system of COR and 89Phe and 444Tyr of COI1 (Figure 1B) [22]. COR is
widely used in JA bioscience instead of JA because of the chemical stability of bioactive (7R, 3R)-form,
and its most important contribution so far has been the development of the coi1-1 mutant, which
incorporates a mutation in gene encoding the COI1 protein (a component of COI1-JAZ coreceptor) and
is insensitive to COR [23]. Today, COR is considered as a structural and functional mimic of JA-Ile,
and has been accessible in multigram quantities and good optical purity since the landmark work of
Watson’s and Ueda’s groups [24–26].

One alternative to COR is coronalon, which causes JA-like responses in plants, such as volatile
production and defense response against insect attack [27,28]. Coronalon is a 6-ethyl indanyl isoleucine
conjugate, the synthesis of which is relatively straightforward (Figure 1A). Both coronalon and COR
cause many JA responses in a variety of plants, such as Arabidopsis, lima bean, soy bean, and tobacco.

3. Development of Coronatine-Based Antagonist/Agonists of Jasmonate Signaling

In general, a complete understanding of plant hormone signaling is difficult due to significant
genetic redundancy of the receptor encoding genes in the plant genome [29], which precludes the
exact clarification of the function of each subtype [30]. Functional redundancy among the members
of such a multigene family will often hinder the genetic analysis of the contribution of individual
genes using a reverse genetics strategy, because genetic knock-out of one redundant gene will be
compensated for by other genes belonging to the same gene family. For example, one COI1 gene
and 13 JAZ genes on COI1-JAZ coreceptor of jasmonate [29], and six TIR1/AFB genes and 29Aux/IAA
genes on TIR1/AFB-Aux/IAA coreceptor of auxin, are encoded in the Arabidopsis genome (Figure 3A).
The functional JAZ genes are JAZ1/2/3/4/5/6/9/10/11/12, because JAZ7/8/13 lack the canonical LPIARR
motif in the degron necessary for the formation of COI1-JAZ coreceptor [31–35].

Chemical biology using receptor antagonists/agonists constitutes a promising solution to this
problem. A general antagonist can disable all redundant signaling networks at once, and a specific
agonist can trigger signaling from an otherwise redundant signaling network. However, such chemical
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biology studies are designed on structural information. In the context of COI1-JAZ antagonist
development, Zheng’s group disclosed the crystal structure of COI1-JA-Ile/COR-JAZ1 ternary complex
(Figure 1B) [22], which turned out to be very close to that of auxin receptor TIR1-IAA [36]. Interestingly,
the ketone moiety of JA-Ile/COR was found to play an important role in the hydrogen bonding
that causes COI1 and JAZ to interact (Figure 1B). Solano’ s group developed a rationally designed
antagonist of the COI1-JAZ coreceptor system [37]—to date the only antagonist of the COI1-JAZ
coreceptor—based on this important insight. The antagonist, COR-MO, is a chemically modified COR
bearing a bulky methyl oxime group that protrudes from the ligand-binding pocket of COI1 and serves
to impede the access of the JAZ protein, thereby inhibiting the formation of the COI1-JAZ coreceptor
(Figure 2B). COR-MO effectively antagonizes the formation of COI1-JAZ complex caused by JA-Ile,
and also inhibits in planta biological responses known to be caused by JA-Ile including inhibition of
root elongation, anthocyanin accumulation, and the defense response against infection by necrotrophic
pathogens. Previously reported antagonists of other plant hormones, such as auxinole for auxin
receptor (Figure 2A) [18], and AS6 of abscisic acid (ABA) receptor (Figure 2C) [38], were also designed
by inhibition of protein–protein interactions by chemical modification of plant hormone structure. The
bulky alkyl chain introduced in auxinol interferes with access of Aux/IAA to the TIR1-auxinol complex,
and the bulky C6-alkyl chain in AS6 interferes with the access of HAB1 to the PYR1-AS6 complex.

In contrast, progress towards the development of COI1-JAZ agonists has been much slower. One
possible approach is the use of ‘biased’ agonists, which have selective affinity for the 10 genetically
redundant JAZ and can be a powerful tool for the understanding of such a genetically redundant system.
However, there are few successful examples of ‘biased’ plant hormone receptor agonists. Cutler’s
group successfully developed the ABA receptor agonists [39] pyrabactin [40,41], quinabactin [42],
cyanabactin [43], and opabactin [44], which were identified by random screening of a large-scale
chemical library, and exhibited remarkable selectivity among 15 ABA receptor subtypes. The same
method also resulted in the identification of SPL7, a femtomolar agonist selective for a strigolactone
receptor ShHTL7 involved in the seed germination of parasitic plant Striga hermonthica [45].

For years, the chemical screening approach was considered the only way to develop plant hormone
receptors agonists, partly because no paradigm with which to accomplish their rational design existed.
However, in pioneering work, Ueda’s group succeeded in the rational design of subtype-selective
agonists for the COI1-JAZ coreceptor system by using unique stereochemistry-based tuning of subtype
selectivity (Figure 3B) [46]. COR as well as JA-Ile could induce protein–protein interaction (PPI)
between COI1 and 10 of 13 JAZs; this multiple ligand ability of COR was attributed to the exquisite
3D structure of COR, which enabled the formation of hydrogen bond networks in all 10 possible
combinations of COI1 and JAZ (Figure 3A). The slight modification of this exquisite 3D structure
enabled the fine-tuning of the hydrogen bond-network (Figure 3B). The structurally modified COR
could not retain a hydrogen bond-network in some of the COI1-JAZ combinations, introducing bias
into its agonistic properties. Four stereochemical hybrid isomers of COR were synthesized as modified
CORs, each of which could hold the same size-exclusion volume as that of original COR and could be
accommodated into the small space between interreacting COI1 and JAZ. As expected, one of the four
stereochemical isomers was found to have moderate selectivity (5/10) for 10 possible combinations of
COI1 and JAZ (Figure 3C), and was improved using an in silico molecular docking strategy, resulting
in NOPh that had high selectivity for 2/10 possible COI1-JAZ combinations (Figure 3C). NOPh is a
phenyloxime derivative of COR stereoisomer and cause PPI between COI1 and JAZ9/10. NOPh-treated
Arabidopsis showed a moderate defense response against infection by necrotrophic pathogens, without
causing growth inhibition. The mode of action of NOPh was carefully examined through genetic
studies, and concluded to entail selective activation of the ERF-ORA branch, one of the two major
branches of jasmonate signaling pathway, through binding with COI1-JAZ9 coreceptor pair (Figure 3D).
This result suggested the possible significance of chemical tools for further studies on the function
of genetically redundant plant hormone receptors, and demonstrated that the transient degradation
of an individual JAZ subtype might circumvent the functional compensation by other members in
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multigene family, which occurs in mutant plant during the development [30]. The use of a chemical
tool enables the dissection of genetically redundant COI1-JAZ coreceptor function to disclose the
contribution of individual subtype. Recently, Xie’s groups suggested that the affinity between COI1
and JA-Ile has been underestimated based on the observation that JA-Ile is first perceived by COI1
and the complex subsequently binds JAZs to cause a jasmonate response, and therefore the genuine
receptors for JA-Ile may be COI1 [47,48]. This result may lead to new insight for the molecular design
of improved agonist/antagonist of COI1-JAZ coreceptor system.

Figure 3. Stereochemistry-based tuning of JASMONATE ZIM-DOMAIN (JAZ) subtype selectivity.
(A) Redundancy in plant hormone coreceptor complex; (B) schematic view of stereoisomer-based
tuning of JAZ subtype selectivity; (C) observed JAZ subtype selectivity for one stereoisomer of COR
and NOPh; and (D) overview of the mode of action of NOPh, a selective activation of ERF-ORA branch
signaling pathway [49].

Dissection of the genetic redundancy of COI1-JAZ coreceptors has also been attempted by genetic
approaches. Howe’s group elaborated the jazD mutant in which 10 JAZ genes (JAZ1-7, -9, -10, and
-13) are impaired [50]. Most jasmonate responses, such as upregulated defense response against
necrotrophic pathogens and feeding insects, growth inhibition, poor reproductive performance, and
secondary metabolite production, are observed in jazD through the activation of jasmonate signaling
pathway. jazD can be an important background in which a JAZ subtype is knocked-in to examine the
responsible phenotype. Solano’s group use Marchantia polymorpha L. instead of Arabidopsis [51,52]. No
genetic redundancy is observed in the jasmonate signaling of M. polymorpha, because single MpCOI1
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and MpJAZ are encoded in the genome. Chemical biology using chemicals will be complementary to
these two promising genetic approaches.

4. Protein Engineering on Ligand-Receptor Interaction in Plants

A particularly promising strategy for the study of plant hormone signaling is the combination of
chemistry and protein engineering (Figure 4). For example, He’s group reported the breakthrough
achievement of controlling the ligand selectivity of the COI1-JAZ coreceptor system [53]. This was
accomplished by examination of the crystal structure of COI1-JA-Ile/COR-JAZ1, which led to the
conclusion that perturbation of the shape of the ligand-binding pocket of COI1 by introduction of a
point mutation (384Ala to 384 Val to give COI1A384V) would allow accommodation of JA-Ile, without
binding to COR (Figure 4A). The flexible side chain of JA-Ile can move to avoid streric hindrance
in the biding pocket. The transgenic Arabidopsis plant engineered to express COI1A384V instead of
wild-type COI1 was found to be insensitive to phytotoxin COR, and exhibited significantly increased
resistance to pathogenic infection compared with wild-type plants. This result demonstrated that
protein engineering techniques can affect the ligand selectivity of the plant hormone receptor. A similar
strategy was also reposted by Cutler’s group [54], who modified the ligand-binding pocket of PYR1
to accommodate mandipropamid, a commercially available agrochemical. Transgenic Arabidopsis
expressing engineered PYR1 exhibited upregulated drought tolerance (Figure 4B). In 2017, Torii
and Itami’s group also applied the bump-and-hole approach [55] to auxin receptor TIR1-Aux/IAA
(Figure 4C) [56]. A selective pair of bumped-auxin and holed-TIR1 was developed; among the six
subtypes of TIR1/AFB, only the holed TIR1 could bind bumped-auxin to cause PPI with Aux/IAAs,
although no selectivity for the possible 29 subtypes of Aux/IAA repressors was observed. Focusing on
the close relationship between TIR1/AFB-Aux/IAA and COI1-JAZ receptor systems, this achievement
can be also applied to jasmonate signaling to enable the selective activation of one COI1-JAZ pair
among possible 10 pairs. For this purpose, a new strategy of bump-and-hole for the repressor JAZs,
which correspond to Aux/IAA in auxin receptor, is necessary.

Figure 4. Cont.
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Figure 4. Protein engineering on ligand-receptor interaction. (A) Comparison of the A384VCOI1
(green)/COR/JAZ1 (orange) complex (left) and the A384VCOI1/JA-Ile complex (right) at the ligand
binding pocket; (B) comparison of the PYR1 (brown)/ABA/HAB1 (green) complex (left) and the
holedPYR1/mandipropamid complex (right) at the ligand binding pocket; (C) comparison of the
TIR1-AFB (blue)/IAA/Aux-IAA (yellow) complex (left) and the holedTIR1/bumpedIAA complex (right)
at the ligand binding pocket. The structures and surfaces were modeled, docked, and rendered using
MOE from (A) 3OGM, 3OGL; (B) 3QN1, 4WGD; and (C) 2P1Q, respectively. The ligand molecules are
highlighted in sphere, and mutated residues are highlighted in either sphere or ball-and-stick, Red ball
is oxygen and blue ball is nitrogen.

5. Other Chemicals Involved in the Tuned Regulation of Jasmonate Signaling

The discovery of new COI1-JAZ coreceptor ligands was a landmark in jasmonate chemical biology.
Some of these ligands are involved in the tuned activation of jasmonate signaling and are a possible
basis for the development of chemical tools regulating the jasmonate signaling (Figure 5).

Amino acid conjugates of JA are known as conventionally-tuned jasmonates (Figure 5A). JA-Trp
conjugate causes agravitropic root growth in seedlings of A. thaliana in a COI1-independent manner [57].
Xie’s group reported that the amino acid conjugates, JA-Leu, JA-Val, JA-Met, and JA-Ala, function
as endogenous jasmonates as well as JA-Ile [58]. This result will be useful for further molecular
design of COI1-JAZ agonists, the spatial limitations of the ligand-binding pocket of COI1 having been
demonstrated—a finding supported by the molecular docking study by Ueda’ s group [59].

JA-Ile-macrolactone is an artificial jasmonate prepared by Boland’s group (Figure 5B) [60,61] and
found to upregulate the defense response of the wild tobacco Nicotiana attenuate without affecting its
growth. This uncoupling of growth and defense is also reported to depend on Nicotiana COI1. A similar
phenotype was also reported by Howe’s group in Arabidopsis mutant impaired in quintuple JAZs in
addition to PhyB [62]. The upregulation of the defense response against herbivores without growth
inhibition was observed in the jazQ phyB mutant; the growth inhibition was found to be suppressed



Int. J. Mol. Sci. 2020, 21, 1124 8 of 14

by jasmonate-gibberellin signaling crosstalk. One hypothesis is that JA-Ile-macrolactone affects both
COI1-JAZ and the crosstalk between jasmonate and gibberellin, resulting in the uncoupling of growth
and defense in Nicotiana attenuata.

Figure 5. Other chemicals involved in the tuned regulation of jasmonate signaling. (A) JA amino
acid conjugates with JA-Ile like activity; (B) JA-Ile macrolactone uncouples growth-defense trade-off;
and (C) known metabolites of JA-Ile and their JA-Ile like activity, red “×” means ‘without causing
growth inhibition.

12-Hydroxy JA-Ile (12-OH-JA-Ile) is an inactivated derivative of JA-Ile (Figure 5C) [63,64].
Hydroxylation of JA-Ile by CYP94 monooxygenases (CYP94B1/B3/C1) occurs as a late response of
jasmonate signaling to lower the endogenous concentration of bioactive JA-Ile and suppress jasmonate
responses [65–67]. Koo’s and Solano’s groups revealed that 12-OH-JA-Ile can be perceived by
COI1-JAZ coreceptor with weak/moderate affinity in Arabidopsis and is expected to be involved in some
of jasmonate responses [68,69]. Interestingly, 12-OH-JA-Ile may be selective for some JAZ subtypes
and be involved in the regulation of selected jasmonate response. Considering that 12-OH-JA-Ile
accumulates 10-fold higher levels than JA-Ile at a later stage and the high concentration level continues
more than 8 h, the moderate and biased JAZ degradation by 12-OH-JA-Ile may fine-tune late jasmonate
responses. 12-OH-JA-Ile can be further converted to 12-COOH-JA-Ile by CYP94C1 [67], 12-OH-JA by
IAR3&ILL6 [70], 12-O-Glc-JA by UGT76E1 [71], and 12-HSO4-JA by ST2a (Figure 5C) [72]. Among
them, only 12-O-Glc-JA is biologically active in a plant, causing leaf-folding movement of Samanea
saman in COI1-independent manner [73]. However, these metabolites have no affinity with COI1-JAZ
coreceptor, suggesting that 12-OH-JA-Ile may be the possible component of metabolic regulation of
jasmonate response.

One particularly intriguing research topic in plant hormone biology is the ancestral origin of
hormone-receptor pair (Figure 6) [74]. The genome sequence of a bryophyte Marchantia polymorpha
revealed the unique nature of this ancestral plant [75]. No genetic redundancy was found for jasmonate
signaling components in M. polymorpha: one MpCOI1 and one MpJAZ. Solano’s group focused on the
jasmonate signaling in M. polymorpha, the redundant-free nature of which is convenient for genetic
analyses of jasmonate signaling [51,52]. However, the unique MpCOI1-MpJAZ coreceptor pair cannot
perceive JA-Ile/COR, and the endogenous ligand is confirmed cis/iso-dinor-OPDA [76]. This is the
result of unique ligand-receptor coevolution. A single point mutation in MpCOI1 causes this difference
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in ligand selectivity. Considering the high homology between MpJAZ and Arabidopsis JAZs belonging
to Group V (JAZ3/4/9) [77], MpCOI1-cis/iso-dinor-OPDA complex might have selective affinity with
Arabidopsis JAZs belonging to Group V.

Figure 6. Ligand-receptor coevolution in jasmonate signaling.

6. A Chemical Tool for Jasmonate Research from Chemical Library Screening

Jarin-1, a selective inhibitor of JAR1 enzyme, is the sole successful example of the chemical library
screening on jasmonate signaling (Figure 7) [78]. JAR1 is a key enzyme of jasmonate signaling that
conjugates (+)-7-iso-jasmonic acid to l-isoleucine to provide JA-Ile. Jarin-1 efficiently suppressed this
process of JA-Ile biosynthesis and selectively impaired multiple jasmonate responses in Arabidopsis
thaliana.

Figure 7. Jarin-1: the sole inhibitor of JAR1.

7. Possible Design of Chemical Tools in Non-Arabidopsis Plants

Some of the abovementioned chemical tools have been validated in non-Arabidopsis plants, but
their future application is contingent upon the tuning of their chemical structures for the corresponding
orthologs of Arabidopsis COI1-JAZs. However, no crystal structure of such orthologs exists—the
COI1-JAZ1-COR/JA-Ile complex is the only exact structure reported so far. Recently, however,
in silico homology modeling of orthologous COI1-JAZ with ligands has been reported. Boland’s
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group demonstrated the first application of homology modeling and docking studies on the possible
structure of lima bean PlCOI1-PlJAZ and a coronalon derivative [79]. Figueroa’s group also reported
woodland strawberry FvCOI1-FvJAZ1 and JA-Ile [80]. Further development in such studies is expected
to inform the design of agonists and antagonists of orthologous COI1-JAZ coreceptor system for
non-Arabidopsis plants.

8. Conclusions

The development of chemical tools for the regulation of plant hormone signaling is a promising
field of research, and significant advances have been made in the past two decades. However, the
tools developed to date are limited to the upregulation of plant defense responses against necrotrophic
pathogen or insect attack, and although these are important, more versatile tools such as those that
are able to improve the efficiency of plant growth are highly desirable. One research priority is
a tool that is able to upregulate [79] secondary metabolite production in medicinal plants without
concomitant growth inhibition [81,82], and recent studies have revealed the relationship between
jasmonate signaling and transcription factors (TFs), which govern the biosynthetic genes of secondary
metabolites [83,84]. Thus, chemical control of individual TF or JAZs in the upstream pathway could be
an efficient strategy. Progress in the development of novel chemical tools will advance the tuning and
regulation of jasmonate responses [85].
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