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Abstract: The mechanisms by which neoplastic cells disseminate from the primary tumor to metastatic
sites, so-called metastatic organotropism, remain poorly understood. Epithelial–mesenchymal
transition (EMT) plays a role in cancer development and progression by converting static epithelial
cells into the migratory and microenvironment-interacting mesenchymal cells, and by the modulation
of chemoresistance and stemness of tumor cells. Several findings highlight that pathways involved
in EMT and its reverse process (mesenchymal–epithelial transition, MET), now collectively called
epithelial–mesenchymal plasticity (EMP), play a role in peritoneal metastases. So far, the relevance of
factors linked to EMP in a unique peritoneal malignancy such as pseudomyxoma peritonei (PMP) has
not been fully elucidated. In this review, we focus on the role of epithelial–mesenchymal dynamics in
the metastatic process involving mucinous neoplastic dissemination in the peritoneum. In particular,
we discuss the role of expression profiles and phenotypic transitions found in PMP in light of the
recent concept of EMP. A better understanding of EMP-associated mechanisms driving peritoneal
metastasis will help to provide a more targeted approach for PMP patients selected for locoregional
interventions involving cytoreductive surgery and hyperthermic intraperitoneal chemotherapy.

Keywords: pseudomyxoma peritonei; PMP; epithelial-mesenchymal transition; epithelial-
mesenchymal plasticity; EMT; EMP; cytoreductive surgery; hyperthermic intraperitoneal
chemotherapy; CRS/HIPEC

1. Introduction

The peritoneal cavity is a well-known metastatic site for several malignancies. The mechanism
of dissemination of tumors into the peritoneum represents a peculiar metastatic route distinct from
lymphatic and hematogenous ones, as cancer cells detach from the primary tumor, disseminate inside
the peritoneal cavity and eventually implant on the peritoneal submesothelium [1–3].

Pseudomyxoma peritonei (PMP) is an anatomo-clinical condition most commonly secondary
to peritoneal metastases from a perforated mucinous appendiceal tumor. The clinical picture is
determined by implantation of neoplastic cells onto peritoneal surfaces with the production of a large
amount of intraperitoneal mucin (MUC). Since the introduction in the early nineties of cytoreductive
surgery (CRS) associated with hyperthermic intraperitoneal chemotherapy (HIPEC) as locoregional
treatment, PMP represents one of the most established indications for this treatment, and, critically,
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the only one with the potential to achieve cure or long-term disease control [4,5]. Given the rarity of this
disease, the role of other therapeutic strategies remains unproven and difficult to verify within properly
designed studies. Few data are available on the efficacy of systemic treatments, i.e., chemotherapy
or targeted therapy, but, in general, a relative unresponsiveness is reported. For these reasons,
the identification of potential molecular targets that could contribute to improved patient stratification
is needed to extend the therapeutic opportunities of these patients. Although immortalized cell lines
and animal PMP models have recently been developed, the molecular mechanism of tumor growth,
diffusion and implantation within the mesothelial layers are less studied when compared to other types
of peritoneal malignancies, which are more frequent and characterized by higher cellularity [6–8].

An important role for cancer dissemination into the peritoneal cavity is played by
epithelial–mesenchymal transition (EMT) [9,10]. EMT and its reverse, mesenchymal–epithelial
transition (MET) are biological processes involved in embryogenesis and organ development
(type 1 EMT), tissue regeneration and fibrosis (type 2 EMT) and cancer progression and metastasis
(type 3 EMT) [11,12]. More recent studies have demonstrated that tumor cells may show a spectrum of
intermediate states, termed transitioning or hybrid states, between the full epithelial and mesenchymal
states. Transitioning phenotypes have been shown to be associated with different outcomes in
carcinomas and sarcomas [13,14], suggesting that their clinical behavior might be dependent on
the tumor type [15]. The dynamic nature of EMT and MET processes was collectively defined as
epithelial–mesenchymal plasticity (EMP) [12,16,17]. A consensus statement including the nomenclature
and guidelines for EMT research has recently been published [18].

In this review, we discuss the present understanding of the possible involvement of pathways
related to EMP in the pathogenesis and clinical behavior of PMP, with a focused perspective on the
molecular and biological factors involved in the progression of this tumor that could be targeted to
enhance the current therapies.

2. Pseudomyxoma Peritonei

2.1. Etiopathogenesis

PMP is a clinical condition characterized by intraperitoneal dissemination of mucinous tumors
and accumulation throughout the abdominal cavity of mucinous ascites (Figure 1a) originally called
“jelly belly”, when first described in 1884 by Werth [19]. In the majority of cases, PMP originates from
an appendiceal mucinous neoplasm, but a similar clinical picture has been exceptionally described
in some ovarian (mature cystic teratomas), colorectal, pancreatic, urachus and breast neoplasm [20].
In 2–5% of cases the origin remains unknown. In appendiceal tumors, the neoplastic proliferation of
goblet cells leads to a constitutive production and accumulation of mucin in the lumen (appendiceal
mucocele, Figure 1b), causing the rupture of the appendiceal wall and the spread of neoplastic cells
into the peritoneal cavity.

The exfoliated mucinous cells tend to be redistributed into the peritoneum according to abdominal
fluid hydrodynamics, which is regulated by gravity and by the diaphragm and bowel movements [2,3].
Mucinous cells tend to implant at reabsorption sites of peritoneal fluids, the so-called lymphatic
stomata (also known as the redistribution phenomenon). Therefore, these sites and the dependent
recesses of the peritoneal cavity may be invaded by tumor implants and mucin. The progressive
accumulation of mucinous ascites is favored by the absence of symptoms in the early phase of the
disease. This condition invariably progresses and leads to abdominal distension and compression of
visceral organs, causing the majority of symptoms, disability and complications in affected patients [21].
Moreover, progressive inflammation promotes fibrotic reaction of mesothelium, with the development
of intestinal obstruction, which is often a fatal complication of untreated or recurrent PMP [22].
The main steps of PMP pathogenesis are summarized in Figure 2.
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Figure 1. (a) Intraoperative view of abdominal mucin accumulation in pseudomyxoma peritonei (PMP)
and (b) appendiceal mucinous neoplasia with mucocele.

Figure 2. Transcoelomic spread of tumor cells, PMP development and progression. Tumor cells induced
to undergo an epithelial–mesenchymal transition (EMT) detach from the primary tumor and invade
the peritoneal cavity through the serosal wall. The malignant seeding of mucin-producing single cells
and cell clusters into the abdominal cavity is regulated by peritoneal fluid dynamics. Ascitic fluid
flow is influenced by the movements of the diaphragm and the abdominal muscles, the peristaltic
movements of the intestinal tract and by gravity. The presence of signet-ring cells denotes an aggressive,
high-grade PMP. Peritoneal implants are generated by the attachment of tumor cells mainly at sites of
fluid reabsorption. The tumor cells invade the subserosal extracellular matrix (ECM) and proliferate.
Tumor progression is accompanied by massive mucin accumulation, inflammation and fibrosis of the
mesothelial lining.

2.2. Epidemiology and Diagnosis

PMP is considered a rare disease with an estimated incidence rate between 1 and 4 people
per million per year [23,24]. The diagnosis is frequently made after the age of 40 with a 2–3 ×
higher incidence in women [23,25]. Clinical presentation is quite variable [26]. Most patients are
diagnosed through a laparotomy/laparoscopy performed for suspected appendicitis or peritonitis
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or other surgical procedures, such as groin hernia repair. In women, PMP is frequently diagnosed
following investigations of an ovarian mass or for infertility. However, a significant number of
PMP remains frequently asymptomatic for a long time, becoming evident only after radiological
examination performed for other causes. In advanced stage, clinical presentation includes increased
abdominal girth or ascites. In patients with suspected PMP, laparoscopy is the most sensitive method
for diagnosis and staging. Laparoscopy allows for direct visualization of tumor nodules and for
large-size biopsy, as the large areas of acellular tissue leads to a high risk of inconclusive diagnosis
following radiologically-guided biopsy [27]. Computed tomography scan is considered the gold
standard for PMP diagnosis and staging [28]. T1–T2 weighted magnetic resonance imaging scans
are more sensitive in distinguishing between mucin and cellular tissue, while positron emission
tomography is in general of little value as mucinous implants have a very low metabolic activity due
to the paucity of tumoral cells [29]. Carcinoembryonic antigen (CEA), carbohydrate antigen 19.9 and
125 (CA19.9 and CA125) have a relative role in the diagnostic framework, but are more relevant as
prognostic markers and for detecting early recurrence [28,30].

2.3. Histologic Variants

The prognosis of PMP is highly dependent on the histological grade, which is a strong prognostic
factor in patients with stage IV mucinous carcinoma according to the American Joint Committee on
Cancer (AJCC) staging [31]. Outside the AJCC staging system, two main classifications of prognostic
value have been proposed, and both distinguish low-grade and high-grade PMP according to defined
histological features associated with a clear prognostic value [32]. A significantly worse prognosis is
linked to the histological evidence of signet-ring cells within the high-grade PMP group. An attempt
to resolve the relative confusion and controversy generated by these classifications (two and three-tier)
and the other histologic variants described, a consensus was recently finalized by the Peritoneal Surface
Oncology Group International (PSOGI) for a shared classification system suitable for diagnosis and
treatment [33]. The PSOGI system divided PMP in which epithelial cells are detectable in three groups
according to the histological grade (low-grade, high-grade and high-grade with signet-ring cells).
The term “acellular mucin” should be considered in those cases in which tumor cells are not detectable
(Table 1).

Table 1. Classification of Pseudomyxoma Peritonei (PMP).

PMP Grading Current Terminology * Histologic Features

Acellular mucin Mucin with no evidence of epithelial cells

Grade 1
Low-grade mucinous carcinoma
peritonei/Disseminated peritoneal
adenomucinosis (DPAM)

Pseudostratified or flat strips of epithelium
with mild nuclear atypia, pattern of pushing
invasion across a broad front and overall
maintenance of cellular polarity

Grade 2
High-grade mucinous carcinoma
peritonei/Peritoneal mucinous
carcinomatosis (PMCA)

Vesicular nuclei with prominent nucleoli,
cellular stratification, cribriform or
micropapillary architecture, elevated mitotic
activity, high cellularity (at least 20% epithelial
cells within mucin pools), irregular infiltrative
glands or single cell with desmoplasia

Grade 3

High-grade mucinous carcinoma
peritonei with signet-ring cells/Peritoneal
mucinous carcinomatosis with signet-ring
cells (PMCA-S)

High grade histologic features, as reported
above, with more than focal areas with
signet-ring cell morphology (>10% of cells)

* modified from Carr et al. [33].



Int. J. Mol. Sci. 2020, 21, 9120 5 of 23

2.4. Molecular Profile of PMP

The rarity of the tumor and the low cellularity make molecular profiling of PMP challenging.
Over the last few years, several studies have investigated the potential role of PMP variants for
diagnostic purposes, to allow differential diagnoses among diverse mucinous cancers. Moreover,
genetic profiles might also be useful for prognostic stratification, thus to possibly facilitate the selection
of patients for surgery.

KRAS mutations have been reported in up to 94% of primary low-grade appendiceal
neoplasia [34–36] and in 81–93% of low-grade/high-grade PMP [37–39], and therefore NRAS and
BRAF mutations were very seldom detected. Peculiar to PMP seems to be mutations in GNAS,
which are mostly found, albeit at variable rates (25–100%), in low-grade cases [40]. In colorectal
cancer (CRC), GNAS mutations are found very infrequently (2.5%), and, when present, the tumor
shows peculiar clinical and pathological features resembling PMP of appendiceal origin, i.e., mucinous
histology, right side origin, peritoneal metastases and association with KRAS mutations. The frequent
coexistence of KRAS and GNAS mutations (>70%) in mucinous appendiceal tumors suggests a possible
molecular interaction of these two genes in PMP tumorigenesis [39,40]. For prognostic stratification,
KRAS mutations are significantly correlated with progression-free survival after CRS/HIPEC, while the
role of GNAS is more controversial [38,41]. GNAS mutations seem to be related more to mucin
production rather than tumor proliferation.

The functional loss of the DNA mismatch repair (MMR) pathway, which is involved in maintaining
genome stability and integrity, is a rare event in PMP. This condition determines the accumulation
of mutations in oncogenes and tumor suppressor genes and causes microsatellite instability. It is
estimated to be present in 6.3% of PMP cases and is related to a worse prognosis [42].

2.5. Mucins in PMP

Mucins are high-molecular-weight O-glycoproteins composed of a long polypeptide chain on
which several oligosaccharide chains are linked. They are produced by the secretory epithelium in
both secreted and membrane-bound forms. Secreted mucins are arranged as networks of monomers
forming homo-oligomeric structures with viscoelastic properties, whereas membrane-bound mucins
are monomeric and do not form gels. Under physiological conditions, mucins exert a protective
function on mucosal surfaces as well as modulate cell-to-cell and cell-to-matrix interactions, epithelial
cell growth and differentiation [43]. The aberrant expression of mucins in terms of quantity or tissue
distribution is involved in several pathologic conditions, including cancer [44]. In PMP, deposits of
mucin can be acellular, or organized with capillaries and other stromal and immune cells around
tumor nodules implanted on the mesothelium. Moreover, single or small clusters of neoplastic cells
may circulate in the peritoneum with a mucin coat.

Three extracellular, gel-forming types of mucin are mainly found in PMP secretions: MUC2,
MUC5AC and MUC5B [45]. The presence of MUC4, a membrane-bound mucin, was reported in a
single case [46]. MUC2, which is predominantly expressed in the gastrointestinal tract, is recognized
as a biomarker for PMP of appendiceal origin [47–49]. MUC5AC is physiologically found in the
respiratory tract, stomach and gynecologic sites (endocervix and endometrium) and is present in
many tumor types. The relative abundance of MUC2 compared to MUC5AC may be used for
differential diagnosis with mucinous implants of ovarian cancer (OC), in which MUC5AC is, in most
cases, the predominant mucin. Thus, MUC2 predominance indicates a likely intestinal origin [47].
Both MUC2 and MUC5AC, which are secreted by goblet cells [50], are transcriptionally regulated
by several molecules such as proinflammatory cytokines (interleukin-1beta (IL-1β), IL-6 and tumor
necrosis factor-alpha (TNF-α), pleiotropic cytokines (such as IL-9), bacterial exoproducts, growth factors,
retinoids and hormones [51]. Among all these factors, IL-9 was found to be predominantly detected
in PMP compared to adenocarcinoma [49]. The third most frequently detected mucin in PMP is
MUC5B, which is primarily expressed in the conducting airways, salivary gland and endocervix.
MUC5B exists in two different glycosylated variants, a high-charge and a low-charge glycoform [52].
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The amount of the low-charge glycoform of MUC5B might be responsible for the increased level of
hardness of mucin found in some PMP patients [45,53]. Based on the different proportions of the three
mucins and according to their physical and chemical properties, three grades of PMP mucin secretions
(soft, semi-hard and hard texture) were characterized [53]. Knowledge of the differential distribution
of the three mucins has potentially important implications for the formulation of ad hoc mucolytic
combinations that may expand the locoregional therapeutic approaches of PMP.

Mucin overexpression and the contribution of secreted mucins in certain malignancies are in line
with the clinical observation of a poor responsiveness of PMP to systemic drugs. Indeed, the mucin/cell
ratio is estimated to be higher than 10:1 and the coat of gel-forming mucins seems to act as a protective
barrier against chemotherapeutic drug penetration and activity [47].

In vitro studies show that MUC2 overproduction by epithelial cell lines is related to inflammatory
or infectious stimulus mediated by the mitogen-activated protein kinase (MAPK) pathway as detailed
hereafter [54]. The role of bacteria in PMP is confirmed in the clinical setting, as enteric bacteria have
been frequently detected in specimens and free mucin collected during surgery. Bacterial density is
significantly correlated with MUC2 expression and is higher in PMP with high-grade histology [55].
The fact that antibiotic treatment improves histopathology and decreases bacterial density suggests
a potential role of these drugs against cell proliferation and mucin production [56]. Coherently,
proinflammatory factors (EGF, TGF-α and TNF-α) are able to produce in PMP cell lines a significant
increase in expression of MUC2 and MUC5AC through activation of the EGFR/Ras/Raf/extracellular
signal-regulated kinase (ERK)-signaling pathway [57]. Treatment with anti-inflammatory drugs
has been shown to control MUC2 secretion in a PMP mouse model suggesting a potential role of
corticosteroids and COX-2 inhibitors in disease control [58]. Hypoxia was also found to induce MUC2
expression, through upregulation of hypoxia-inducible factor-1alpha (HIF-1α) resulting in increased
binding of HIF-1α to the MUC2 promoter. MUC2 expression was found to be reduced in vivo by HIF-1α
inhibitors such as BAY 87-2243, and MUC2 reduction significantly prolonged animal survival [59].
Moreover, inhibition of the MAPK pathway with specific targeted drugs gave promising results in the
same PMP xenograft model, suggesting potentially effective future strategies for the control of mucin
production and tumor growth in PMP [60].

As discussed above, GNAS is mutated in a proportion of PMP [40]. GNAS encodes Gsα, the
G-protein α-subunit that transduces signals from G-protein-coupled receptors (GPCRs) to adenylyl
cyclase, and regulates the expression of cyclic adenosine monophosphate (cAMP). The mutation
sites of GNAS in PMP alter the structure and the enzymatic activity of the GTPase domain of the
α-subunit, and determine the continuous binding of GTP to Gsα. The resulting constitutive activation
of this subunit stimulates the cAMP-PKA signaling pathway, which is involved in mucin gene
expression [61,62]. A CRC cell line stably transfected with a GNAS mutant showed elevated cAMP
levels and a significant increase in mucin production not paralleled by a change in cell proliferation,
a result that accords with the clinical behavior of PMP [34,40]. However, mucin production is
also altered in GNAS wild-type patients, indicating the involvement of alternative pathways in
mucin overexpression.

2.6. Current Therapies

Historically, debulking surgery has been the mainstay of PMP treatment and the only available
therapy able to guarantee long-term tumor control [63,64]. In the early nineties, an innovative
locoregional approach was proposed by Sugarbaker [65], based on a more aggressive cytoreductive
surgery (multiple peritonectomies and visceral resections) combined with hyperthermic intraperitoneal
chemotherapy. CRS/HIPEC has been shown to significantly improve disease control and overall
survival, and it should be considered the standard of care for the majority of PMP patients within
centers with experience in peritoneal tumor treatment [5]. CRS/HIPEC achieves currently the best
locoregional disease control, with a median overall survival and progression-free survival rate of
16.3 years and 8.2 years, respectively [5]. In patients with recurrent and/or unresectable disease,
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surgery remains the best therapeutic option to palliate obstructive symptoms such as abdominal
discomfort and pain. More recently, an innovative locoregional approach has been developed, the
pressurized intraperitoneal aerosol chemotherapy (PIPAC), which has been introduced as palliative
treatment for patients with unresectable peritoneal metastases [66]. PIPAC is a minimally invasive
surgical technique for intraperitoneal drug delivery able to treat peritoneal cancer nodules of different
origin (gastric, colorectal and ovary). It was shown to increase drug penetration without altering the
distribution pattern in a post-mortem swine model [67]. Although rarely used in PMP, it represents a
promising approach for disease control in cases not eligible for radical surgery.

Systemic chemotherapy should be considered when CRS/HIPEC is not indicated due to
comorbidities or unresectable disease, or in the case of recurrent PMP, for which iterative CRS/HIPEC is
ineffective. However, limited data are available on the role of chemotherapy in PMP patients, who are
generally considered unresponsive to standard 5-fluoropyrimidine-based regimens [68]. Even if
the response rate in these cases is expected to be no more than 20%, systemic chemotherapy is the
only treatment available to realistically obtain disease control in patients who are not candidates for
CRS/HIPEC. The frequent KRAS mutations in PMP predict that therapy with epithelial growth factor
receptor (EGFR)-targeted agents, as demonstrated in CRC, is likely to be ineffective [69]. Likewise,
BRAF-targeted therapy seems unlikely to be effective, as BRAF is rarely mutated in PMP.

Although the recent introduction of immunotherapy has shown promising results in CRC
patients [70], especially in patients with defective DNA MMR, this treatment has not yet been tested
in PMP patients for the rarity of this functional loss. An ongoing phase II study of nivolumab and
ipilimumab is recruiting patients with metastatic mucinous colorectal and appendiceal tumors with
proficient DNA MMR (ClinicalTrials.gov Identifier: NCT03693846). The potential effect of innovative
locoregional treatments, such as PIPAC, in eliciting an immune response by increasing the release of
tumor-associated antigens is presently under active investigation.

In patients with extensive or recurrent disease, one strategic target for therapy is to promote
breakdown of mucin to control symptoms and improve the quality of life in PMP patients.
Among different mucolytic agents, bromelain and N-acetylcysteine have been tested with encouraging
results. The activity of these two drugs was analyzed on mucinous ascites from PMP patients
and on mucin-producing gastrointestinal cancer cell lines [71,72]. Their combination showed a
synergistic effect in the mucolytic activity in a rat preclinical model intraperitoneally implanted with
mucin. Moreover, they showed antiproliferative effects in a nude mouse model xenografted with
mucin-producing cell lines [71,72]. These results were confirmed in a phase I trial in humans, where a
significant mucolytic activity was detected after percutaneous injection, with a good radiological
response on mucin accumulation and irrelevant toxicity [73]. A multicenter trial investigating the
effectiveness of bromelain and N-acetylcysteine (BromAc) in patients with mucinous tumors including
PMP, administered directly into the tumor or in the peritoneal cavity through a percutaneous drain,
is presently ongoing (ClinicalTrials.gov Identifier: NCT03976973). Cysteamine, another mucolytic
substance, was analyzed in combination with bromelain and showed promising results in an in vitro
system simulating a peritoneal wash [53].

3. Epithelial–Mesenchymal Plasticity and Peritoneal Dissemination

3.1. Current Evidence of EMP and Hybrid States in Peritoneal Metastases

Type 3 EMT is associated with the tumor-initiating and metastatic potential of neoplastic cells [11].
EMT confers an increased resistance to chemo- and immunotherapy to neoplastic cells, a property
interwoven with stemness, as EMT contributes to the generation and/or maintenance of cancer stem
cells (CSCs), a small subset of cells with self-renewal capacities that are also responsible for tumor cell
drug resistance [74,75].

The activation of EMT induces the loss of apical-basal polarity and cell–cell epithelial interactions,
followed by the rearrangement of the actin cytoskeleton, and, when fully executed, leads to a
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mobile, matrix-interacting mesenchymal cell. Mesenchymal cells are able to express several matrix
metalloproteases (MMPs), which allow them to degrade and invade the basement membrane and
extracellular matrix (ECM). All these changes, relevant to the transcoelomic dissemination of the
tumor, are accompanied by molecular hallmarks, including the sequential loss of epithelial components
involved in epithelial junctions, the main being E-cadherin, in addition to β-catenin and Zonula
Occludens 1 (ZO-1). This is paralleled by the gradual increment of mesenchymal factors, such as
vimentin, N-cadherin, α-smooth muscle actin (α-SMA), β1 and β2 integrins and MMPs. This process
is coordinated by a complex network of factors and pathways, including transcription factors (ZEB1/2,
SNAIL1/2 and TWIST1/2) and other complex regulatory levels, activated by a plethora of extracellular
signals [75,76]. The resulting transition is a highly flexible phenomenon, summarized as EMP, as it is
influenced by the cellular and environmental context. It has become evident that each transition is not a
simple shift from a full epithelial to a full mesenchymal state and vice versa. Instead, cells can proceed
into a spectrum of intermediate/hybrid states, which may be stable, eventually representing the last step
of this process, or metastable, thus cycling through rounds of EMT and MET in a context-dependent
manner. Intermediate states possess various combinations of epithelial and mesenchymal components,
and tumors, temporally and spatially, may exhibit different transitioning EMT states, which may
govern the clinical outcome [12,15,17].

OC represents a well-known model of peritoneal dissemination in which hybrid EMT states were
first recognized [10,77]. During progression, EMT-driven delamination of OC cells from the primary
tumor occurs, and cellular clusters and/or single cells display transcoelomic dissemination. EMT is
triggered and/or maintained by different stimuli in ascites, mainly through TGF-β [78], which confers
anoikis-resistance to single cells. Cells can further avoid the surrounding stresses by forming spheroids.
Spheroids were the first tumoral entities to exhibit a hybrid phenotype in clinical samples of malignant
ascites and in OC cell lines in low-attachment culture conditions, as reviewed by Davidson and
colleagues [77]. In vitro experiments showed that spheroids could clear the mesothelial cell (MC) layer,
disaggregate, attach to and invade ECM components [79,80], thus generating the site for a secondary
metastatic tumor [81]. Molecular analyses of clinical samples and OC cell lines generated conflicting
data concerning the presence and prognostic significance of EMT biomarkers in primary tumors, ascites
and peritoneal implants [77]. Nevertheless, it was consistently shown that effusional spheroids may
maintain different levels of E-cadherin expression in a mesenchymal background [77]. Spheroids were
also shown to include a subset of CSC able to reproduce the heterogeneity of the tumor of origin and
to provide a chemoresistant subset that constantly repopulates the abdominal cavity. Using in vitro
spheroid formation assays and EMT induction through TGF-β treatment, spheroids were shown to
be enriched in stemness markers, such as pluripotent stem cell transcription factors NANOG, OCT4
and SOX2, and stem cell surface markers, such as CD117 and CD133 [82]. Overall, a spectrum of
EMT states was found in spheroids and OC cell lines, which was associated not only with different
degrees of chemoresistance and with a stem-like phenotype, but also with overall survival and disease
relapse [81,83,84], indicating that modulation of epithelial plasticity is implicated in the biological and
clinical behavior of OC.

Peritoneal involvement is found in about 5% of CRC patients as a unique metastatic site, and, alone
or in the presence of other metastatic sites (liver and/or lung), represents an unfavorable prognostic
factor [85,86]. Abdominal spread can occur from EMT-induced primary tumor cell detachment,
and after surgical seeding when the resection margins are close to the primary tumor and/or after
lymphatic/blood vessels transection. Several studies have focused on EMT and metastatic spread in
CRC [9,87] and will not be discussed in this review. The degree of invasion of the peritoneal elastic
lamina, a network of elastic fibers located in the submesothelial region, was studied in 564 CRC cases
and was associated with peritoneal dissemination and distant metastases [88]. The subserosal invasive
front was characterized by a high number of tumor buddings. Indeed, an interesting EMP-related
feature of CRC, with unfavorable prognostic significance, is tumor budding, reported in 20–40% of
tumors, which has more recently been linked to epithelial–mesenchymal plasticity. Tumor budding is
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defined as a single tumor cell, more rarely, or a cluster of up to five neoplastic cells observed closely at
the invasive front of the tumor. Collective cell migration is also found in other tumors, and thought to
represent the histological image of a hybrid state, connecting the epithelial feature of cell adhesion
to the migratory capacity of mesenchymal cells [89,90]. Major inducers of EMT in tumor buds are
secreted by tumor-associated stromal components; among these inducers are the hepatocyte growth
factor (HGF), EGF and TGF-β, which activate intracellular EMT networks involving SMADs, ERK,
MAPK and PI3K/AKT signaling pathways. E-cadherin usually sequesters β-catenin at sites of cell–cell
contacts; decreased E-cadherin expression during EMT leads to nuclear translocation of β-catenin and
activation of WNT/β-catenin signaling, shown to be a relevant pathway in tumor budding in CRC
patients [89].

Immunohistochemistry (IHC) in resected CRC showed, in tumor buds, a decrease in the expression
of membrane-associated E-cadherin and β-catenin complexes, with a strong reactivity of β-catenin in
the cell nuclei. Moreover, staining for pan-Cytokeratin, more dynamic epithelial components, and a
concomitant increase in MMPs and other enzymes involved in ECM degradation were observed.
Tumor buds, like spheroids, are also characterized by stem cell markers, such as CD133 and aldehyde
dehydrogenase 1 [89–91], providing further evidence of the role of epithelial plasticity in stemness.

3.2. Mesothelial Cells and Tumor Progression

Serosal body cavities such as the peritoneum are lined with MC, which provide a frictionless
surface for the free movement of abdominal organs and a first protective barrier for inflammation,
infections and tumor invasion. MCs are extremely plastic cells, as they may undergo EMT and convert to
myofibroblasts, downregulating cytokeratins and E-cadherin, and upregulating α-SMA and Vimentin.
This phenomenon is implicated in wound healing and organ fibrosis and it is related to type 2 EMT [92].
MC and their transdifferentiated counterparts are also involved in tumor progression, as they were
shown to contribute to OC metastasis by secreting Fibronectin [93], and to support the progression of
primary effusion lymphoma (PEL) [94], a non-Hodgkin’s lymphoma that primarily grows as recurrent
effusions in large body cavities [95]. The crosstalk between MC and PEL cells, analyzed in coculture
systems, showed that PEL cells induce type 2 EMT in MC by secreting TGF-β; MC and myofibroblasts,
in turn, were found to confer a growth advantage and increased survival to PEL cells [94], thus favoring
lymphoma progression. Moreover, a progressive thickening of serosal membranes was observed in
a xenograft mouse model of peritoneal PEL, confirming that fibrosis occurred during intracavitary
PEL development [94]. Interestingly, the specific targeting of the intracavitary microenvironment was
demonstrated to exert a significant antineoplastic activity in a preclinical PEL/SCID mouse model [96],
suggesting that the modulation of mesothelium may offer new therapeutic approaches for primary
intracavitary tumors and peritoneal metastases. The role of mesothelium in PMP pathogenesis needs
to be fully investigated, although it is feasible that, in late stages, PMP tumor cells, surrounded by a
large amount of mucin, are largely isolated from the possible positive or negative signals deriving
from the abdominal microenvironment.

3.3. Role of Mucins in EMP and Stemness

Some evidence shows a mutual interaction between mucin expression, EMP state and tumor
progression. An oncosuppressor activity has been assigned to MUC2, as loss of MUC2 expression was
associated with poor outcome in CRC patients [97,98]. MUC2 acts as caretaker of the epithelial state in
colon cancer HT-29 cells, thus inhibiting EMT and metastasis. Indeed, MUC2 suppression, while not
affecting cell proliferation, increases cell migration in vitro and promotes liver metastasis in a NOD/SCID
mouse model. MUC2 silencing was shown to lead to downregulation of E-cadherin expression.
The aggressive behavior of MUC2-silenced cells was shown to be induced by an IL-6-mediated
EMT occurring through STAT3 activation [98]. This is reinforced by the evidence that MUC2 and
E-cadherin were found to be scarcely expressed in tumor buddings in CRC, particularly at the
leading edge of the invasion. On the other hand, tumor budding cells were shown to be enriched
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in Cytokeratin 7 and maintained Cytokeratin 20. This was initially considered as a modification of
EMT into an epithelial–epithelial transition, in which E-cadherin is replaced with other epithelial
proteins, the intermediate filaments, representing more dynamic elements of the cytoskeleton [99].
What was initially considered an aberrant expression could now be represented as a transitioning state.
These data highlight that further studies are needed to characterize all steps involved in epithelial
plasticity, including not only the coexpression of epithelial and mesenchymal proteins, but also the
switch of an epithelial, static state to a similar but more dynamic one, with de novo induction or
upregulation of KRT expression.

Among the oncogenic mucins, MUC5AC was shown to be overexpressed in pancreatic cancer cell
lines by GLI1- and GLI2-mediated transcriptional activation and to increase migration and invasion of
pancreatic neoplastic cells by localizing in the intercellular junctions and interfering with E-cadherin
membrane localization [100]. IHC studies conducted on clinical pancreatic tumor specimens confirmed
the correlated expression of GLI1 and MUC5AC [100]. Accordingly, overexpression of MUC5AC,
along with MUC1, in colon cancer cell lines increased their proliferation, migration and invasive
potential [101,102] and was associated with a decreased expression of E-cadherin [101]. Another mucin
found in PMP, MUC5B, was shown to be involved in the increased proliferation and invasiveness
of breast cancer MCF7 cells in vitro, and promoted tumor growth and metastases in a xenograft
model [103].

Some mucins are involved in the induction and/or maintenance of CSC. Indeed,
MUC4-downregulation in pancreatic CSC was shown to reverse chemoresistance and prevent tumor
relapse [104,105]. MUC4 overexpression is responsible for the enrichment in the CSC subset in OC
cell lines [106]. MUC5AC was shown to interact with CD44 and to induce chemoresistance in CRC
through β-catenin/p53/p21 signaling pathway. This interaction was demonstrated to contribute to the
maintenance of stemness and spheroid-forming ability of the side population in CRC cell lines [102].

4. Clinical and Molecular Evidence of Epithelial Plasticity in PMP

4.1. EMP Markers and Signatures in PMP Cells

Epithelial plasticity is likely to be implicated in the invasive capability of PMP cells, and biomarkers
linked to a transition towards a mesenchymal state were shown to have a negative prognostic
significance. In fact, early studies identified a pattern of expression indicative of a more mesenchymal
state in diffused PMP, characterized by reduced E-cadherin and increased N-cadherin reactivity [49].
This switch in CDH1 expression was also evidenced in advanced stage CRC [49,107], and was linked
to tumor dissemination in the abdominal cavity in PMP.

Additional IHC studies compared the expression profile of epithelial and mesenchymal markers
on isolated, scattered vs. cohesive groups of tumor cells found in mucinous ascites and peritoneal
implants from the two main prognostic groups, DPAM and PMCA [20,108]. Single cells were shown to
be immunonegative for E-cadherin and β-catenin, with strong Vimentin reactivity in almost all DPAM
and in all PMCA samples, whereas cell groups showed the opposite pattern of staining (Figure 3).
Moreover, single cells were more likely to have decreased expression or to be immunonegative for
Cytokeratin 20 and/or Cytokeratin 7 compared to cell clusters, which showed reproducible reactivity
for Cytokeratin 20. In light of the more recent concept of EMP, these data might suggest that single
PMP cells likely display a more advanced EMT state compared to cell clusters, and thus may be
responsible for the more aggressive mucinous invasion of the abdominal cavity. Indeed they were
found more frequently in PMCA than in DPAM [20,108], and a higher number of single cells was
correlated to a faster progression [108]. Moreover, disseminated single cells frequently show signet-ring
differentiation, with a clear negative impact on prognosis [20].
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Figure 3. EMT profile in single and clustered PMP cells. Scattered cells in mucin pools are characterized
by a more mesenchymal state (red triangle), whereas cell clusters show a more epithelial profile
(green triangle). Single cells are frequently associated with a more aggressive clinical behavior,
and more frequently show signet-ring morphology, indicated by the arrow. CK: Cytokeratin.

How EMT state is regulated at a molecular level in PMP is still under study. Much evidence shows
that, within low-grade PMP, clinical outcomes exhibit a significant variability [109,110]. Global gene
expression analyses carried out on low-grade PMP undergoing CRS/HIPEC distinguished two molecular
subtypes with diverse prognosis. Interestingly, an EMT signature was found among the highly enriched
gene sets in the poor prognosis subgroup, suggesting that pathways involved in epithelial plasticity
might contribute to the aggressiveness of a subset of low-grade PMP [111].

Roberts and colleagues [8] showed upregulation of DSC3 expression in PMP compared to
normal mucosal epithelium. Desmocollin 3, encoded by DSC3, is a member of the CDH1 gene
superfamily coding calcium-dependent cell adhesion molecules and a component of desmosomes,
intercellular junctions that are usually present on the lateral side of polarized epithelial cells and
linked to the intracellular intermediate filaments [112,113]. This transmembrane adhesion protein is
involved in tumor pathogenesis due to its ability to inhibit cell motility, thus acting mainly as a tumor
suppressor. Indeed, it is frequently downregulated or poorly expressed in breast, lung and colon
carcinoma [114–116]. On the other hand, in certain cancers, overexpression of desmosome components
is linked to tumor progression [113,117]. The role of this protein in PMP pathogenesis needs to be
further investigated.

4.2. Dysregulation of EMT-Related Pathways in PMP

The TGF-β/SMAD, WNT and PI3K/AKT signaling pathways play a relevant role in determining
the plasticity state in several tumors. TGF-β exerts its activity through binding to cell surface TGF-β
type I and II receptors (TβRI and TβRII), which form a heterotetrameric complex in which the
active TβRII kinase domain phosphorylates TβRI, thus activating internal cascades through SMAD
and non-SMAD signaling pathways [118]. In the canonical SMAD pathway, TβRI recruits and
phosphorylates specific receptor-regulated SMADs (R-SMADs), such as SMAD2 and SMAD3, that form
heterodimeric complexes with common SMADs (Co-SMAD), such as SMAD4 [119].

The relevance of the TGF-β/SMAD pathway in PMP pathogenesis was identified following the
detection of mutations in its components in a small group of PMP patients. TGFBRI, TGFBRII, SMAD2,
SMAD3 and SMAD4 were the most frequently mutated members of this pathway in PMP [37,120].
Mutational inactivation of the TGF-β receptors and SMADs was also detected in advanced adenomas



Int. J. Mol. Sci. 2020, 21, 9120 12 of 23

and affects half of all CRC [121,122]. Among SMAD proteins, SMAD4 plays an important role
in epithelial–mesenchymal plasticity. In CRC, SMAD4 inactivation was found to lead to aberrant
activation of STAT3, which is a well-known signaling pathway involved in EMT activation through
ZEB1 [123]. Moreover, SMAD4 loss was associated with worse clinical outcome and increased
chemotherapy resistance in CRC patients [124]. The role of these mutations as prognostic markers in
patients affected by PMP needs to be further investigated.

The role of other dysregulated pathways in PMP pathogenesis was suggested by the evidence
of CTNNB1 mutations affecting the WNT pathway [37,38], and AKT1 and PI3KCA mutations of the
PI3K/AKT pathway [38,125,126].

4.3. Mucins and EMP: Is There Any Link in PMP?

Although the three mainly secreted mucins by PMP were found to be associated with biological
properties and molecular pathways linked to epithelial plasticity in other tumors, it remains to
be demonstrated whether they play a role in EMP of PMP cells. A possible link is suggested by
IL-9, which promotes MUC2 expression. Interleukin-9 and its receptor (IL-9Rα) were found highly
expressed in PMP compared to colon adenocarcinoma [49]. This interleukin might thus exert a
pathogenic role in establishing an autocrine loop leading to mucin overexpression, and, possibly,
transformation of goblet cells. Interestingly, in pancreatic cancer cell lines, IL-9 was shown to stimulate
proliferation, migration and invasion of tumor cells by decreasing a well-known EMT inhibitor,
miR-200a [127]. Similarly, in non-small cell lung cancer cells, increased IL-9 was found to counteract the
miR-208b-5p-mediated suppression of EMT by inactivating the STAT3 signaling pathway. In parallel,
miR-208b-5p-overespressing cells exhibited a typical epithelial state, with increased E-cadherin
expression and suppression of N-cadherin and Vimentin [128]. These data suggest that IL-9 might also
act as an EMT inducer in PMP, possibly by counteracting EMT suppressors such as the miR-200 family
and enhancing the expression of EMT-inducing mucins. However, direct evidence of these possible
interactions is not yet available.

Furthermore, while MUC2 was shown to be involved in the control and maintenance of the
epithelial state in CRC, PMP cells are not constantly kept in an epithelial state in the presence of
MUC2. Indeed, PMP samples were shown to be mainly immunoreactive for MUC2 and Cytokeratin
20, with variable degrees of expression of E-cadherin and Cytokeratin 7 [49,129]. Moreover, isolated
PMP cells in mucin pools are more likely to be E-cadherin-/Vimentin+, and immunopositive for MUC2
and Cytokeratin 20, therefore displaying an expression pattern of cells transitioning towards a more
mesenchymal state [108]. These findings might suggest that more complex and context-dependent
mechanisms of EMP modulation act in this pathological condition. Molecular data dissecting the link
between EMP and MUC2 are currently lacking.

4.4. EMP and Heterotopic Ossification in Epithelial Tumors

Tumors of epithelial origin may, very rarely, show the presence of sites of ossification near specific
cells that express typical bone-specific markers, such as vitamin D receptor, RUNX2 and RANKL.
These cells possess the ability to generate areas of ossification, thus fully mimicking the phenotype and
function of osteoblasts. These osteoblast-like cells have been detected, albeit rarely, in different types
of epithelial tumors, such as breast, hepatocellular and gastrointestinal carcinomas [130]. It has been
shown that heterotopic ossification is generally associated with the expression of mesenchymal markers,
such as Vimentin and β-catenin, implying that EMT is involved in this pathologic feature [130].

Different pathogenetic mechanisms have been hypothesized. Tumor cells, in an autocrine
TGF-β/bone morphogenetic protein (BMP)-mediated loop, may undergo an EMT and, after acquisition
of a mesenchymal state, may differentiate into osteoblast-like cells. Concomitantly or alternatively,
neoplastic cells, through paracrine stimulation, may induce osteogenic metaplasia in stromal cells of the
tumor microenvironment. These hypotheses were formulated on the basis of IHC analyses that found
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evidence of bone-specific proteins in tumor and stromal cells in breast tumors and gastrointestinal
cancers [130,131].

Interestingly, osteoblast-like cells were found in other tumors showing high frequency of bone
metastases. It was hypothesized that these cells, adapted to a bone-like microenvironment and thus
exhibiting a peculiar osteotropism, might have a prognostic significance for their ability to promote
distant bone metastases [132].

Two cases of perforated low-grade appendiceal mucinous carcinomas and peritoneal diffusion
with multifocal calcified portions have been reported [133,134]. A search for osteoblastic markers,
specifically BMP9, Osteocalcin (or Bone γ-carboxyglutamic acid-containing protein, BGLAP) and
Osteopontin (OPN), has been performed in one case of PMP [134]. BMP9 is one of the most potent
osteogenic factors not only because it is a strong activator of mediators of osteogenic signaling, but also
because it is involved in a network of interactions with several signaling pathways [135]. Osteocalcin
is secreted by osteoblasts and acts mainly in an endocrine manner controlling several physiologic
processes, having a minor role in determining bone density and mineralization [136]. On the other
hand, OPN is a matricellular glycoprotein highly expressed in osteoblasts and osteoclasts and it is
critically involved in biomineralization [137]. IHC analyses in one PMP case showed that BMP9 and
osteocalcin were found in tumor cells, osteoblasts and stromal cells, whereas OPN was detected only
in the cytoplasm of tumor cells [134]. The presence of the three bone markers in tumor cells might thus
reflect the activation of tumor plasticity pathways promoting the transition towards an osteoblast-like
phenotype. Moreover, as BMP9 was also detected in stromal cells, tumor cells might activate an
interactive crosstalk with the tumor microenvironment. Therefore, the dynamic interaction between
tumor and stroma might contribute to inducing osteoblastic differentiation of stromal mesenchymal
cells. Figure 4 shows the possible pathogenic mechanisms involved in this phenomenon.

Figure 4. Ectopic ossification in PMP. The tumor microenvironment is composed of cellular and
acellular elements, whose interaction may create a dynamic landscape in which EMP takes place.
Cytokines and chemokines initially expressed by tumor cells and then induced in the attracted stromal
and immune cells may promote cell plasticity. In the context of PMP, TGF-β/BMP9 secreted by
PMP cells and expressed by stromal cells may induce EMT in an autocrine and/or paracrine loop.
Tumor cells, after having transitioned into a more mesenchymal state, may differentiate towards an
osteoblast-like phenotype. In a similar manner, mesenchymal stromal cells, influenced by the same
stimuli, may undergo a transition to osteoblast-like cells. These cells were shown to express osteoblastic
markers and are very likely responsible for pathologic formation of extraskeletal bone. TGF-β/BMP9:
Transforming growth factor-beta/Bone morphogenetic protein 9; BGLAP: Bone γ-carboxyglutamic
acid-containing protein or Osteocalcin; OPN: Osteopontin.
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Signaling pathways involved in PMP ossification are unsurprisingly connected with EMP, as bone
morphogenetic proteins are multifunctional cytokines belonging to the TGF-β family. BMPs play an
important regulatory role in early mesenchymal stem cell differentiation, in osteoblastic differentiation
and in bone induction, maintenance and repair [138,139]. As TGF-β, the BMP signaling pathway
engages two cell surface BMP receptors, which are serine-threonine kinase receptors, that form
heterodimeric complexes [140]. They transmit the signal through SMAD-dependent or -independent
mechanisms, the latter involving MAPK signaling [141].

In the canonical SMAD-dependent signaling pathway, the activated receptor complex
phosphorylates the carboxy-terminus of the R-SMADs, which interact with different downstream
proteins, including RUNX2. In fact, upon activation of BMP signaling cascade, RUNX2 and SMAD
physically interact to cooperatively regulate the transcription of target genes. RUNX2 is an essential
transcription factor for osteoblast differentiation and induces the expansion of osteoblast progenitors by
regulating the expression of FGFR2 and FGFR3 genes [142,143]. Therefore, the coordinated activity of
BMP-activated SMADS and RUNX2, critical for bone development and regeneration, is also involved
in extraskeletal ossification.

In addition to the canonical SMAD-mediated signaling pathways, BMP can activate several MAPKs,
including ERK and p38 kinases. It has been shown that several positive, negative or synergistic effects
are induced when the TGF-β/BMP pathway interacts with proteins of the MAPK, WNT, Hedgehog
(Hg), NOTCH and AKT/mTOR pathways, to regulate BMP-induced signaling. While RUNX2 is a
key integrator between the pathways, Hg acts as modulator [139]. The mechanisms implicated in
dysregulation and abnormal expression of BMPs by tumor cells are not fully understood. However,
proteins of the Hg pathway, likely engaged during the process of EMT, were found to be correlated
with BMP signaling by increasing the transcription of the GLI2 gene, which encodes a zinc finger
transcription factor strongly activated by the TGF-β pathway. GLI2 is in turn a potent cis-activator of
BMP gene expression, suggesting that BMPs and GLI2 can establish an autostimulatory loop [144].
Interestingly, it was shown that activation of Hedgehog signaling caused by GNAS inactivation leads to
heterotopic ossification [145], suggesting a possible role for other GNAS mutations in this phenomenon
found in PMP.

5. Future Perspectives and Conclusions

PMP is a rare condition with a unique clinical course and fatal prognosis in a significant percentage
of patients. The tendency of this disorder to remain confined to the peritoneal cavity and the relative
unresponsiveness to systemic and/or targeted therapies has led to the adoption of locoregional
treatments such as CRS/HIPEC, which currently allows an optimal disease control and cure in the
majority of affected patients. However, some patients are not eligible for surgery due to the presence
of extensive or recurrent disease, and they experience a very poor quality of life. Therefore, a better
understanding of the molecular basis of PMP progression is urgently needed to increase the chances of
treatment and cure in these patients, to improve the results of the CRS/HIPEC in potentially curable
patients, and to potentially expand treatment to a wider range.

Mucin heavily affects systemic drug activity and is a determining factor in PMP morbidity.
Inhibition of mucin production, through EMP modulation or inhibition of the cAMP-PKA pathway,
and the decrease of mucin hardness should be considered for two main reasons. First, the development
of preoperative mucolytic protocols in patients selected for potentially curative CRS/HIPEC might make
surgery easier and improve surgical outcome by reducing the risk of post-operative complications.
Second, mucolytic treatment might also be used for the control of symptoms in patients with
unresectable PMP.

A considerable body of evidence shows that EMP is implicated in PMP aggressiveness. Isolated
PMP cells have been found to express a transitioning, more mesenchymal profile compared to that
expressed by cell clusters, which are characterized by a more epithelial state. The detection of these
isolated cells with a more mesenchymal hybrid state in mucin has been associated with a poorer
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prognosis. Furthermore, an EMT signature is significantly associated with a subgroup of low-grade
PMP patients with a more aggressive clinical course. These data clearly highlight the high plasticity
of PMP cells, and suggest that factors and expression profiles linked to EMP might have a valuable
prognostic significance. In-depth analysis of the prognostic impact of EMP profiles in PMP might permit,
in the next future, a better stratification of low-grade PMP patients, by possibly identifying subjects
who could benefit in terms of survival from locoregional treatment. EMP is also linked to extraskeletal
ossification, a rare pathological feature found in many cancers, including PMP, and very likely to
the overexpression of mucins, although this last association has not been directly investigated yet.
Dissecting the molecular networks of these interactions might allow for the identification of therapeutic
strategies able to interfere not only with PMP aggressiveness, but also with mucin production.
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α-SMA Alpha-smooth muscle actin
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BMP Bone morphogenetic protein
cAMP Cyclic adenosine monophosphate
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CRS/HIPEC Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy
CSC Cancer stem cells
DPAM Disseminated peritoneal adenomucinosis
DSC3 Desmocollin 3
ECM Extracellular matrix
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ERK Extracellular signal-regulated kinase
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HIF-1α Hypoxia-inducible factor-1alpha
IL Interleukin
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MAPK Mitogen activated protein kinase
MC Mesothelial cells
MET Mesenchymal-epithelial transition
MMPs Matrix metalloproteases
MMR Mismatch repair
MUC Mucin
OC Ovarian cancer
OPN Osteopontin
PCAM Peritoneal mucinous carcinomatosis
PCAM-S Peritoneal mucinous carcinomatosis with signet-ring cells
PEL Primary effusion lymphoma
PIPAC Pressurized intraperitoneal aerosol chemotherapy
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PMP Pseudomyxoma peritonei
PSOGI Peritoneal Surface Oncology Group International
TGF-α Transforming growth factor-alpha
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