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Abstract: Alzheimer’s disease (AD) diagnosis is actually based on clinical evaluation and
brain-imaging tests, and it can often be confirmed only post-mortem. Therefore, new non-invasive
molecular biomarkers are necessary to improve AD diagnosis. As circulating microRNA biomarkers
have been proposed for many diseases, including AD, we aimed to identify new diagnostic non-small
RNAs in AD. Whole transcriptome analysis was performed on plasma samples of five AD and
five unaffected individuals (CTRL) using the Clariom D Pico Assay, followed by validation in
real-time PCR on 37 AD patients and 37 CTRL. Six differentially expressed (DE) transcripts
were identified: GS1-304P7.3 (upregulated), NONHSAT090268, TC0100011037, TC0400008478,
TC1400008125, and UBE2V1 (downregulated). Peripheral blood mononuclear cells (PBMCs) may
influence the expression of circulating RNAs and their analysis has been proposed to improve AD
clinical management. Accordingly, DE transcript expression was also evaluated in PBMCs, showing
no difference between AD and CTRL. ROC (receiver operating characteristic) curve analysis was
performed to evaluate the diagnostic accuracy of each DE transcript and a signature including
all of them. A correlation between cognitive impairment and GS1-304P7.3, NONHSAT090268,
TC0100011037, and TC0400008478 was detected, suggesting a potential association between their
extracellular abundance and AD clinical phenotype. Finally, this study identified six transcripts
showing altered expression in the plasma of AD patients. Given the need for new, accurate blood
biomarkers for AD diagnosis, these transcripts may be considered for further analyses in larger
cohorts, also in combination with other biomarkers, aiming to identify specific RNA-based biomarkers
to be eventually applied to clinical practice.

Keywords: AD; non-coding RNAs; lncRNAs; biomarkers; non-invasive diagnosis

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder and a leading cause of dementia in
the elderly, accounting for 60–80% of all dementia cases worldwide. It is caused by the aggregation
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of misfolded proteins leading to the formation of extracellular amyloid plaques and intracellular
neurofibrillary tangles of hyperphosphorylated tau protein [1]. To date, AD diagnosis is based on
evaluation of cognitive symptoms (memory loss, disoriented behavior and impairments in language,
comprehension, and spatial skills), combined with neuroimaging and neuropsychological markers [2].
Neuropsychiatric symptoms, such as depression, psychosis and agitation, are also frequent in people
with AD and represent a common cause of hospitalization [3]. AD diagnosis can often be confirmed
only though post-mortem analysis of brain tissues [4]. For this reason, research on appropriate
diagnostic biomarkers is of paramount importance for a non-invasive diagnosis of AD and it has
been very active since the early 2000s. The most important features for diagnostic biomarkers are not
only sensitivity and specificity, making them able to discriminate affected from unaffected individuals
with high accuracy, but also the low cost and the ease of sample collection and analysis. The most
accurate biomarkers currently available for AD diagnosis are retrieved in cerebrospinal fluid (CSF),
where it is possible to dose amyloid beta (Aβ), tau protein, and phosphorylated tau protein [5].
The great advantage of these biomarkers is their high sensitivity and specificity, likely due to the
detection in CSF, which is in direct contact with the diseased brain. Unfortunately, the downside
is that CSF collection is an invasive and expensive procedure. Therefore, researchers are actively
working to identify new biomarkers that are easier to collect. The most common source of biomarkers
is blood (specifically, serum, or plasma), as it can be collected easily and at low cost. Notably,
blood-based biomarkers represent a novel tool to identify individuals at an early stage of AD [6];
indeed, in the last few decades, several blood circulating molecules have been investigated as AD
diagnostic biomarkers, including AD-related molecules (Aβ, tau and phosphorylated tau), proteins,
metabolites, and microRNAs (miRNAs). However, several reports showed promising results that have
not been confirmed in independent studies [7]. The application of circulating RNA molecules, including
non-coding RNAs (ncRNAs), as biomarkers has been widely explored in the last few decades; miRNAs
have been suggested as diagnostic biomarkers for several diseases, including neurodegenerative [8,9],
neurodevelopmental [10], traumatic [11], neoplastic [12,13], and metabolic conditions [14,15]. Indeed,
miRNAs have been detected in all analyzed biological fluids [16–18], making them useful as disease
biomarkers measurable in all body districts. Similarly, long non-coding RNAs (lncRNAs) and circular
RNAs (circRNAs), a recently discovered class of ncRNAs, are emerging as new potential disease
biomarkers, also in AD [19]. The exploitation of RNA molecules as diagnostic biomarkers would
represent a great advantage for clinical practice: in fact, RNA is very easy to isolate and can be analyzed
with high accuracy by common molecular biology techniques.

It has recently been proposed that immune system activation and neuroinflammation may also
play an important role in AD pathogenesis [20]. Inflammatory processes have been observed in
association with AD, and a colocalization between AD lesions and pathogen signatures has been
reported. Moreover, in vivo models showed that deposits of Aβ and tau are induced by infections
with both viruses and bacteria [21]. Given this association between AD pathogenesis and the immune
system, several studies on immune cells in AD are emerging. Peripheral blood mononuclear cells
(PBMCs) and lymphocytes have been proposed for their potential diagnostic value, because they are
affected in AD patients and can reflect in the periphery biological alterations found in the central
nervous system (CNS) [22,23]. Moreover, immune cells reside in blood and represent one of the most
abundant cell types in this compartment of the body. Therefore, it may be hypothesized that differential
expression of RNA-based biomarkers detected in blood could be influenced by expression levels of the
transcripts detected in PBMCs.

Because of these reasons, the aim of this study was to identify new potential RNA-based biomarkers
in plasma for AD diagnosis. Furthermore, we investigated the potential contribution of immune cells to
the dysregulation of RNA molecules in the plasma of AD patients compared to unaffected individuals.
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2. Results

2.1. Transcriptome Analysis of Plasma Samples of AD Patients Compared to Unaffected Individuals

The whole transcriptome analysis performed using the Clariom D Pico assay investigated the
expression of more than 540,000 transcripts and identified RNA molecules showing a differential
expression between AD patients and unaffected individuals (CTRL). Microarray data were analyzed
both considering the five AD-CTRL pairs and comparing the AD group with the CTRL group (paired
and unpaired analyses, respectively). Results were filtered selecting only the transcripts showing a
high fluorescence intensity in the microarray. We focused our attention on DE transcripts common
to paired and unpaired results, filtered according to p-value and fold change, obtaining a total of
325 deregulated transcripts, of which 215 were upregulated and 110 were downregulated (Figure 1).

Figure 1. Results of microarray profiling. (A) scatter plot showing fluorescence intensity of significantly
deregulated transcripts; (B) volcano plot showing significantly deregulated transcripts; (C) hierarchical
clustering of analyzed samples. Legend: (A) and (B) colored dots show significantly deregulated
transcripts (p < 0.05), with red representing upregulation (fold change > 2) and green representing
downregulation (fold change < −2); (C) fluorescence intensity data are plotted. AD: Alzheimer’s
disease patients; CTRL: unaffected individuals.

2.2. Validation of Microarray Results by Real-Time PCR

DE transcripts identified through microarray profiling were successively validated in an
independent cohort of 74 individuals, including 37 AD patients and 37 unaffected controls, matched
for sex and age. We selected 48 transcripts from profiling results, showing the highest fluorescence
intensity and the strongest p-values and fold changes. First of all, the expression of these transcripts was
evaluated in a small cohort of plasma samples (data not shown) to assess their amplificability in PCR;
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accordingly, validation analysis was performed on 19 transcripts showing detectable levels in Real-Time
PCR. Validation assays confirmed the differential expression of 6 transcripts, namely GS1-304P7.3,
NONHSAT090268, TC0100011037, TC0400008478, TC1400008125, and UBE2V1. For all transcripts,
both paired and unpaired analyses showed statistical significance according to both endogenous
controls. In particular, GS1-304P7.3 showed increased expression in the AD group compared to the
CTRL group, while NONHSAT090268, TC0100011037, TC0400008478, TC1400008125, and UBE2V1
levels were reduced in AD plasma samples compared to the CTRL group (Table 1).

Table 1. Real-Time PCR results. For each transcript, TAC ID, gene symbol (where available), median
fold change and p-value (between brackets) are shown for each endogenous control (GAPDH and
RNU6) and for both paired and unpaired analyses. Significant values are highlighted in bold. TAC:
Transcriptome Analysis Console; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; RNU6: RNA,
U6 small nuclear 1.

TAC ID Gene Symbol
GAPDH RNU6

Paired Unpaired Paired Unpaired

TC0100010930 GS1-304P7.3 1.93 (0.027) 2.79 (0.008) 1.91 (0.043) 2.18 (0.04)
TC0100011037 −2.16 (0.045) −2.58 (0.046) −3.17 (0.006) −3.21 (0.01)
TC0100013007 −1.12 (0.63) −1.21 (0.44) 1.09 (0.77) 1.04 (0.5)
TC0100015528 1.18 (0.86) 1.24 (0.87) 2.48 (0.84) 2 (0.83)
TC0100016418 −1.31 (0.52) −1.31 (0.51) −1.52 (0.64) −2.07 (0.64)
TC0300007694 NONHSAT090268 −2.74 (0.007) −3.04 (0.006) −1.71 (0.007) −3.74 (0.008)
TC0300013071 zyjeebu −1.78 (0.71) −2.36 (0.65) −1.77 (0.83) −1.44 (0.82)
TC0400008478 −15.75 (0.016) −11.22 (0.003) −63.17 (0.016) −7.04 (0.002)
TC0500012139 peybleeby −1.22 (0.8) 1.17 (0.74) −1.33 (0.68) 1.12 (0.9)
TC0600007285 HIST1H2AE 1.06 (0.98) 1.57 (0.98) 1.36 (0.48) −1.78 (0.47)
TC0600007784 −1.23 (0.99) −1.23 (0.32) −1.31 (0.79) 1.48 (0.81)
TC0800009993 blawker −1.15 (0.91) 2.43 (0.88) 1.47 (0.72) 1.76 (0.66)
TC1000010059 NONHSAT011783 1.19 (0.37) 1.85 (0.19) 1.3 (0.88) −1.35 (0.91)
TC1200011311 NAP1L1 1.07 (0.99) 4.21 (0.85) 1.17 (0.9) 3.9 (0.85)
TC1400008125 −1.55 (0.037) −2.25 (0.032) −1.62 (0.021) −2.36 (0.042)
TC1600007870 1.08 (0.99) −2.04 (0.99) −1.35 (0.95) 1.02 (0.94)
TC1600010293 swoyry −1.27 (0.3) −1.76 (0.5) −1.78 (0.06) −3.32 (0.09)
TC1900010363 −2.57 (0.67) −2.46 (0.71) −1.59 (0.63) 1.02 (0.56)
TC2000010025 UBE2V1 −1.37 (0.037) −1.63 (0.048) −1.98 (0.028) −2.1 (0.045)

Statistical analyses performed to evaluate age and sex as confounding factors showed no significant
results, confirming that these parameters do not represent confounding factors in our study (data not shown).

We also investigated the existence of any difference in DE transcript expression associated with
gender. This analysis was performed within each pathological group (AD males vs females and CTRL
males vs. females) and within individuals of the same gender (female AD vs CTRL and male AD vs
CTRL): no statistical difference was observed.

2.3. Evaluation of Diagnostic Accuracy through ROC Curves

The identification of differentially expressed (DE) transcripts in plasma of AD patients compared
to unaffected individuals may pave the way to potential diagnostic applications of these transcripts in
clinical practice. For this reason, we computed receiver operating characteristic (ROC) curves to assess
the potential diagnostic accuracy of DE transcripts. First of all, we evaluated the accuracy of each DE
transcript, considered as an individual plasma biomarker for AD. Univariable ROC curves are shown
in Table 2 and Figure 2.
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Table 2. Results of univariable ROC (receiver operating characteristic) curve analysis. For each
transcript, the p-value of the curve, the area under the curve (AUC), its standard error (Std error),
and the 95% confidence intervals (CIs) are shown; the Youden index was also calculated to identify the
optimal cut-off, for which sensitivity, specificity, accuracy, positive predictive value (PPV) and negative
predictive value (NPV) are shown. Significant values are highlighted in bold.

DE Transcript AUC Std Error P-Value 95% CIs Cut-Off Sensitivity Specificity Accuracy PPV NPV

GS1-304P7.3 0.722 0.074 0.008 0.578–0.867 1.85 0.75 0.71 0.73 0.72 0.74
NONHSAT090268 0.753 0.069 0.002 0.618–0.887 3.12 0.68 0.81 0.74 0.77 0.71
TC0100011037 0.716 0.072 0.006 0.576–0.865 2.66 0.67 0.74 0.7 0.72 0.69
TC0400008478 0.803 0.078 0.001 0.65–0.957 1.97 0.95 0.68 0.82 0.75 0.93
TC1400008125 0.644 0.076 0.064 0.494–0.794 2.07 0.5 0.89 0.7 0.82 0.64

UBE2V1 0.637 0.065 0.045 0.51–0.765 1.95 0.78 0.47 0.63 0.6 0.68

Figure 2. Univariable and multivariable ROC curves computed on plasma expression levels of
differentially expressed (DE) transcripts.

Results showed significant curves for GS1-304P7.3, NONHSAT090268, TC0100011037,
TC0400008478, and UBE2V1, with a good diagnostic performance for TC0400008478 (AUC > 0.8) and a
fair performance (AUC > 0.7) for GS1-304P7.3, NONHSAT090268, and TC0100011037.

Moreover, we evaluated the diagnostic accuracy of a biomarker signature including all six DE
transcripts; this multivariable ROC curve showed a significant p-value but did not improve the
diagnostic performances of single univariate univariable ROC curves (Table 3 and Figure 2).

Table 3. Features of the ROC curve computed on all DE transcripts. The p-value of the curve, the AUC,
its standard error (Std error), and the 95% CIs are shown; sensitivity, specificity, accuracy, PPV and
NPV are also shown. Significant values are highlighted in bold.

Transcript Signature P-Value AUC Std
Error

95%
CIs Sensitivity Specificity Accuracy PPV NPV

GS1-304P7.3,
NONHSAT090268,

TC0100011037, TC0400008478,
TC1400008125, UBE2V1

0.00007 0.772 0.054 0.667–0.878 0.64 0.72 0.68 0.7 0.67

2.4. Peripheral Blood-Isolated Cell Expression Analysis

Expression of DE transcripts was also evaluated in PBMCs obtained from AD patients and age-and
sex-matched unaffected individuals. Although real-time PCR results showed an expression trend
similar to that reported in plasma (except for GS1-304P7.3), no statistically significant difference was
observed (Table 4).
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Table 4. Expression analysis performed on PBMCs. For each transcript, median fold change and p-value
(between brackets) are shown for each endogenous control (ACTB and RNU6). ACTB: actin beta.

Transcript ACTB RNU6

GS1-304P7.3 −2.55 (0.37) −1.42 (0.51)
NONHSAT090268 −2.51 (0.36) −1.41 (0.36)

TC0100011037 −2.54 (0.37) −1.42 (0.51)
TC0400008478 −2.49 (0.39) −1.39 (0.54)
TC1400008125 −3.01 (0.39) −1.68 (0.34)

UBE2V1 −1.52 (0.53) 1.17 (0.47)

2.5. Correlation with Clinical and Cognitive Phenotypes

Plasma levels of DE transcripts and clinicopathological parameters measuring cognitive
impairment and its progression were correlated. A significant correlation between Mini Mental State
Examination (MMSE) T0 and four out of the six DE transcripts was observed: in particular, a negative
correlation was observed between MMSE score at T0 and GS1-304P7.3, the only transcript showing
increased expression in AD patients, while NONHSAT090268, TC0100011037, and TC0400008478,
downregulated in the plasma of AD patients, showed a positive correlation with MMSE T0.
No significant correlation was observed between Delta MMSE/month and any transcripts (Table 5).

Table 5. Correlation analysis between plasma levels of DE transcripts and clinicopathological parameters.
For each transcript/parameter pair, the r-value (Pearson or Spearman correlation coefficient, according
to normality of distributions) and the p-value corrected for multiple comparison (between brackets) are
shown. Significant values are highlighted in bold. MMSE: Mini Mental State Examination.

DE Transcript MMSE T0 Delta MMSE/Month

GS1-304P7.3 −0.36 (0.024) 0.29 (0.17)
NONHSAT090268 0.38 (0.012) 0.14 (0.51)

TC0100011037 0.32 (0.03) 0.16 (0.42)
TC0400008478 0.48 (0.02) 0.33 (0.13)
TC1400008125 0.02 (0.85) −0.1 (0.85)

UBE2V1 −0.05 (0.67) −0.14 (0.65)

3. Discussion

Blood-based biomarkers will become essential in the near future to perform non-invasive diagnosis
of AD. According to this scenario, RNA-based diagnostic biomarkers may represent a novel tool
to improve the diagnosis of AD. The aim of this study was to perform a transcriptome analysis of
plasma from mild to moderate AD patients and unaffected individuals, in order to identify RNA
transcripts (including mRNAs, lncRNAs and circRNAs) to be applied as new potential diagnostic
biomarkers. Our cohort included AD patients and unaffected individuals matched for sex and
age, in order to exclude the influence of these features on the transcriptome. Through microarray
analysis and subsequent validation in real-time PCR, we identified six transcripts showing differential
expression; in particular, GS1-304P7.3 was upregulated in the AD group compared to the CTRL group,
while NONHSAT090268, TC0100011037, TC0400008478, TC1400008125, and UBE2V1 showed reduced
expression in AD plasma samples compared to the CTRL group. The same expression alteration was
confirmed by both paired and unpaired analyses, showing that sex and age did not influence transcript
expression in our cohort, suggesting the potential strength of these biomarkers. It has recently been
hypothesized that immune system activation plays a key role in AD pathogenesis [20]. The key
contribution of inflammation in AD pathology was hypothesized more than twenty years ago and
recent studies have demonstrated that this early disease-aggravating CNS inflammation starts decades
before the presentation of severe cognitive impairments or AD [24]. The potential role of the immune
system cells may be enhanced by their abundant presence in blood, where they represent one of the



Int. J. Mol. Sci. 2020, 21, 7644 7 of 16

principal cell types: indeed, altered expression of ncRNAs in immune cells may influence expression
profiles of the same ncRNAs circulating in the blood. For these reasons, we also investigated the
expression of these transcripts in PBMCs isolated from a sub-cohort of AD patients and unaffected
individuals. However, this analysis showed no significant differential expression within PBMCs.
Further studies are needed in larger cohorts of AD patients.

Among the transcripts identified here as differentially expressed in the plasma of AD patients
compared with unaffected individuals, UBE2V1 is the only protein-coding and characterized one.
UBE2V1 (ubiquitin conjugating enzyme E2 V1) encodes a ubiquitin-conjugating enzyme involved
in the proteasome degradation pathway. A recent study showed that UBE2V1 promotes protein
aggregation in rat cardiomyocytes [25]; this report could be relevant for a potential involvement of
UBE2V1 in AD, where protein aggregation and amyloid deposition is one of the histopathological
hallmarks. Moreover, reduced UBE2V1 levels were observed in the cerebellum and blood of a mouse
model of Rett syndrome, a rare neuropsychiatric disorder [26]. No data are available to date on
humans, but reports in animal models suggest that UBE2V1 plays a key role in synaptic plasticity
and function by affecting postsynaptic density-95 (PSD95) scaffolding properties [27]. We found a
reduction of UBE2V1 in the plasma of AD patients. This result would suggest that UBE2V1 might
be analyzed in the near future as a novel pharmacological target in AD. The other DE transcripts are
uncharacterized, and very scarce data are available in the literature. By blasting sequence transcripts,
we investigated their position within the genome, aiming to infer some information about their putative
functions. These transcripts could act as regulators of expression of the neighbor genes by binding
regulatory sequences, such as silencers/enhancers [28], or as splicing regulators of host genes when
their sequences overlap [29]. Therefore, by mapping DE transcripts on the genome, we could speculate
on their indirect involvement in AD pathogenesis, performed by regulating the expression of neighbor
genes involved in the disease. GS1-304P7.3 (TC0100010930) maps on chromosome 1, in an intergenic
region between the lncRNA PDC-AS1 (about 600 bp upstream) and the locus of PTGS2 (about 149 Kb
downstream). GS1-304P7.3 is known to be expressed in endothelial cells, suggesting its involvement in
angiogenetic processes [30]. A link between AD and angiogenesis was previously reported, showing a
direct involvement of endothelial cells in the neovascularization process occurring in AD brain [31,32].
No information is available on PDC-AS1 (PDC antisense RNA 1), but the function of its sense transcript
PDC (phosducin) has been described. The exact function of antisense transcripts has not been elucidated,
but evidence suggests the existence of a mutual post-transcriptional regulation involving sense and
antisense transcripts [33]. PDC, encoding a phosphoprotein involved in the process of vision in the
retina, has been associated with stress-induced hypertension [34,35]. Hypertension, in turn, has been
associated with an increased risk to develop AD [36,37]. PTGS2 (prostaglandin-endoperoxide synthase
2) encodes the cyclooxygenase enzyme, involved in the biosynthesis of prostaglandins; different single
nucleotide polymorphisms in PTGS2 have been associated with AD, resulting in protection or increased
risk of developing the disease [38,39]. In vivo experiments in mouse models showed that inhibition of
PTGS2 expression is increased by Aβ deposition, leading to inflammation [40], while inhibition of the
enzyme prevents memory deficits [41]. TC0100011037 maps on an intergenic region in chromosome 1,
between the lncRNA LINC01031 (about 100 kb upstream) and the pseudogene RPL23AP22 (about 286 kb
downstream). No information is available in the literature on both the neighbor genes. However,
RPL23AP22 is a pseudogene of RPL23A (ribosomal protein L23a), a ribosomal protein that has been
associated with AD pathogenesis in transgenic models [42,43]. TC0400008478 maps on chromosome
4, between the genetic loci of ARSJ (about 269 kb upstream) and UGT8 (about 344 kb downstream).
ARSJ (arylsulfatase family member J) encodes a sulfatase enzyme that has not been associated with
AD to date. UGT8 (UDP glycosyltransferase 8) encodes a UDP-glycosyltransferase involved in
the biosynthesis of galactocerebrosides, sphingolipids abundant in the central nervous system [44].
UGT8 has been reported as a key gene in a mouse model of AD, where its genetic ablation induced the
dysregulation of the same myelination pathways altered in human AD brain [45]. Moreover, UGT8
expression was shown to increase with cognitive impairment in human brain [46]. TC1400008125
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maps on chromosome 14, within a 37-kb intron of the lncRNA LINC02299. No information is available
on the function of this lncRNA. NONHSAT090268 (TC0300007694) maps on chromosome 3, within a
141-kb intron of the lncRNA ADAMTS9-AS2. ADAMTS9-AS2 (ADAMTS9 antisense RNA 2) is an
antisense lncRNA with unknown function, recently reported as a tumor suppressor gene in glioma [47]
and associated with senile neurodegeneration and AD [48]. Its sense transcript, ADAMTS9 (ADAM
metallopeptidase with thrombospondin type 1 motif 9), encodes for a disintegrin and metalloproteinase
with thrombospondin motifs enzyme; single nucleotide polymorphisms in ADAMTS9 sequence have
been associated with cognitive aging [49]. ADAMTS9 suppresses β-catenin and the canonical Wnt
signaling pathway [50] that is known to be inhibited in the AD brain [51,52].

Hypothesizing a potential application as diagnostic plasma biomarkers for these transcripts,
we evaluated their diagnostic performance by computing ROC curves. We computed two types
of ROC curves, aiming to identify the best biomarker or combination of biomarkers, creating a
signature specific for AD diagnosis. It is now widely proven that a signature including multiple
biomarkers may show higher sensitivity and specificity than a single one. Univariable ROC curves
were computed considering each biomarker by itself in order to test the diagnostic accuracy of the
single transcript. We obtained significant curves for GS1-304P7.3, NONHSAT090268, TC0100011037,
TC0400008478, and UBE2V1, but only the curve built on TC0400008478 reached a good diagnostic
performance (AUC > 0.8). Similarly, a signature including all six biomarkers did not increase diagnostic
performance. To date, the best diagnostic performance for AD has been reported for biomarkers
detected in CSF [53]. This observation is not surprising, since CSF is in direct contact with brain
interstitial fluid; therefore, biomarkers in CSF are specific of the brain and not diluted by others
originating from different body districts (two conditions that characterize biomarkers detected in
blood). Unfortunately, CSF sampling is invasive for patients and economically expensive, making
blood-based biomarkers, even with their disadvantages, more attractive. According to their dilution
in the circulation, blood biomarkers showed a lower diagnostic performance in different reports:
a recent study analyzed the diagnostic accuracy of total Aβ42-to-Aβ40 ratio and free Aβ42-to-Aβ40
ratio in plasma, showing AUC values of 0.775 and 0.710, respectively [54]; another study reported
the diagnostic performances of Aβ1–42, and of the ratios of Aβ1–42 to a novel APP669–711 fragment
(APP669–711/Aβ1–42) and Aβ1–40/Aβ1–42, analyzed in different cohorts of patients, resulting in ROC
curves with variable AUCs [55]. Diagnostic performance of DE transcripts here identified conforms
with Aβ-based blood biomarkers currently reported in the literature. However, it is important to
underline that the diagnostic power reported for a specific biomarker is very difficult to validate
in a different study. This difficulty could be explained by the diversity of the enrolled cohort (age,
ethnicity, diagnostic criteria), the different procedure and technique applied for biomarker detection
and measurement, the different lab equipment used. Therefore, the best and only way to compare
diagnostic accuracy of DE transcripts and previously proposed biomarkers would be to perform a
dedicated study, where all different biomarkers are measured in the same patients with the same
workflow and technique. Looking for the best diagnostic performance, it may be useful to combine
RNA-based (including both small and long non-coding RNAs) and Aβ-based biomarkers from plasma
to assess the diagnostic accuracy of an AD specific signature including both types of biomarkers.
Further studies are needed to investigate the efficacy of such signatures in large and multicentric
cohorts of patients.

Correlation analysis showed that four out of the six DE transcript are associated with
cognitive impairment. In particular, GS1-304P7.3 showed a negative correlation with MMSE score,
while NONHSAT090268, TC0100011037, and TC0400008478 showed a positive correlation with global
cognitive function. These opposite correlation trends are in agreement with the opposite deregulation
trends observed in plasma, where GS1-304P7.3 was the only transcript with increased levels in AD
patients, while the other RNA-based biomarkers showed a reduced expression. This association with
cognitive impairment suggests an active role of these transcripts in AD pathogenic processes that
might be better examined in animal models of AD.
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4. Materials and Methods

4.1. Patient Recruitment and Plasma Sample Processing

This study was approved by the Ethics Committee of Oasi Research Institute—IRCCS, Troina (Italy)
(20 March 2019; Code: 2019/03/18/CE-IRCCS-OASI/18) and it was performed in accordance with the
Declaration of Helsinki. A total of 84 participants, consisting of 42 AD mild-moderate patients and
42 CTRL, were included in this study. AD patients were recruited at the Oasi Research Institute—IRCCS,
Troina (Italy) (Table 6), where the NINCDS-ADRDA criteria (1984) for AD was used [56] in combination
with DSM-IV guidelines. Written informed consent was obtained from all the participants or their
families. Unaffected individuals matched for age and sex, with no cognitive impairment and family
history of AD or Vascular Dementia, were selected. Total cognitive function assessment was carried out
by using the Mini-Mental State Examination (MMSE) test [57]. For AD patients, total cognitive function
was measured at both baseline (T0) and after 6–24 months (T1). Delta MMSE/month, which represents
the progression rate of cognitive decline [58], was calculated as follows:

(MMSE score at T1−MMSE score at T0)/Interval between follow-up visit (months)

Table 6. Clinicopathological features of AD patients and unaffected individuals enrolled for this study.
Data are presented as average ± standard deviation. AD: Alzheimer’s disease; N/A: not available.

Sex (M/F) Age MMSE T0 MMSE T1 Delta MMSE/Month

AD 17/25 74.51 ± 6.95 18.58 ± 5.4 14.54 ± 6.01 −0.32 ± 0.21
CTRL 17/25 73.72 ± 7.34 29.64 ± 0.48 N/A N/A

For plasma isolation, blood samples were collected in vacutainer tubes and centrifuged at 1800× g
for 15 min at 20 ◦C; plasma was stored at −80 ◦C until analysis.

4.2. RNA Isolation from Plasma Samples

Total RNA was isolated from plasma samples using the miRNeasy Mini-Kit
(Qiagen, Hilden, Germany), according to the Qiagen supplementary protocol for total RNA isolation
from serum and plasma. RNA was finally eluted in 200 µL RNase-free water and then precipitated
by adding 3M sodium acetate (pH 5.2), 100% ethanol, and 1 µg glycogen as carrier. After overnight
incubation at −80 ◦C, samples were centrifuged (12,000× g, 30 min, 4 ◦C) and pellets were washed
twice in 75% ethanol. The final RNA pellet was dissolved in RNase-free water. RNA quantification
was performed by Nanodrop One (Thermo Fisher Scientific, Waltham, MA, USA).

4.3. Microarray Analysis

Whole transcriptome analysis of plasma was performed in 5 AD patients and 5 matched controls
by using Clariom D Pico Assay (Thermo Fisher Scientific, Waltham, MA, USA). This technology
analyzes the expression of more than 540,000 coding and non-coding transcripts, including mRNAs,
circRNAs, lncRNAs, miRNA precursors and other small RNAs, loading a low input of total RNA.
Briefly, 10 ng of total RNA were retrotranscribed in single-stranded cDNA containing T7 promoter
sequence at the 5′ end. 3′ Double-stranded cDNA was synthesized by adding an adaptor as a
template; pre-IVT amplification reaction was optimized with 12 cycles of amplification, as previously
reported [59]. The double-stranded DNA was used as a template for antisense RNA synthesis and
overnight amplification (14 h) by in vitro transcription (IVT), using T7 RNA polymerase. Approximately
20 µg of purified cRNA were used for sense single-strand cDNA (ss-cDNA) synthesis, followed by
RNase H digestion and ss-cDNA magnetic bead purification. Approximately 5.5 µg of ss-cDNA
were fragmented using uracil DNA-glycosylase (10 U/µL) and apurinic/apyrimidinic endonuclease
1 (1.000 U/µL), and then labeled with biotin using terminal deoxynucleotidyl transferase (30 U/µL).
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From the hybridization cocktail, 200 µL of the obtained mixture were loaded into single human Clariom
D 49-format array and incubated for 16 h in the Affymetrix GeneChip Hybridization Oven 645 at
45 ◦C, 60 rpm. Arrays were stained using an Affymetrix GeneChip Fluidics Station 450, according
to the specific fluidics protocol (FS450_0001), and scanned with an Affymetrix GeneChip Scanner
3000 7G. Raw intensity CEL files generated by GeneChip™Command Console™were imported into
Transcriptome Analysis Console (TAC) 4.0 (Applied Biosystems) and CHP files were generated for
gene-level analysis. Differentially expressed (DE) transcripts were identified by using TAC, with the
following settings: Analysis Type: Expression Gene; Summarization Method: Gene Level - RMA.
Gene-Level P-Value < 0.05 ANOVA Method: ebayes. Simultaneously, microarray data were also
analyzed by MeV (Multi Experiment Viewer) v4.9.0 (http://mev.www.tm4.org, accessed on 19 July 2018)
by applying Significance of Microarrays Analysis (SAM); paired and unpaired tests were performed
among ∆Cts using a p-value based on 100 permutations; imputation engine: K-nearest neighbors
(10 neighbors); false discovery rate (FDR) < 0.05. Results from paired and unpaired analyses were
compared, selecting common transcripts for validation analysis.

4.4. Validation of Microarray Results Using Real-Time PCR

DE transcripts identified in the microarray analysis were validated in an independent cohort of 37
AD patients and 37 age- and sex-matched controls. PCR primers for the DE transcripts were designed using
PrimerBlast (https://www.ncbi.nlm.nih.gov/tools/primer-blast/, accessed on 10 December 2018) (Table 7).

Table 7. PCR primers used for Real-Time PCR validation assays.

Transcript Forward Primer Reverse Primer

ACTB GAGCACAGAGCCTCGCCTTT GAGCGCGGCGATATCATCA
blawker AACCTGGGGCTGGTAAAGGTA TGTGCTGCTGTTTTGGTAGTCA
GAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG

GS1-304P7.3 CCAGGGACCCAGAACAGATAGT GGTCCCTAGACACTGACGAAATC
HIST1H2AE AAGAAGACGGAGAGCCACCA GACTCGGGATCACTGACGGA

NAP1L1 GGCAGACATTGACAACAAAGAAC AGCTGACGTGCTTTGAG
NONHSAT011783 TTGGTGATAGAAAAGGGCTGAAGT GTGGCTCTCTCGGACAATGC
NONHSAT090268 TCTGGCCTTACCACCTCCTTT GAGTGGAAATGACAACTTGATGCTC

peybleeby ATGGTACAGGGTGATGGGCT GCACCCTCCCCCACCTAATA
RNU6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT

swoyry TTCCTGGATGAGTGTCCTGGG TATGGTGAGGGCAGTTGTCTCT
TC0100011037 TTGAGTTAGCGAGTGGGGAGA TGCAAATCTGGGGTTTGACCT
TC0100013007 GGAAAGTCTCTGAGGAAACAGCA GAGTAACCCATGCCTGCTCC
TC0100015528 CACCTAGCCATCCCCACTGA TTCTTTTGCTTGTGGCGTGC
TC0100016418 TGACACAGGATAAGCGCAACA CCCCCTTTACCTTCCTTGAGC
TC0400008478 GCTCTGGAAAACCACAGGGTC ATAGATCTGTGGCCAGGTGAGG
TC0600007784 CCTGATCCATGCCTAGAGGTTGA TGGAGAAACTCAATGACACCAGAAG
TC1400008125 AGTTGCAAGAACGAACGGGA CATAGGCTGGCTTGTGGAGG
TC1600007870 CGCCTCTACCTCCAGTGTGA GGCCAGAGTGGAGCCATGTA
TC1900010363 AGGAGGAGACACACCCAAAAGA GAATGCTTTTTAAGGGTGCGAGC

UBE2V1 GTTGTCCTGCAAGAGCTTCG TGTAACACTGTCCTTCGGGC
zyjeebu TGTTGGCACAGTCCGTTGTC CTCCCCTAACCTCACAGGCA

PCR reactions were performed using 50 ng RNA in input for each assay and Power SYBR®

Green RNA-to-CT™ 1-Step Kit (Thermo Fisher Scientific, Waltham, MA, USA), according to the
manufacturer’s instructions. GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and RNU6 (RNA,
U6 small nuclear 1) were used as endogenous controls. All reactions were performed on a 7900HT Fast
Real-Time PCR System (Foster City, CA, USA). DE transcripts were identified using SDS RQ Manager
1.2 software (Foster City, CA, USA); by applying the 2−∆∆Ct method, and differential expression was
expressed as RQ (Relative Quantity); RQ values < 1 were converted in fold change (FC) by applying
the formula −1/RQ.

http://mev.www.tm4.org
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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4.5. ROC Curve Analysis

To assess the potential diagnostic accuracy of DE transcripts, we computed ROC curves using
SPSS 23 (IBM). For each ROC curve, generated by using expression values (∆Cts), area under the curve
(AUC), 95% confidence intervals (CIs) and p-value were calculated; the Youden method was applied to
identify the optimal cut-off, with the associated sensitivity, specificity, accuracy, positive predictive
value (PPV) and negative predictive values (NPV). In order to investigate if different combinations of
DE transcripts could increase diagnostic accuracy, we also computed a ROC curve generated from a
molecular signature of multiple transcripts: this multivariable ROC curve was computed considering all
DE transcripts by building a binary logistic regression model through SPSS [60]. Statistical significance
was established at a p-value < 0.05 for all ROC curves.

4.6. Expression Analysis in Peripheral Blood Mononuclear Cells

Expression of DE transcripts was also investigated in cells isolated from peripheral blood of 10
AD patients and 10 non-matched unaffected individuals included in the validation cohort. Peripheral
blood mononuclear cells (PBMCs) from patients and controls were isolated from heparinized whole
blood by gradient centrifugation over Ficoll-Hypaque solution (Ficoll Paque PLUS–GE Healthcare
Life Sciences, Piscataway, NJ, USA). Lymphocytes were prepared from blood samples by using the
Lympholyte®-H density gradient separation medium (Cedarlane, Burlington, NC, USA) according to
the manufacturer’s instructions, with slight modifications. Briefly, the blood was diluted by adding an
equal volume of complete RPMI 1640 medium (20% FBS, 1% penicillin/streptomycin, 1% L-glutammine,
and 5% Phytohaemagglutinin). Two parts of diluted blood were added to one part of Lympholyte®-H.
A centrifugation step (400× g for 25 min) was performed to separate the lymphocyte fraction from
the whole blood; a well-defined lymphocyte layer appeared at the interface at the end of this step.
The lymphocyte fraction was removed from the interface and transferred to a new centrifuge tube
containing complete RPMI 1640 medium, followed by a centrifugation step (400× g for 10 min).
After two additional washing steps, the isolated lymphocyte fraction was incubated in 25 cm2 culture
flasks containing RPMI medium for 72 h at 37 ◦C and 5% CO2. Lymphocytes (4 × 106) were then
stored at −80 ◦C until use. Total RNA was isolated from PBMC pellets by using TRIzol (Thermo Fisher
Scientific, Waltham, MA, USA), according to the manufacturer’s instructions. Expression analysis was
performed by Real-Time PCR as described above, using 50 ng of RNA for each assay. ACTB (actin beta)
and RNU6 were used as endogenous controls.

4.7. Statistical Analysis

Statistical analysis of expression data was performed using GraphPad Prism 8. PCR data
(∆Cts) were tested for normality of distributions (D’Agostino & Pearson omnibus normality test
and Shapiro–Wilk normality test) and homogeneity of variance (F test); according to the results,
parametric or non-parametric t-test was applied to evaluate statistically significant differences in
transcript expression. Both paired (paired t-test or Wilcoxon test) and unpaired (homoscedastic or
Welch corrected unpaired t-test, or Mann–Whitney test) analysis were performed.

To assess if age and sex represented confounding factors in this study, we followed a three-step
procedure [61]: (1) the difference between AD patients and unaffected individuals in age and sex was
evaluated through t-test/Mann–Whitney test (according to normality of distributions); (2) the association
of sex/age with disease risk was evaluated using Binomial Logistic Regression; (3) the association of
sex/age with DE transcript expression was evaluated by calculating Pearson/Spearman correlation
coefficient (according to normality of distributions).

Correlation analysis was performed to evaluate the existence of relationships between plasma
expression levels of DE transcripts (−∆Cts) and cognitive decline of AD patients and unaffected
individuals. After checking for normality of distributions, Pearson/Spearman correlation coefficient
was calculated. Correlation p-values were corrected for multiple comparisons (Holm-Sidak method).
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5. Conclusions

This study identified six transcripts (GS1-304P7.3, NONHSAT090268, TC0100011037,
TC0400008478, TC1400008125, and UBE2V1) showing an altered expression in the plasma of
mild-moderate AD patients compared to unaffected individuals. Given the need of new accurate blood
biomarkers for AD diagnosis, these transcripts may be considered for further analyses in larger cohorts,
also in combination with other biomarkers (including both Aβ-based biomarkers and miRNAs or
other RNA molecules), with the aim of identifying specific RNA-based biomarkers to be eventually
validated and introduced into clinical practice. Further studies enrolling patients with mild cognitive
impairment would be useful to investigate if DE transcript expression may predict the severity of
cognitive decline, potentially in an early phase of AD pathogenesis.
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lncRNAs long non-coding RNAs
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