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Abstract: Platelets are key players in the thrombotic processes. The alterations of platelet function due
to the occurrence of metabolic disorders contribute to an increased trend to thrombus formation and
arterial occlusion, thus playing a major role in the increased risk of atherothrombotic events in patients
with cardiometabolic risk factors. Several lines of evidence strongly correlate metabolic disorders such
as obesity, a classical condition of insulin resistance, dyslipidemia, and impaired glucose homeostasis
with cardiovascular diseases. The presence of these clinical features together with hypertension and
disturbed microhemorrheology are responsible for the prothrombotic tendency due, at least partially,
to platelet hyperaggregability and hyperactivation. A number of clinical platelet markers are elevated
in obese and type 2 diabetes (T2DM) patients, including the mean platelet volume, circulating levels
of platelet microparticles, oxidation products, platelet-derived soluble P-selectin and CD40L, thus
contributing to an intersection between obesity, inflammation, and thrombosis. In subjects with
insulin resistance and T2DM some defects depend on a reduced sensitivity to mediators—such as
nitric oxide and prostacyclin—playing a physiological role in the control of platelet aggregability.
Furthermore, other alterations occur only in relation to hyperglycemia. In this review, the main
cardiometabolic risk factors, all components of metabolic syndrome involved in the prothrombotic
tendency, will be taken into account considering some of the mechanisms involved in the alterations
of platelet function resulting in platelet hyperactivation.

Keywords: adipose tissue; adipokines; hemostasis; insulin resistance; metabolic syndrome; nitric
oxide; oxidative stress; platelets; thrombosis

1. Introduction

Several lines of evidence suggest a strong correlation between metabolic disorders and
hemodynamic such as obesity, dyslipidemia, diabetes, hypertension, and cardiovascular (CV) diseases
(CVD), with endothelial dysfunction as the initial step toward atherothrombosis (Figure 1). Oxidative
stress and a chronic low-grade of inflammation may be considered a “common soil” able to create a
feed-forward cycle that can deeply influence the development of a prothrombotic tendency of these
metabolic abnormalities.
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Figure 1. Potential mechanisms linking cardiometabolic disorders and atherothrombotic
vascular diseases.

One of the first epidemiological studies showing the causal relationship between obesity and CVD
was the Framingham Heart Study [1,2] and other studies have then confirmed that the waist-to-hip ratio
(WHR)—a reliable index of central obesity—was the strongest anthropometric predictor of myocardial
infarction [3] and stroke [4,5].

Not only the excess of adipose tissue, but also body fat distribution and the impaired adipose
tissue function, rather than total fat mass, better predict CV risk [6]. Actually, atherothrombotic
events leading to an elevated risk of CV morbidity and mortality are closely associated to central
obesity, which confers a higher degree of CV risk than peripheral adiposity [7,8]. In fact, abdominal
adiposity may have a causal, unfavorable effect on plasma triglycerides (TGs) and potentially other
cardiometabolic risk factors due to a greater ability to release cytokines and free fatty acids involved in
the pathogenesis of both atherothrombosis and insulin resistance [9,10].

The increasing prevalence of obesity, especially in Western Countries, has also contributed to
significant increases in the prevalence of other important CV risk factors, including dyslipidemia,
insulin resistance, and type 2 diabetes mellitus (T2DM). The presence of a clustering of three or more
risk factors in the same individual, including abdominal obesity, atherogenic dyslipidemia, high
systolic and diastolic blood pressures, and impaired glucose tolerance has been defined by World
Health Organization (WHO) as metabolic syndrome (MS) [11], though there is some minor variation in
the definition by other health care organizations. Importantly, each of these cardiometabolic disorders
contributes to alter hemostatic balance leading to a prothrombotic phenotype [12]. This review will
focus on the role of obesity on prothrombotic tendency in patients affected by MS, being adipocytes
able to produce and/or release hormones which deeply influence hemostatic balance, platelet function,
pro-inflammatory state and oxidative stress.

2. Definition of Metabolic Syndrome

MS is a multiplex risk factor for atherosclerotic CV disease, with a prevalence of 34% in the general
population [13]. However, due to the lacking of a unifying definition, MS can be present in several
forms according to the combination of the different components and the exact evaluation of prevalence
of MS changes both in United States and in Europe. It has been estimated that at least one quarter of
America population is affected by MS and about 84% of them present abdominal obesity on the basis
of the criteria indicated by National Cholesterol Education Program (NCEP) Adult Treatment Panel
(ATP) III [14–18].
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According to the NCEP’s ATP III criteria [19], MS is recognized as a condition related to CVD
occurring if the patient has three or more of the following: (1) central obesity characterized by
waist circumference >102 cm in men and >88 cm in women; (2) fasting blood TGs ≥150 mg/dL and
high-density lipoprotein cholesterol (HDL) ≤40 mg/dL in men or ≤50 mg/dL in women; (3) fasting
glucose ≥100 mg/dL; and (4) systolic blood pressure ≥130 mmHg and/or diastolic blood pressure
≥85 mmHg. Indeed, elevated high-sensitivity C-reactive protein, increased prothrombotic factors,
endothelial dysfunction, microalbuminuria, elevated inflammatory cytokines, decreased adiponectin
plasma levels, and alterations in pituitary-adrenal axis could be involved in MS. However, the inclusion
of these abnormalities in the classification of MS needs to be confirmed and this continuous score
would be more sensitive to small and large changes that do not modify the most recent Joint Interim
Statement of the International Diabetes Federation (IDF) Task Force on Epidemiology and Prevention
criteria [20].

Despite other definitions also have been proposed [21], all are associated with the presence of
central obesity, thus underlining the crucial role of the abdominal adiposity, together with insulin
resistance, as causative factor in the pathogenesis of MS. Actually, the condition of insulin resistance
represents a significant link among components of MS even if a subject with MS not necessarily is
insulin resistant [22]. It is well established that MS is a constellation of cardiometabolic determinants
associated with increase not only of CVD but also a three-fold increase in the risk of T2DM [23–25]
with significant adverse effects on health-related quality of life [26].

3. Platelets in Hemostasis and Thrombosis

Platelets are key players in primary hemostasis and thrombus formation. Platelet activation
become when platelets come in contact with exposed collagen in the areas of vascular damage and
the subsequent morphological and physiological changes help in stable platelet plug formation thus
contributing to primary hemostasis. Platelet activation process is mediated by surface exposure of
receptors (glycoproteins, GPs) and lipid rafts, which modulate signaling and intracellular trafficking.
These include GPIb/V/IX complex, which interacts with von Willebrand factor (vWF), integrin α

IIbβ3 (GPIIb/IIIa), which binds vWF and fibrinogen, and GPVI which binds collagen thus ensuring
a stable anchorage with subendothelial matrix [27]. Binding of ligands to the GP receptors changes
platelet shape as well as triggers the release of platelet granule contents, which lead to the formation of
platelet plug.

However, hemostasis or blood coagulation are not the only function of platelets, which are
also involved in pathological processes such as chronic inflammation and atherothrombosis. In fact,
platelets store cytokines and growth factors in their alpha-, dense granules and lysosomes [28] and
the subcellular machinery of the novo protein synthesis involved in the coagulation cascade and
inflammatory pathways including interleukin (IL)-1β, plasminogen activator inhibitor-1 (PAI-1) and
tissue factor (TF; Figure 2).

The atherothrombotic process underlies acute coronary and cerebrovascular events where the
activation of inflammatory mechanisms is strictly dependent on interaction among different cell
types, such as platelets, leukocytes, and cells of the vascular wall. As extensively reviewed [29–31],
once adhered to the damaged vessel wall platelets participate in multiple mechanisms promoting
thromboinflammation by releasing storage granules and aggregating to form thrombi. As mentioned,
platelet adhesion is influenced by adhesion molecules present in the subendothelial matrix components,
such as E-selectin [32], vWF [33], collagen, fibronectin, and by the level of shear stress in the
circulation [34]. In this phase, platelets are subjected to a number of physiological and cytoskeletal
changes, with release of soluble cytokines, chemokines, growth factors, and the rapid translocation of
P-selectin from alpha-granule to plasma membrane. When intracellular Ca++ concentration exceeds a
specific threshold, platelets shift from the resting discoid shape to the activated state with the formation
of filopodia and lamellipodia. The recruitment of other platelets, their activation, and aggregation
are followed by the formation of three-dimensional aggregates for a number of molecular interaction



Int. J. Mol. Sci. 2020, 21, 623 4 of 27

triggered by thrombin and generation of endogenous factors such as thromboxane (TX)A2 and release
of content from storage granules including adenosine 5-diphosphate (ADP), and platelet activating
factor (PAF). Stabilization of platelet–platelet interactions is further mediated by the receptor of
fibrinogen GPIIb/IIIa. In the primary hemostasis a pivotal role in plug formation is exerted by platelet
aggregation with aggregates anchored at site of injury but this clot remains unstable. Clot stabilization
characterizes the secondary hemostasis with consolidation of platelet mass through the assembly
of coagulation complexes with conversion of soluble fibrinogen into insoluble fibrin by thrombin
and platelet retraction. In some pathological settings, a number of factors can impair the normal
hemostasis and aberrant thrombus formation has severe pathological consequences, leading to fatal
thromboembolism and tissue ischemia of vital organs, ultimately resulting in acute CVD complications,
including myocardial infarction, stroke and critical limb ischemia.
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Figure 2. Biochemical factors involved in the coagulation cascade and the atherosclerotic process
released following platelet activation. AA, arachidonic acid; COX, cyclooxygenase; TXA2, thromboxane
A2; PDGF, platelet-derived growth factor; TGF-β, transforming growth factor β; EGF, endothelial
growth factor; bFGF, fibroblast growth factor; VEGF, vascular endothelial growth factor; IGF, insulin-like
growth factor; IL-1β, interleukin-1β; PAI-1, plasminogen activator inhibitor 1; vWF, von Willebrand
factor; GP, glycoprotein; PECAM, platelet endothelial cell adhesion molecule; sCD40L, soluble CD40
ligand; sP-selectin, soluble P-selectin; RANTES, regulated on activation, normal T-cell expressed and
secreted; MIP-1α, macrophage inflammation protein- 1α; IL-8, interleukin-8; PF4, platelet factor 4;
PMPs, platelet-derived microparticles.

In the presence of intact vascular endothelium, the release of prostacyclin (PGI2) and nitric
oxide (NO), two major antiaggregants, regulates the balance between pro- and antiaggregants and
prevents the formation of thrombus inside the blood vessel [35]. However, in subjects at risk of arterial
thrombosis, this key protective pathway is overcome, resulting in uncontrolled platelet activity.

4. Platelet Function Assays

For the measurement of platelet function there is no gold-standard method showing the real state
of “hyper” or “hypo” reactivity that can be used as reliable marker of high risk in disease settings.
However, based on the platelet ability to interact with each other as well as with other cells and
for peculiar surface expressions it is possible to measure platelet function and activation by using a
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number of tools each measuring different aspects of platelet response. Laboratory tests, including light
transmission platelet aggregation, lumiaggregometry, impedance aggregometry on whole blood, flow
cytometry or enzyme-linked immunoassays (ELISA), are traditionally utilized for the identification of
patients with impaired platelet function.

Light transmission aggregometry (LTA), for a long time considered the gold-standard method, is
the most widely employed test in clinical hematology to measure the increase in light transmission
through a platelet suspension when platelets were stimulated by a specific agonist such as ADP,
arachidonic acid (AA), collagen, and epinephrine. LTA allows us to evaluate the tendency of platelets
to aggregate and to identify abnormalities such as hyperaggregation [36]. This assay has some major
drawbacks: (i) it is relatively non physiological because during the test platelets are stirred under low
shear conditions and only form aggregates after the addition of agonists, without mimicking platelet
adhesion, activation and aggregation upon vessel wall damage, (ii) the result obtained may be affected
by preanalytical and procedural conditions, (iii) not suitable for platelet-rich platelet numbers below
50 × 106/mL and lipemic blood sample, and (iv) its reproducibility is poor. Specific guidelines for LTA
have been published in order to correctly perform the procedure [36–38].

Platelet aggregation assessed in whole blood (WB) measures the increase of electrical impedance
generated by aggregates upon those fixed to two electrodes. As advantages, WB aggregometry
evaluates platelet function under more physiological conditions because of the presence of the other
blood components, does not require manipulation of the sample, thus avoiding platelet activation,
and all platelet subpopulations are present in WB sample [39].

Flow cytometry assay allows the rapid analysis of physical and antigenic properties of platelets,
such as presence of platelet aggregates or leukocyte–platelet aggregates, determination of GP receptor
expression (i.e., GPIIb/IIIa, GPIb/IX/V, and GPVI), including conformational changes related to the
receptor activation (i.e., GPIIb-IIIa), activation markers (CD62P and CD63), and platelet granule
secretion (β-thromboglobulin, thrombospondin-1, vWF, fibrinogen, and P-selectin). In WB samples,
the use of a double labeling binding allows the identification of platelets, platelet microparticles,
or mixed cell aggregates [40–42]. Although flow cytometry has the advantages to require small
volume of blood sample, to perform platelet aggregation also in the presence of low platelet counts,
and to analyze platelet function and activation in a physiological environment [43], this approach
can be affected by preanalytical manipulations and be prone to artifacts [44,45]. ELISA are now the
most commonly used assays for the measurement of platelet activation markers TXA2 metabolites
(serum TXB2 and urinary 11-dehydro-TXB2) [46] and alpha-granule factors such as β-thromboglobulin,
platelet factor (PF)-4, soluble P-selectin (sP-selectin), and soluble CD40 Ligand (sCD40L) [44,45].
The new Point-of-Care devices (i.e., VerifyNow system, Plateletworks, Platelet Function Analyser-100,
and Multiplate Electrode Aggregometry) may be useful supplements to the existing well-known
platelet function tests and are mainly utilized for monitoring antiplatelet therapies.

5. Platelet Alterations in Central Obesity

Obesity is a heterogeneous condition and, when located within the abdominal cavity, becomes an
independent determinant for cardiometabolic disease causing or exacerbating other cardiovascular
and metabolic risk factors, such as dyslipidemia, hypertension, insulin-resistance, and T2DM [47–49].
Apart from metabolic and hemodynamic alterations, central obesity is characterized by a chronic low
grade inflammation and systemic oxidative stress that eventually damages the endothelium causing
the loss of the endothelium antithrombotic properties. This justifies the assumption of obesity as a
pro-thrombotic clinical condition with increased platelet activation and decreased fibrinolysis [50–53],
both contributing to atherogenesis and acute atherothrombotic events via increased vascular deposition
of platelets and fibrinous products.

Platelets from obese subjects are known as “angrier” because they show a number of abnormalities,
which increase platelet aggregability and activation constituting a relevant risk factor for CVD,
especially for the development of atherothrombosis [54]. Recently, studies linking proteomic analysis
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and aggregation findings have confirmed the presence of alterations in proteins related to platelet
signaling [55]. In particular, a higher expression of GPVI, positively correlated with body mass
index (BMI), together with higher levels of Src (pTyr418) and tyrosine phosphorylated phospholipase
Cγ2, essential for integrin signaling, mechanistically provide possible explanations for platelet
hyperreactivity in obesity [55].

Certain adipokines, bioactive peptides secreted by omental adipose tissue, can modulate
not only body weight and metabolism but also vascular function [56]. For instance, in the
platelet hyperreactivity of obese individuals [57–61], associations with leptin, the satiety hormone
produced primarily by the adipose tissue, and adiponectin, an insulin-sensitizing adipokine produced
exclusively by adipocytes, have been found. Platelets express the leptin receptor and both leptin and
leptin-receptor-deficient mice have been protected from experimental thrombosis [62]. In in vitro
experiments with human platelets, leptin alone does not induce platelet aggregation but increases the
proaggregating effects of sub-threshold concentrations of ADP and thrombin [63]. A specific pathway
in the leptin-induced platelet activation involves Janus kinase 2 (JAK2), phosphatidylinositol 3 kinase
(PI3K) and phospholipases Cγ2 and A2, with effects on 3′,5′-cyclic adenosine monophosphate (cAMP)
hydrolysis, GPIIb/IIIa expression, and TX synthesis. Furthermore, independently of other risk factors,
high plasma levels of leptin are associated with an increased risk of thrombotic events such as acute
myocardial infarction and stroke [63].

Differently from the other secretory products of adipocytes, adiponectin exerts anti-inflammatory
effects protecting against thrombosis, insulin-resistance, dyslipidemia, and endothelial dysfunction [55].
Adiponectin, the most abundant secretory protein produced by adipocytes, is synthesized and secreted
as a trimer and in multimeric complexes cleaved to forms that are active transducer of signaling [64].
In mouse, adiponectin has been shown to increase fatty acid oxidation, perhaps through the activation
of AMP kinase (AMPK). Disruption of adiponectin leads to high-fat diet–induced insulin resistance
and levels are low in humans with obesity and insulin resistance while adiponectin levels are increased
by insulin-sensitizing peroxisome proliferator-activated receptors (PPAR)γ agonists.

Although adiponectin per se does not influence platelet aggregation [65], antithrombotic actions
have been attributed to this adipokine. In particular, adiponectin deficient mice show increased
platelet response to the proaggregating agents and thrombosis tendency [66], high adiponectin
plasma concentrations are associated with a decreased risk of coronary artery diseases and increased
bioavailability of NO [67]. Both hyperleptinemia and hypoadiponectinemia in MS are associated with
increases in leukocytes and platelet indices with platelet count, platelet distribution width (PDW),
mean platelet volume (MPV) values, and platelets/lymphocyte ratio significantly higher in MS patients
than in healthy subjects [68].

6. In Vivo Markers of Platelet Activation in Obesity

Activated platelets show peculiar features or express certain proteins that are less detectable in
resting platelets, thus these factors can be used as markers of platelet activation. Some of these markers
are higher in central obesity than in healthy subjects (Table 1).

Table 1. Markers of platelet activation in obesity.

Markers

Mean Platelet Volume
Thromboxane B2

Prostaglandin F2α
Soluble P-Selectin

Soluble CD40L
Platelet-derived Microparticles
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6.1. Mean Platelet Volume

Among the in vivo markers of platelet activation in obesity, MPV represents a parameter closely
related to platelet hyperactivation [69] and it has been found increased in obese subjects [70,71].
An interventional study carried out on female subjects, showed MPV values significantly higher
in the group of obese women, in comparison with the non-obese [70]. A positive correlation was
found between not only MPV and BMI but also reduced values of MPV and weight loss. Conversely,
in another cross-sectional study on male individuals, it was not observed any significant difference
in MPV values between groups with abdominal and without it. However, in the same study, MPV
displayed a positive correlation with prothrombin activity [72]. Weight loss after bariatric surgery is
also accompanied by a decrease in platelet count and significant changes in MPV, especially 6 months
after surgery, corresponding to the period when weight loss was at its maximum [73].

6.2. Arachidonic Acid Metabolites

TXA2 is an unstable platelet-derived proaggregant agent with persistent biosynthesis in several
CVD [74]. Precursor of TX synthesis is AA dissociated from membrane phospholipids following the
increased Ca++ intracellular levels and phospholipases activity [75]. A crucial role in TXA2 production
is played by the action of the constitutively expressed cyclooxygenase (COX)-1 in platelets and inducible
COX-2 in monocytes and other cells in response to inflammatory and mitogenic stimuli. TXA2 has
a short half-life and is nonenzymatically hydrolyzed and further converted into stable metabolites
excreted in the urine 2,3-dinor-TXB2 and 11-dehydro-TXB2. The urinary excretion of 11-dehydro-TXB2,
which represents the more reliable time-integrated index of systemic TXA2 synthetized for 70%
by platelets, has been found increased in women with abdominal obesity and higher in women
with android obesity than in those with gynoid obesity [76]. Noteworthy, serum TXB2 levels were
found lower in insulin sensitive morbidly obese subjects than in the obese subjects and lean subjects,
suggesting that reduced platelet activation could play a role in the paradoxical protection of morbidly
obese subjects from atherosclerosis, despite the greater levels of leptin and C-reactive protein [77].

Abdominal obesity increases oxidative stress, as demonstrated by the increased levels of lipid
peroxidation or protein oxidation products [78]. Indeed, the chronic ‘metabolic inflammation’ [79],
the hallmark of obesity causing insulin resistance and T2DM [80], where the metabolic disorders
trigger inflammatory signals, contributes to generate reactive oxygen species (ROS), which influence
platelet function by different ways. For instance, isoprostanes are a family of products derived from
AA metabolism through ROS-dependent mechanisms.

An oxidation product of AA is 8-iso-prostaglandin F2α (PGF2α), an abundant isoprostane involved
in platelet aggregation by activating TX receptor in the presence of sub-threshold concentrations of other
agonists. The influence of this isoprostane on platelets can be prevented by TXA2 receptor antagonism
but is completely independent of COX-1 activity [29]. A positive linear correlation between urinary
excretion of 11-dehydro-TXB2 and PGF2α underlines the link of platelet activation with oxidative
stress [81].

6.3. Soluble P-Selectin

A pivotal role in the development of vascular complication of atherothrombosis is played by
cellular adhesion pathways and selectins are one of the four main adhesion molecule families. Platelets
are the major source of P-selectin, a cellular adhesion molecule with procoagulant activity [82] and able
to activate leukocyte integrins [83]. The circulating levels of soluble form of P-selectin mirror platelet
activation. Stored in the alpha-granules of platelets, in a setting of inflammation P-selectin translocates
to the plasma membrane where it can interact with ligands [84] leading to leukocyte-platelet aggregates
that promote adhesion and infiltration of inflammatory cells [85–88]. sP-selectin has been associated
with adiposity and both clinical and subclinical atherosclerosis [89] and has been shown to predict
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atherosclerosis independently of BMI and other CVD risk factors. The enhanced plasma concentrations
of P-selectin in overweight and obese insulin resistant subjects [61,90] are reduced after weight loss [61].

6.4. CD40 Ligand

Activated platelets also release the sCD40L, a trimeric transmembrane protein structurally related
to tumor necrosis factor (TNF)-α superfamily. CD40 and its immunomodulating CD40L show dual
prothromboting and proinflammatory role further contributing to amplify vascular diseases and
atherogenesis [91].

More than 95% of circulating sCD40L derives from platelets, stored in high amounts in cytoplasma
in unstimulated platelets, expressed on the platelet surface where it is cleaved to form the soluble trimeric
fragment and released within seconds after platelet activation [92]. sCD40L measurement is considered
as a platelet-derived marker of cardiovascular risk able to link thrombosis and inflammation [93].
Studies in mice showed that in obesity the genetic or antibody mediated disruption of CD40L signaling
ameliorates adipose tissue inflammation and metabolic disorders in insulin resistance [94], thus
confirming the role of sCD40L as a platelet-derived marker of the cardiovascular risk able to link
thrombosis, inflammation, and altered metabolism [93]. CD40/CD40L interaction is involved in the
expression of many proinflammatory and prothrombotic factors, including IL-1, IL-6, IL-8, IL-12, TNF-α,
monocyte chemoattractant protein (MCP)-1, and matrix metalloproteinases (MMPs) accelerating the
adhesion of monocytes to the vascular endothelium [95–97], promoting a ROS-mediated endothelial
injury [98–100] and the rupture of atheromatous plaques [101]. Recent reports have also indicated
that patients with acute cerebral ischemia exhibit increased expression of CD40L on platelets and the
CD40/CD40L signaling directly modulates cerebral microvascular thrombosis by the mammalian target
of rapamycin (mTOR)/S6K signaling pathway activation [102]. Plasma levels of sCD40 are considered
reliable markers of in vivo platelet activation and the increased levels found in obesity are reduced by
weight loss [61].

6.5. Platelet-Derived Microparticles (PMPs)

Platelet-derived microparticles (PMPs) are small membrane-bound microparticles with a diameter
less than 0.1 micron containing bioactive proteins and genetic material (i.e., mRNAs and microRNAs)
able to deeply influence phenotypes and functions of recipient cells promoting the development of
pathological states [103]. Platelets, activated by various agonists or exposed to high shear stress [104]
or increased oxidative stress [57], produce PMPs and elevated levels of circulating PMPs are associated
with most of the cardiovascular risk factors including hypertension, obesity, and dyslipidemia [105],
appearing indicative of a poor clinical outcome. In obese non-diabetic subjects, elevated circulating
levels of PMPs positively correlate with BMI and waist circumference [106]. Weight reduction,
by calorie restriction with or without exercise [106] or after gastrectomy, reduces PMP production.
Interestingly, another study has recently shown that PMPs from obese subjects were not different in
number if compared with non-obese subjects but, as supported by proteomics data, they showed
greater heterogeneity in size and distribution with different levels of proteins relevant to thrombosis
and tumorigenesis [107].

7. Contribution of Insulin Resistance on Platelet Dysfunction

Insulin is a hormone that mediates its action through the insulin receptor (IR) composed of
two monomers comprising an extracellular α-subunit and a transmembrane β-subunit [108]. Insulin
binding induces IR autophosphorylation at various tyrosine residues, recruitment of IR substrates
(IRS), and activation of mitogen-activated protein kinase (MAPK) and PI3K [109]: the activation of
these signaling pathways promotes downstream processes involved in blood glucose control [110].
A less than expected response of target organs to insulin leads to a condition of insulin resistance
with hyperinsulinemia for a compensatory increased insulin production by pancreatic β-cells.
Insulin-resistance is classically referred to metabolic homeostasis characterizing, in most cases, obesity,
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impaired glucose tolerance and T2DM [111]. Indeed, insulin resistance involves also the vascular
effects of the hormone [112–114] and it is the common soil of a cluster of metabolic, hemodynamic,
thrombotic and inflammatory features deeply involved in atherogenesis and CVD [115]. One of the
alterations accounting for the association between insulin resistance and vascular diseases is platelet
hyperactivation, also explained by the reduced sensitivity to the physiological and pharmacological
antiaggregating agents. Platelet membrane shows functional IR with a density similar to that measured
in other target cells of insulin action [116]. In platelets from insulin sensitive subjects, the hormone
decreases in vitro platelet aggregation stimulated by common platelet agonists such as ADP, thrombin,
catecholamines, PAF, collagen, AA, and angiotensin-II [117,118]. Insulin infusion in euglycemic
conditions determines: (i) reduced sensitivity to multiple agonists and deposition to collagen [119];
(ii) impaired primary hemostasis under high shear stress [119]; and (iii) reduced TXA2 metabolite
synthesis also in T1DM [120]. Through NO increase, insulin induces a rapid increase of the cyclic
nucleotides 3′,5′-cyclic guanosine monophosphate (cGMP) and cAMP with inhibitory effects on platelet
aggregation [121]. In conditions of insulin resistance such as central obesity, T2DM with obesity and
hypertension, the inhibitory effects of insulin on platelets are impaired [53] (Figure 3). Among the
mechanisms involved in the altered insulin actions on platelets, a role is played by the effects on
platelets of the abnormal adipokine content in plasma profile of patients with MS and T2DM [122].
In particular, the adipokines resistin, leptin, PAI-1, and retinol binding protein 4 (RBP4) induce insulin
resistance in megakaryocytes by interfering with IRS-1 expression with a negative impact on insulin
signaling in platelets.

Platelets from obese insulin-resistant individuals are characterized by multi-step defects at level of
NO/cGMP/protein kinase cGMP-dependent (PKG) and PGI2/cAMP/protein-kinase cAMP-dependent
(PKA) pathways. In particular, platelets show an impaired NO and PGI2 ability to increase, respectively,
cGMP and cAMP synthesis and a resistance to cGMP and cAMP themselves to activate their specific
kinases PKG and PKA [59,60]. Since the cyclic nucleotides exert their effects on platelets mainly through
a reduction of intracellular Ca++ [123], these data are suggestive for the presence of alterations in Ca++

fluxes handling. Actually, elevated cytosolic Ca++ concentrations have been found in insulin-resistance
states [124] and this could explain the defective action of cyclic nucleotides on platelet function. Of note,
this multistep resistance is not emphasized by the presence of T2DM [125] as well as the presence of
T2DM without obesity is not associated with this cluster of platelet abnormalities [125]. However,
lifestyle interventions aiming to reduce body weight by diet can modify the prothrombotic tendency in
obese insulin resistant individuals. Actually, the altered platelet sensitivity to NO/cGMP/PKG and
PGI2/cAMP/PKA pathways in obesity is restored by weight reduction of at least 10% of the initial
body weight and this phenomenon is also accompanied by an improvement of insulin resistance
and a decrease of markers of inflammation [61] and synthesis of isoprostanes [126]. The central
role of the insulin resistance associated with obesity as a pathogenic factor deeply involved in the
impairment of the main inhibitory mechanisms of platelet function is confirmed, in the same study,
by multiple regression analysis showing the homeostasis model assessment (HOMA) index, a surrogate
marker of insulin-resistance, as the parameter more strongly associated with platelet response to the
antiaggregating agents. Successful weight loss obtained with drugs, such as the incretin-based therapy,
is associated with a significant reduction in TX-dependent platelet activation, possibly mediated,
at least in part, by decreased inflammation and lipid peroxidation [127]. In particular, a direct role on
platelets by Liraglutide, an analog of the incretin hormone glucagon-like peptide 1 (GLP-1), initially
used for the treatment of T2DM and recently introduced as potential weight loss medication, cannot be
excluded because Liraglutide has been shown to inhibit platelet activation in animal models [128] and
human platelets [129].
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Figure 3. Relationships between insulin resistance, increased oxidative stress and inflammation in
promoting platelet hyperactivation in obesity. AA, arachidonic acid; A-II, angiotensin-II; cAMP,
3′,5′-cyclic adenosine monophosphate; cGMP, 3′,5′-cyclic guanosine monophosphate; IR, insulin
receptor; MPV, mean volume platelet; NO, nitric oxide; PAF, platelet activating factor; PAR,
protease-activated receptor; PGI2, prostaglandin I2; PKA, cAMP-dependent protein kinase; PKG,
cGMP-dependent protein kinase; ROS, reactive oxygen species; PMP, platelet-derived microparticles;
TP, thromboxane receptor; TX, thromboxane.

8. Type 2 Diabetes Mellitus and Alterations of Platelet Function

Platelets from diabetic patients are more prone to form spontaneous microaggregates [130],
to adhesion, to aggregation in response to agonists [131], and to be less sensitive to antiaggregants [132].
Biochemical abnormalities associated with these impairments of platelet function can be detected by
elevation of intracellular calcium levels and expression of platelet activation markers including PMPs,
which in patients with T2DM can be used as potential predictors of CV outcomes [133].

Indeed, several mechanisms are involved in the hyperactive platelet phenotype in diabetic patients.
Among them, hyperglycemia, oxidative stress, and altered shear stress, interconnected with associated
metabolic conditions (obesity, dyslipidemia, and subclinical inflammation) promote atherogenesis and
the tendency to a prothrombotic status (Figure 4), which in T2DM represents an important risk factor
for a first CV event and for worse outcomes after a CV event.

8.1. Hyperglycemia

Although some abnormalities in platelet function in T2DM depend on the presence of the insulin
resistance condition, some defects occur only in T2DM in relation to hyperglycemia. Hyperglycemia,
the basic characteristic feature of diabetes, and glycemic variability are predictive determinants
of platelet activation [134] and postprandial hyperglycemia is an independent risk factor for
cardiovascular complications [135]. Although the underlying pathogenic mechanisms are multiple,
factors promoting oxidative stress are unanimously considered to contribute significantly to platelet
activation. Of particular interest, in T2DM patients a marked oxidative response is induced by the
consumption of high-calorie meals, which in these individuals determines an abnormal and sustained
elevation of blood glucose and lipid levels, mainly TGs, defined as postprandial dysmetabolism [136].
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MS/DIABETES
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Angiotensin II
Endothelin-1
Tissue Factor
PAI-1
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AP-1 activation
Cytokines
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Figure 4. Biochemical imbalance towards factors promoting endothelial dysfunction and platelet
hyperactivation involved in the development of atherothrombotic diseases in the presence of multiple
cardiometabolic risk factors. eNOS, endothelial nitric oxide synthase; NFκB, nuclear factor kappa B;
PAI-1, plasminogen activator inhibitor-1; AP-1 activator protein-1; NO, nitric oxide; PGI2, prostaglandin
I2; EC, endothelial cell; PMPs, platelet-derived microparticles; MS, metabolic syndrome.

Since the entry of glucose into platelets does not depend on insulin, intraplatelet glucose
concentration mirrors blood glucose levels, and chronic hyperglycemia has been clearly identified as
a causal factor leading to platelet hyperreactivity, as indicated by enhanced aggregation, increased
fibrinogen binding, and TX production [137]. Hyperglycemic spikes trigger ischemic cardiovascular
complications in T2DM [138–140] and may elicit arterial thrombosis owing to a transient hyperreactivity
of platelets to high shear stress, thus contributing to precipitating arterial thrombotic occlusion at
stenotic sites [141]. Furthermore, platelet activation due to high glucose exposure in the absence or
in the presence of high shear stress conditions is cause of reduced platelet sensitivity to inhibition
by aspirin [142–144]. Recently, a reduced acetylation level of the catalytic Ser529 site associated with
an incomplete inhibition of COX-1 activity by aspirin has been found in condition of high glucose
and diabetes [145], adding another piece of information, which may contribute to explain the residual
platelet hyperreactivity observed in diabetes and implying in T2DM the use of effective therapeutic
strategies able to prevent hyperglycemia in order to improve also the protective effects of aspirin
against the occurrence of CV events.

Platelet hyperreactivity in T2DM is coupled with biochemical evidence of persistently increased
TX-dependent platelet activation [137,146] and in the mechanism by which platelets transduce glucose
levels into enhanced TX generation a central role is played by the enzyme aldose reductase, the first
enzyme of the polyol pathway. The activity of aldose-reductase is significantly enhanced in vascular
cells in T2DM and is thought to contribute to vascular complications by increasing oxidative and
osmotic stress. Glucose flux through aldose reductase enzyme generates oxidative stress by distinct
mechanisms, including nicotinamide adenine dinucleotide phosphate (NADPH) depletion, decrease
of glutathione (GSH) levels, and increase of advanced glycation end products (AGEs), thus promoting
ROS formation [147]. ROS also play an important role in signaling upon agonist-induced platelet
aggregation, inducing changes in intraplatelet Ca++, and acting as second messenger in thrombin- or
collagen-activated platelets [148]. The increased oxidative stress derived from hyperglycemia and
platelet activation potentiates p38α MAPK/cytosolic phospholipase A2 signaling, which catalyzes AA
release and TXA2 production. T2DM with enhanced biosynthesis of TX despite aspirin therapy may
have underlying endothelial damage and thromboembolic disease [149]. As mentioned earlier, sCD40
is both marker and mediator of platelet activation and its upregulation is involved in the advanced
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stage of cerebrovascular disease and increased risk of CV events in T2DM. The increased TX-dependent
platelet activation is also associated with enhanced CD40L release [150].

Although mechanisms underlying the pathogenesis of ischemia/reperfusion injury are particularly
complex and multifactorial, there is evidence of interactions between platelet function and
ischemia/reperfusion injury, especially in diabetic conditions [151].

Diabetic heart is among the most susceptible to ischemia/reperfusion injury and some
cardioprotective strategies are compromised in the presence of diabetes because of several mechanisms,
including alteration at the mitochondrial level, altered production of ROS, and impairment of
antioxidant capacities at various intracellular and extracellular sites [152].

Interestingly, a recent study has shown that the infusion of platelets from healthy subjects in rat
isolated hearts exerts cardioprotective effects by reducing infarct size [153] with a mechanism that
depends on the platelet capacity to activate cardiac sphingosine-1-phosphate (S1P) receptors and
extracellular signal-regulated kinase (ERK)/PI3K/protein kinase C (PKC) pathways. However, platelets
from poorly controlled T2DM subjects, as mirrored by high values of glycated hemoglobin (HbA1c),
lost their cardioprotective effects, released less S1P, and a positive correlation between infarct size and
the amount of ROS produced by diabetic platelets was found [153].

High glucose levels were also found to cause in platelets loss of function and damage to
mitochondria, mitochondrial membrane potential dissipation, cytochrome c release, caspase-3
activation, and a subgroup of platelets can undergo apoptosis [154]. Enhanced rate of platelet
apoptosis can lead to generation of PMPs that carry thrombotic mediators by providing a new
prothrombotic interface for the deposition of fibrin and other blood cells [155].

In addition to up-regulated pro-aggregatory stimuli, platelets from diabetic individuals show
reduced sensitivity to the antiaggregating insulin, NO, and PGI2 [58]. Since some antiplatelet effects
of aspirin are related to increased platelet NO synthesis [144] and preservation of NO from its
inactivation [156], an impaired platelet sensitivity to NO signaling may account, at least partially,
for less protective aspirin effects against thrombotic events in T2DM.

However, the superoxide-mediated impairment of NO effects on platelet function following
hyperglycemia can be corrected by acute aggressive glycemic control [157]. Platelet exposure to
high glucose also influences the biophysical state of platelet membrane components and changes
in fluidity owing to glycation or acetylation of membrane proteins contribute to the intensified
intraplatelet Ca++ mobilization [158]. High cytosolic Ca++ levels deeply influence the procoagulant
state of platelet aggregates inducing externalization of phosphatidylserine and thus accelerating the
membrane-dependent reactions of blood coagulation [159].

8.2. Oxidative Stress

As mentioned, superoxide radicals have a strong effect for activating platelets and in T2DM
oxidative stress is increased for the imbalance between ROS production and antioxidant defenses.
High concentrations of ROS influence platelet function by different mechanisms, including decreased
NO bioavailability, calcium mobilization abnormalities, over-expression of membrane glycoproteins,
and isoprostane formation. A major source of platelet ROS is the enzyme NADPH oxidase (Nox),
as demonstrated in platelets from patients affected by chronic granulomatous disease, a rare primary
immunodeficiency, that show very low ROS generation and, in the most frequent form, the deficiency of
Nox2 subunits. Nox2 is expressed by platelets and its increased activity has been shown to be correlated
with platelet activation, isoprostane formation and/or NO inhibition [160,161]. Nox2 activation, platelet
recruitment, and isoprostane levels are parallelly increased in diabetic patients and these could be
cause of reduced efficacy of aspirin [162].

Oxidation reactions are elevated in patients with T2DM and significantly contribute to form
isoprostanes, which are produced from AA through a non-enzymatic process of lipid peroxidation,
catalyzed by oxygen-free radicals on cell membranes [163]. Since structurally similar to prostaglandins,
once released isoprostanes activate the same receptors. 8-iso-PGF2α influences some aspects of platelet
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function such as adhesive reactions and activation by low concentrations of other agonists [134].
In poorly controlled diabetes, plasma levels of 8-iso-PGF2α are increased and correlate with impaired
glycemic control and enhanced lipid peroxidation, thus providing a biochemical link between impaired
glycemic control and persistent platelet activation [164].

8.3. Shear Stress

The increased tendency of platelets from diabetics to aggregate is tightly regulated not only by
the diabetic milieu but also by complex conditions of flow dynamics. Thrombotic complications are
deeply influenced by the effects of hemodynamic environment at the site of vessel injury or plaque
rupture blood on endothelial cells constantly exposed to multiple physical forces generated by the
movement of blood. In normal conditions, the physiological shear stress-induced endothelial release of
NO and PGI2 does not allow platelets to adhere to the vessel wall [165,166]. In response to abnormal
blood flow endothelial cells can modify their shape, function and gene expression, which, in turn,
affect platelets, whose adhesiveness and activation change. High shear rates (>1000 s−1) promote
platelet aggregation critically modulated by vWF, endogenously present in the subendothelial matrix
or absorbed onto injured tissue components exposed to plasma [167], and subjected to conformational
changes that determine vWF self-association and vWF fiber formation [168]. Furthermore, vWF
activation also requires the formation of disulfide bridges from free thiols [169], this reaction depends
on ROS [170] whose levels, as known, are increased in T2DM. Further studies also showed that in
T2DM hyperglycemia causes membrane lipid peroxidation and osmotic fragility in red blood cells [171]
leading to increase extracellular hemoglobin which directly affects the GPIbα-vWF interaction [172].
In particular, increased platelet adhesion, and microthrombi formation on fibrin(ogen), extracellular
matrix, and collagen at high shear stress in the presence of free hemoglobin (≥50 mg/dL) were
found. These may have implications on the shear stress-induced platelet aggregability explaining,
at least in part, the increased platelet aggregation in whole blood from T2DM patients. Taking into
account that T2DM patients show higher plasma concentrations of vWF, correlated with HbA1c
and chronic hyperglycemia, we can suppose that the occurrence of a disturbed microhemorrheology
in a diabetic environment, characterized also by elevated ROS levels, contributes to exacerbate the
prothrombotic phenotype.

9. Role of Dyslipidemia in the Impaired Platelet Reactivity

Dyslipidemia is recognized as an independent risk factor for coronary artery and peripheral
vascular disease. In this association a major role is exerted by the effects of accumulation of plasma
oxidized lipids on platelet function suggesting a potential causative role for dyslipidemia in the
promotion of platelet hyperreactivity in CVD [173,174]. Cholesterol accumulation in plasma membrane
alters membrane structure with effects on signaling via surface receptors. Indeed, the mechanisms
by which dyslipidemia promotes platelet activity and thrombosis in vivo are multiple also for the
heterogeneous nature of lipoproteins.

Platelets become sensitive to a wide spectrum of interactions after low-density lipoprotein
cholesterol (LDL) binding to the specific receptor on the platelet membrane: in their native form, LDLs
alone do not induce platelet aggregation but increase platelet response to proaggregants; if oxidized,
LDLs induce platelet aggregation also in the absence of agonist [175].

The capability of oxidized-LDL (oxLDL) particles to stimulate generation of ROS by lectin-like
oxLDL receptor-1 (LOX-1) binding, a major receptor for uptake of oxLDL in endothelial cells, is
one the mechanisms involved in the reduced NO bioavailability at all stages of atherosclerosis
through the increases in Nox, nuclear factor kappa B (NF-κB), and mitochondrial enzymes involved in
oxidative signaling [176,177]. As known, loss and/or impaired NO action can induce platelet activation,
and in disease states such as hypercholesterolemia and diabetes, where ROS production is increased,
a dysregulated NO metabolism becomes a critical determinant of platelet function. Indeed, diseases
like hypercholesterolemia, where high levels of LDL are often accompanied by increased oxLDL,
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platelet hyperactivity could also depend on hyporesponsiveness to NO-related pathways [61,178–180].
In fact, platelets from patients with primary hypercholesterolemia, if compared with healthy controls,
show higher aggregability to ADP, collagen, AA, higher ROS production, reduced sensitivity to NO,
and increased activation of the proaggregant PI3K/Akt and MAPK/ERK-2 pathways. In the same
individuals, platelet exposure to GLP-1, an incretin hormone with effects depending on GLP-1 influence
on NO-signaling [129], does not exert any of its antiplatelet actions [178]. In this phenomenon, a role
could be played by oxLDL ability to generate Nox2-derived ROS through a CD36-PKC pathway with
inhibition of cGMP signaling [181], a key protective pathway activated by NO that, if overcome, results
in increased platelet activation.

Platelets from patients with hypercholesterolemia show hyperaggregability, increased fibrinogen
binding and surface expression of CD62P, increased production of TXA2 and superoxide anion, whereas
plasma derived from the same patients contains increased concentrations of platelet activation markers,
such as soluble sCD-40L, PF-4, sP-selectin, and β-thromboglobulin [182–184]. Many of these impaired
platelet parameters of platelet aggregation and activation are corrected by lipid-lowering treatments.

In vitro and in vivo studies show that statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme
A (HMG-CoA) reductase and the most relevant drugs used to lower serum cholesterol levels, due to their
pleiotropic effects decrease subclinical inflammation, oxidative stress, endothelial dysfunction, platelet
aggregation, and activation [185–189], improving platelet sensitivity to NO [178], and aspirin [184],
but not to GLP-1 [178]. The causes of the enhanced platelet hyperaggregability and the defective GLP-1
actions in dyslipidemia can be multifactorial, although the strong correlation with LDL underlines
the role of cholesterol as a major determinant of platelet hyperreactivity with a putative role also in
the impaired response to GLP-1. The modulating effects of GLP-1 on platelet function might have
protective roles on the cardiovascular system, thus suggesting that a reduced and/or impaired action of
GLP-1 on platelets could be involved in the platelet hyperreactivity described in metabolic disorders
such as diabetes [190,191] and dyslipidemia [192,193].

Although statins represent important tools for primary and secondary prevention of CV events in
hypercholesterolemia, only a low percentage of patients reach a predefined LDL target thus justifying
the development of new approaches to lipid modification. At this purpose, the inhibition of proprotein
convertase subtilisin/kexin type 9 (PCSK9) to reduce plasma LDL is a new approach for the treatment
of hypercholesterolemia because it allows us to address the unmet clinical needs of achieving goal
LDL levels for the majority of patients with high CV risk. PCSK9 is a major regulator of LDL levels as
it promotes the degradation of hepatic LDL receptors, thus its inhibition causes an increase of LDL
receptor activity and more circulating LDL is removed [194].

It has been recently shown that in primary hypercholesterolemia the in vivo treatment with
PCSK9 inhibitors, beyond their lipid-lowering action, had important inhibitory effects on platelet
aggregation and activation [129]. Given the activating direct effect of PCSK9 on platelets [195] and
the relationship between PCSK9 and higher platelet reactivity [196–198], it is plausible that PCSK9
can directly influence platelet reactivity, thus PCSK9 inhibitors also would reduce the direct PCSK9
stimulatory effects on platelets.

The typical dyslipidemia in patients with T2DM and/or the MS is characterized by increased
plasma TG concentration and low HDL concentration. In such context, the presence of small, dense
LDL, more prone to oxidation, leads to a mixed atherogenic dyslipidemia.

Even though LDLs affect platelet function by modulating platelet activity more strongly
than hypertriglyceridemia [173,199], there is evidence that TG-rich particles can directly activate
platelets [200].

HDL has been shown to mediate various antithrombotic effects [201]. The infusions of reconstituted
HDL decreased platelet activation in diabetic subjects [202]; on the contrary, in condition of impaired
delivery of cholesterol by HDL from plasma and peripheral tissues, marked increases of platelet
activation and thrombosis have been found [203].
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10. Hypertension and Platelets

Arterial hypertension is one of the most important worldwide public-health challenges because
of its high frequency and a leading preventable cause of premature death. Indeed, hypertension is a
multifactorial disease, often clustering with other components of metabolic syndrome such as obesity,
dyslipidemia, and insulin-resistance [204] and platelet activation is deeply involved in at least half of
deaths due to heart disease and stroke [205–207].

Changes in the biochemical and functional profile of plasma membrane of platelets from
hypertensive subjects are suggestive of platelet activation [208]. The increase of shear forces due to
elevated blood pressure, especially adjacent to the endothelium, can promote platelet activation and
degranulation [209].

Impaired NO availability, increased oxidative stress, altered Ca++ metabolism [210], and membrane
permeability [211] are some of platelet abnormalities observed in hypertensive patients.

Vascular and endothelial dysfunction are linked to arterial hypertension and may result in a
greater propensity for platelets to cause thrombosis. Actually, given the central role of endothelial cells
in avoiding platelet adhesion and maintaining normal platelet function, the presence of dysfunctional
endothelium would promote platelet adhesion and activation.

An important consequence of endothelial dysfunction is the reduced bioavailability of NO, a key
molecule for CV health. This may be a consequence of the endothelial nitric oxide synthase (eNOS)
polymorphisms [212], reduced NO production or increased breakdown of NO by ROS [213,214].
In particular, the uncoupled state of eNOS leads to a decrease in NO synthesis and increase in
ROS production. The quenching of NO by superoxide anions contributes to impaired vascular
smooth muscle cell response [215] and relaxation [216]. Platelets express both the constitutive eNOS,
and inducible NOS (iNOS) with distinct molecular structure and characteristics [217]. The constitutive,
calcium-dependent eNOS is responsible for NO production in platelets, which in turn inhibits platelet
activation and aggregation by increasing cGMP levels [218]. Increase in intraplatelet Ca++ [219] and
decrease of NO bioavailability [210] could explain, at least partially, the higher platelet aggregation
observed in hypertension.

Stimulated platelets release vascular endothelial growth factor (VEGF) [220], one of the most
potent angiogenic factors, and elevated VEGF levels have been found in patients with atherosclerotic
risk factors, including hypertension [221–223]. The association between sP-selectin and VEGF levels
corroborates the hypothesis that platelets are likely to be a relevant source of VEGF in hypertension;
in this setting, aspirin inhibits the agonist-induced platelet aggregation and also VEGF release [224].

Intracellular Ca++ and Na+ contents can modify membrane fluidity and microviscosity that,
in turn, can influence receptor functions or enzyme activities [225]. Indeed, arterial hypertension is
characterized by a number of structural and functional alterations of the cell membrane including
changes in membrane permeability, signal transduction, ion transport, receptor functions, because
of plasma membrane differential composition, which in turn might disturb the asymmetry of the
platelet plasma membrane [226,227]. Recently, structural and biochemical abnormalities in the platelet
membrane from hypertensive subjects have been confirmed by studies showing an overexpression of
the epithelial sodium channel [228] involved in the regulation of extracellular fluid volume and blood
pressure and dispensable in platelets for migration, alpha- and dense-granule secretion and platelet
collagen activation [211].

11. Conclusions

Platelets are key players in the thrombotic process in patients with metabolic abnormalities
associated with increased risk of CVD.

This review provides an overview of changes in platelet function occurring in metabolic
and hemodynamic disorders mainly characterizing the MS, all with an impact on the risk of CV
morbidity and mortality owing to atherothrombotic events. Many of impairments in platelets
converge on oxidative stress with release of oxidation products, which have a causal link to platelet
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hyperaggregability and hyperactivation. The excess of adipose tissue of the trunk and/or abdomen
has a strong impact on vascular complications, through the production of PMPs and mediators with
paracrine and endocrine actions, which influence platelet response. Platelet indices and biomarkers of
platelet activation may have useful clinical value through the whole journey of cardiometabolic diseases
for prediction and risk assessment of thrombotic risk. Different methodological approaches for platelet
(dys) function investigations are now available and each-one based on different operating principles.
However, few assays are able to assess “all in one device” platelet aggregation and activation pathways
and standardization and quality controls are still limited despite several efforts.

Insulin resistance, a condition frequently associated with obesity, with or without hyperglycemia,
dyslipidemia, and hypertension alters a number of distinct aspects of hemostasis responsible for
platelets more prone to aggregate to agonists and less responsive to platelet inhibitors. However,
weight reduction is a powerful measure to restore a physiological platelet function in obese subjects.
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