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Abstract: Constant remodeling of tight junctions to regulate trans-epithelial permeability is essential
in maintaining intestinal barrier functions and thus preventing diffusion of small molecules and
bacteria to host systemic circulation. Gut microbiota dysbiosis and dysfunctional gut barrier have
been correlated to a large number of diseases such as obesity, type 2 diabetes and inflammatory bowel
disease. This led to the hypothesis that gut bacteria-epithelial cell interactions are key regulators of
epithelial permeability through the modulation of tight junctions. Nevertheless, the molecular basis
of host-pathogen interactions remains unclear mostly due to the inability of most in vitro models
to recreate the differentiated tissue structure and components observed in the normal intestinal
epithelium. Recent advances have led to the development of a novel cellular model derived from
intestinal epithelial stem cells, the so-called organoids, encompassing all epithelial cell types and
reproducing physiological properties of the intestinal tissue. We summarize herein knowledge on
molecular aspects of intestinal barrier functions and the involvement of gut bacteria-epithelial cell
interactions. This review also focuses on epithelial organoids as a promising model for epithelial
barrier functions to study molecular aspects of gut microbiota-host interaction.

Keywords: intestinal epithelial organoids; small intestine; colon; gut microbiota; trans-epithelial
permeability; tight junction

1. Introduction

Mucosal surfaces, including the pulmonary tree, the genitourinary tract or the gastrointestinal
tract, are covered by a layer of epithelial cells forming the interface of the body with the external
environment [1]. The gastrointestinal mucosa is a semipermeable barrier allowing the absorption of
nutrients, whole body homeostasis regulation and immune sensing, while limiting the passage of
potentially harmful antigens and microorganisms from the intestinal lumen. This complex system
includes, from the luminal to the basolateral surface, the gut microbiota, the mucus layer, the epithelial
cell monolayer and immune cells in the lamina propria. The mucus layer and the epithelial cell
monolayer act as a physical barrier, which forbade bacterial adhesion and regulate trans-epithelial
diffusion of small molecules and bacteria to host systemic circulation. As for the lamina propria and
the submucosa, they organize the immune response to face the passage of commensal and pathogenic
microbes [2,3]. The regulation of trans-epithelial permeability is achieved by the tight junctions (TJ),
which mechanically link epithelial cells together. Gut bacteria-epithelial cell interactions have been
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suggested as key contributors of TJ remodeling and so of epithelial permeability. Of note, dysregulation
of the gut microbiota is tightly associated to the pathogenesis of several chronic diseases harboring
intestinal permeability alterations, such as obesity, type 2 diabetes (T2D) and inflammatory bowel
disease (IBD) [4–6]. This review proposes to briefly cover intestinal barrier components and functions
in obesity and to explore bacteria-host interaction in the regulation of intestinal barrier function.

2. Components of the Intestinal Barrier

2.1. Gut Microbiota

The term gut microbiota refers to the microorganism community residing in the gut lumen. Adult
gut microbiota harbors approximately 1013 bacterial cells [7] from more than 250 different species of
bacteria as well as fungi, viruses and archaea. Human gut bacteria are mainly from the Firmicutes (60 to
80%), the Bacteroidetes (20 to 40%), the Proteobacteria and the Actinobacteria phylum [8–11] however,
their relative abundances fluctuate according to the anatomical location and are highly variable among
individuals [12]. Although gut microbiota composition can rapidly be altered by drugs, diet and
other environmental factors, it is relatively resilient in the long term [13]. Host and gut microbiota
communities co-exist in a highly mutualistic relationship that has crucial impacts on health status [14].
In fact, the host needs the gut microbiota to support diverse gut and systemic physiological functions,
namely nutrient metabolism, maintenance of an optimal metabolic homeostasis and prevention of
intestinal colonization by pathogenic bacteria.

2.2. Intestinal Mucosa

The intestinal mucosa is the innermost layer of the intestinal tract. It includes the epithelium, an
underlying lamina propria of highly vascularized interstitial tissue, and the muscularis mucosae, which
provide support and mobility to the mucosa [1,2]. The intestinal mucosa is overlaid with a discontinuous
mucus layer that forms a highly organized glycoprotein network. Mucus is mainly composed of mucin
proteins, especially Mucin 2, secreted by specialized epithelial cells called Goblet cells. This gel-like
structure acts as a physical barrier, permeable to water and small molecules, limiting direct contact
between the contents of the gut lumen and epithelial cells [15]. It also displays antimicrobial properties
through the action of secreted antimicrobial peptides (i.e., defensins and IgA) but also represents
an important bacterial niche. The thickness and the composition of the mucus layer influences the
properties of this bacterial niche, whilst the bacteria can also impact the properties of the mucus
layer [16].

The intestinal epithelium is composed of a polarized cell monolayer of absorptive enterocytes,
Paneth cells, Goblet cells and enteroendocrine cells. It is the most crucial component of the physical
intestinal barrier separating the lamina propria from the lumen [3]. Junctions between epithelial cells,
established by the adherens junctions, must be strong but malleable to cope with the movements and
stretches of the intestinal tract. These junctions are also crucial to maintain epithelium polarity, which
allows the directional transport of nutrients and the secretion of enzymes and antimicrobial peptides
into the lumen.

2.3. Tight Junctions

Tight junctions consist of a network of transmembrane protein strands that interacting and link
laterally adjacent cells near the apical surface of the epithelium [17]. These transmembrane proteins
include large families of claudin proteins, TJ-associated MARVEL domain-containing proteins (TAMPs)
and junctional adhesion molecules (JAMs) as well as a variety of cytoplasmic adaptor and scaffolding
proteins [18].

Both cis- and trans-homophilic interactions of claudin proteins within the transcellular space
create a barrier or pores enabling selective ion permeability and thus are major determinants of
trans-epithelial transport [19]. At least 27 members of the claudin family have been identified, some
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with barrier functions for small molecules and others, such as claudin-2, with pore-forming properties
for ions and water [20]. Of note, the knockout of claudin 7 [21] or claudin 2 and 15 [22] members in
mice caused intestinal barrier disturbances. The TAMP protein family, i.e., occludins, tricellulin and
MarvelD3, are mainly involved in cis-homophilic interactions along the cell membrane. Their presence
appears as essential for TJ formation and maintenance; however, their precise roles remain unclear [23]
Single-span transmembrane protein members of the JAM family form a multitude of intracellular and
extracellular molecular interactions, which regulate TJ assembly and functions [24]. Combination and
spatial layout of these proteins allow tissue-specific TJ permeability as well as dynamic regulation of
the TJ properties to adapt to changing environmental conditions such as diet and microbiota.

TJ proteins are linked to the actin-based cytoskeleton through adaptor and scaffolding molecules.
These interactions are crucial to maintain gut epithelial integrity by detecting mechanical stress and
by coordinating changes in protein expression and assembly accordingly [25]. Scaffolding proteins
belonging to the zonula occludens family (ZO-1, ZO-2 and ZO-3) are the best-known multidomain
proteins. ZO-1 is essential in coordinating TJ formation and cell polarization as it establishes links between
most transmembrane TJ proteins (i.e., claudins, TAMPs and JAMs) and cytoskeleton components [26].

These complex multiprotein structures create an essential barrier against potentially harmful
pathogens and molecules in the lumen. TJ are highly dynamic and can adapt to the changing
environment. However, environmental, and cellular events may partially or completely disrupt the
intestinal barrier leading to chronically increased intestinal permeability and allowing intrusion of
harmful environmental components into systemic circulation. A dysfunctional barrier is a common
feature of obesity and T2D [27].

2.4. Intestinal Barrier Function in Obesity and T2D

Obesity is an important global health problem, which is associated with increased risk of
cardiometabolic complications, such as T2D [28]. These conditions share low-grade inflammation as
well as alterations in the intestinal barrier function. The compromised epithelial barrier arises from
changes in TJ protein expression or modifications of key intracellular and extracellular molecular
interactions facilitating the passage of potentially harmful bacterial antigens and microorganisms from
the intestinal lumen to systemic circulation [29].

Pro-inflammatory lipopolysaccharide (LPS) from some Gram-negative bacteria has been identified
as a key contributing factor in the initiation and the progression of low-grade inflammation in presence
of leaky gut [27]. Under normal conditions, the intestinal epithelium prevents LPS translocation, but
in diet-induced obesity (DIO) as well as in obesity and T2D mice model (db/db) higher circulating
LPS levels and low-grade inflammation in peripheral tissues are noted [30]. Moreover compared to
lean control mice, DIO and db/db mice showed a higher trans-epithelial permeability and a modified
distribution of ZO-1 in the intestinal mucosa [31]. Such alteration in gut permeability is accompanied
by a decreased expression of several TJ proteins, i.e., ZO-1, occludin [32,33]. In humans, upper
gastrointestinal tract trans-epithelial permeability, measured by urinary sucrose recovery, is elevated
in presence of obesity [34]. However, obesity may not be the most critical determinant of intestinal
barrier dysfunction as hyperglycemia strongly interfered with intestinal barrier integrity (i.e., decrease
ZO-1 mucosal staining and increased fluorescent-dextran absorption) in obese and T2D mice [35].
Hyperglycemia was established as a direct cause of intestinal barrier dysfunction as treatment of
this condition, but not obesity, rescued glucose-induced barrier alterations in mice [35]. Similarly,
inadequate glycemic control in humans has been associated with increased translocation of microbial
products in the circulation [35]. Intestinal permeability is also increased along with the severity of liver
steatosis in obese subjects [31,36]. These demonstrations underline that obesity-related complications
are closely associated with altered intestinal barrier functions. Although the precise mechanisms
linking metabolic complications to intestinal permeability remain unclear, the literature suggests an
active role of the gut microbiota.
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2.5. Gut Microbiota Dysbiosis

Gut bacterial communities have a high degree of plasticity and their composition can be affected
by numerous environmental and host factors such as diet, age, physiological state and genetic
background. Gut dysbiosis, characterized by an imbalance in the composition and activity of gut
microbial communities, has been associated with the development of several diseases [5,37]. Fecal
microbiota transfer and germ-free animal studies have established a causal link between gut microbiota
dysbiosis and diseases such as obesity and enteropathies [38,39]. Changes in the metabolic activity of
gut microbiota, such as its capacity to harvest energy from nutrients, may contribute to the establishment
of these diseases [40] but the role of more complex gut microbiota-host interactions are being explored.

It is often acknowledged that the relative abundance of the two main gut microbiota phyla, i.e.,
Bacteroidetes and Firmicutes, is altered in obesity such that the Firmicutes-to-Bacteroidetes ratio is
higher in obese subjects [41,42]. In fact, some studies found that Bacteroidetes are positively associated
with leanness and weight loss, whereas Firmicutes and Proteobacteria are generally positively associated
with low quality diet, obesity and metabolic complications [43,44]. Even though some of these findings
have been recently challenged, the contribution of gut microbiota in obesity-related complications is
undeniable and far more complex than a simple imbalance in phylum relative abundance [45,46].

The impact of specific genera and species within these microbial phyla are not necessarily consistent.
Indeed, the Lactobacillus genus, belonging to the Firmicutes phylum, has been associated with obesity
and T2D [47] while some species of this genus, i.e., Lactobacillus paracasei and Lactobacillus plantarum
appear to have a protective effect against weight gain [48,49]. Obesity and T2D have been associated
with a lower relative abundance of Bacteroides and Bifidobacterium genera as well as butyrate-producing
bacteria Faecalibacterium prausnitzii [50,51] and Roseburia intestinalis genera [52]. Interestingly, bariatric
surgery increased F. prausnitzii relative abundance concomitantly with an amelioration of glucose
homeostasis, low-grade inflammation and gut epithelial permeability in subjects with T2D [53,54].
This species is one of the main butyrate-producing bacteria, a key energy source for intestinal
epithelial cells [55]. Butyrate has been shown to reduce local inflammation and to improve gut barrier
permeability through several mechanisms among which mucin synthesis [56], TJ reassembly [57] or
occludin and ZO-1 up-regulation [58]. Bacteroides vulgatus and Bacteroides dorei, two species potentially
beneficial for T2D, have been shown to increase the expression of ZO-1 and to improve epithelial barrier
function [59]. These bacteria can produce bacteriocins, proteins that inhibit growth of specific bacteria,
which could participate in the development or reversal of dysbiosis by limiting the growth of harmful
strains [60]. Akkermansia muciniphila, a mucin-degrading strain belonging to the Verrucomicrobia
phylum, colonizes the intestinal mucus layer where it ameliorated intestinal barrier integrity directly
by promoting mucin production [61] and indirectly through interactions with other bacteria [62,63].
This species has consistently been associated with leanness, insulin sensitivity and lessened low-grade
inflammation [62,64]. Interestingly, either pasteurized or live A. muciniphila were able to reduce
gut barrier permeability and to improve glucose metabolism in obese mice [64,65]. Finally, the
relative abundance of the main LPS-producing Gram-negative bacteria is modified in obesity. Indeed,
imbalanced or dysbiotic gut microbiota tends to shift away from less potent Bacteroidetes LPS in favor
of more pro-inflammatory Proteobacteria LPS [66,67]. Increased pro-inflammatory endotoxin levels
in dysbiotic gut microbiota may in turn exacerbate the low-grade inflammatory state by increasing
trans-epithelial permeability, which facilitates translocation of even more pro-inflammatory LPS into
the circulation [63,68].

A tripartite interrelation between metabolic complications, intestinal barrier function and gut
bacteria seems to emerge from recent literature. Environmental and host diseases-related factors
impact both gut microbiota composition and intestinal barrier integrity. As described, bacteria and
gut microbiota-derived factors are also direct modulators of the intestinal barrier integrity. Yet, the
precise molecular bases of gut microbiota-host interaction remain unclear. Obtaining comprehensive
knowledge from relevant models of intestinal barrier function will be crucial to establish mechanisms



Int. J. Mol. Sci. 2020, 21, 6402 5 of 14

of interactions to develop strategies to resolve epithelial barrier dysfunctions and alleviate ensuing
metabolic complications.

2.6. Bacteria-Host Interaction and Intestinal Barrier Function

2.6.1. Intestinal Epithelial Organoids

Immortalized epithelial cell lines (e.g., Caco-2, HT-29 and T84) have permitted breakthrough
in gut mucosal physiology for decades but have several weaknesses and limitations [69,70]. Recent
advances have led to the development of a novel cellular model derived from intestinal epithelial
stem cells, the so-called epithelial organoids. These organoids are three-dimensional self-renewing
cellular structures embedded in extracellular matrix maintaining their organ-specific cell lineage [71].
Intestinal epithelial organoids reproduce villus-like structures and crypt-like proliferative zones, which
encompass all epithelial cell types [72]. Intestinal epithelial organoids can be derived from freshly
isolated intestinal crypts holding multipotent adult stem cells (ASCs) or from pluripotent stem cells
(PSCs) [71]. PSCs emanate either from embryonic stem cells (ESCs) or from patient somatic cells
which undergo reprogramming into a pluripotent state (iPSCs) [73]. These cultures a remarkably
stable, both phenotypically and genetically. Intestinal organoids have thus rapidly provided novel
knowledge on the pathophysiology of several enteropathies [74,75]. Interestingly, these polarized
epithelial cells establish functional TJ complexes [71,76] and secrete mucus onto the apical surface of
the epithelium [77,78], which confirms the added value of using epithelial organoids as a model to
study epithelial barrier functions in the gut.

Most anaerobic bacteria in the gut microbiota are not viable in the aerobic environment needed
to harvest intestinal cell lines, limiting interaction studies to bacterial lysates and conditioned media
rather than living bacteria. This limitation can be overcome using intestinal epithelial organoids as their
intraluminal space is sealed within the mucus layer, the epithelium and the extracellular matrix, which
allows for the establishment of slight hypoxia in the lumen (i.e., 5 to 15% of oxygen) [79]. Furthermore,
epithelial organoids include, by definition, only epithelial cells. The absence of immune and stromal
cells provides the opportunity to investigate direct bacteria-epithelial cell interactions.

Microinjection methods are needed to inoculate living aerotolerant or anaerobic bacteria in the
organoid lumen for a short period of time [79]. Studies using monoculture and complex bacterial
communities resulted in stable colonization to investigate gut bacteria-epithelial cell interaction [78,80,81].
While this approach is valuable and is the most widely used, it remains challenging due to equipment
and skills required for microinjection in organoid lumen (<250 µm). Alternative monolayer culture
methods allowing easy access to the apical surface of the epithelium were developed for large-scale
experiments. Monolayer and three-dimensional cultures are thus complementary and together represent
promising avenues to study cellular and molecular aspects of gut bacteria-epithelial cell interactions.

The next section reviews studies in which gut microbiota-host interactions were investigated
using intestinal epithelial organoids to identify the cellular and molecular mechanisms involved in
the regulation of epithelial barrier functions by gut bacteria. Table 1 details such studies. The use of
bacterial and viral infections in intestinal epithelial organoids described below can be used as a model
that could, at least in part, reflect gut microbiota-host interactions present in states of obesity-related
gut dysbiosis.

2.6.2. Clostridium difficile

Clostridium difficile is an anaerobic, Gram-positive, toxin-producing bacillus which is a major
infectious cause of nosocomial diarrhea [82]. The virulence of this emerging pathogen is mostly
conferred by two large proteins: C. difficile toxins A (TcdA) and C. difficile toxin B (TcdB) [83]. Both
toxins have potent glucosyltransferase activity leading to cytotoxicity.
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Table 1. Studies reporting gut microbiota-epithelial cell interactions using intestinal epithelial organoids.

Bacteria and Viruses Strain and Type Host and Segment Culture Method Study Outcome(s) Ref

Clostridium difficile 1870 Human iPSC Matrix-embedded ↓mucin production (mucin 2) [78]

VPII 10463 Human iPSC Matrix-embedded ↑ trans-epithelial permeability (TcdA toxin > TcdB toxin) Alteration of
ZO-1 and occludin expression [79]

Cryptosporidium parvum — Mouse Adult stem cells Matrix-embedded ↓ epithelial cell growth [84]

Escherichia coli

Non-pathogenic ECOR2 Human ESC Matrix-embedded

Colonization of the organoid lumen with E. coli
Regulates adherents junctions and other cell-cell interactions
↑ epithelial mucus secretion.
↓ IFN-γ-induced trans-epithelial permeability

[81]

Shiga toxin-producing O157:H7 Human iPSC Matrix-embedded ↓ epithelial barrier integrity [85]

Shiga toxin-producing O157:H7 Mouse iPSC Matrix-embedded ↑ TJ proteins (TJ protein 2, occludin and claudin-1) and mucin proteins
↑ trans-epithelial permeability [86]

Enterohemorrhagic EDL933 Human ASC Colon Monolayer ↓mucus production (mucin 2)
↓ protocadherin 24 protein and TJ proteins (Occludin). [87]

Lactobacillus
L. rhamnossus GG Human ASC small intestine Matrix-embedded ↑ occludin and ZO-1 expression

↓ IFN-γ-induced trans-epithelial permeability () [88]

L. reuteri D8 Mouse ASC small intestine Matrix-embedded ↑ intestinal epithelial cell proliferation
Decreases trans-epithelial permeability [89]

Salmonella entetica
Serovar Typhimurium 14028 Mouse ASC small intestine Matrix-embedded ↓ TJ complexes and TJ proteins (ZO-1 and occludin)

↑ claudin-2 protein [90]

Serovar typhimurium SL1344 Human iPSC Matrix-embedded Invades organoids epithelial barrier [91]

Shigella flexneri 2457T Human ASC small intestine Monolayer ↑mucus production (Muc2) [92]

Enteroviruses
CVB3, EV-71, E11 Human ESC Matrix-embedded

↑ cytotoxicity (Enterovirus E11)
↑misclocalization of occludin
↓ crypt morphology and integrity

[93]

A71 Human ESC Monolayer ↑ trans-epithelial permeability [94]

A71 Human ESC Monolayer ↓Mucin-1 and 2 production
No impact on epithelial barrier function [95]

iPSC: Induced pluripotent stem cells; ECS: Embryonic stem cells; ASC: Adult stem cells.
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Viable C. difficile were microinjected into the lumen of intestinal epithelial organoids and able to
persist for at least 12 h [79]. This illustrates the capacity of intestinal epithelial organoids to create a
slightly anaerobic niche allowing the culture of anaerobes, at least for a short period of time. Colonization
of the epithelial organoids with a toxigenic C. difficile strain triggered a complete disruption of the
epithelium. Loss of epithelial barrier function was accompanied by an important redistribution of the
TJ proteins ZO-1 and occludin as well as an important down-regulation of mucin 2 expression [78]. All
these effects were reproduced by microinjection of TcdA, but not of TcdB, in organoids.

C. difficile infection is also associated with increased mucosal levels of pro-inflammatory cytokines
(i.e., IFN-γ and TNF-α), which are capable of disrupting TJ and epithelial integrity in organoids as
for C. difficile toxins [96]. Host STAT5-dependent JAK2 signaling pathway is necessary to initiate the
production of anti-inflammatory cytokines and to promote intestinal epithelium repair. By taking
advantage of genetically modified organoids, Liu et al. demonstrated the involvement of a defective
JAK2-STAT5 signaling in the susceptibility to C. difficile infection. Indeed, constitutive activation of this
pathway is sufficient to restore the expression of TJ proteins and to maintain epithelium integrity in
organoids exposed to pro-inflammatory cytokines or C. difficile toxins [96].

In summary, these results demonstrate that viable bacteria can persist in the lumen of intestinal
epithelial organoids and that such coculture models can be valuable in the mechanistic study of interactions
between gut bacteria and intestinal epithelial barrier functions. Importantly, three-dimensional intestinal
organoids display a physiologically relevant response to C. difficile colonization, which facilitates
knowledge translation of the observed molecular and cellular events to in vivo situations.

2.6.3. Escherichia coli

Shiga toxin (Stx)-producing Escherichia coli, including the O157:H7 strain, are involved in the
development of acute bloody diarrheal diseases and are commonly associated with foodborne
outbreaks [97]. Developing effective interventions for diseases caused by Stx-producing E. coli is of
importance as such infections can lead to the development of life-threatening systemic complications
such as hemolytic uremic syndrome and kidney failure [98]. Until now, research lacked effective
experimental models to properly investigate human-restricted pathogens such as Shiga toxin-producing
E. coli.

Pradhan and al. investigated the impact of two major forms of Shiga toxins, i.e., Stx1 and Stx2a,
on gut barrier function using intestinal epithelial organoids [86]. Significant dose- and time-dependent
increases in trans-epithelial permeability were observed in organoids exposed to both types of Stx
toxins, either in the luminal and the basolateral compartments. Microinjection of the more potent toxin,
Stx2a, in human intestinal organoids triggered a paradoxical up-regulation of several key structural and
TJ proteins, i.e., ZO-2, occludin and claudin-1, as well as mucin 2 expression. To assess susceptibility
to Stx in vivo, human intestinal epithelial organoids were transplanted under the kidney capsule
of mice for two months, where they developed large mucous-filled lumens with native crypt-villus
architecture. Injection of Stx2a in the lumen of in vivo organoids caused blood accumulation in the
villi and mesenchyme of the transplants, epithelial damages and apoptosis [85].

In another study, human colonic epithelial organoids were cultured as monolayers to investigate
Shiga toxin-producing E. coli-epithelial cell interactions [87]. Four hours post-infection, mucin layer
thickness and mucin 2 labelling were significantly reduced, which allowed E. coli to directly interact
with the epithelium. Within 18 h, the infection induced an important redistribution of occludin from
the TJ complexes to the cytosol and a concomitant decrease of the trans-epithelial electrical resistance,
a marker of altered epithelial permeability. Thus, human intestinal epithelial organoids, either as a
monolayer, matrix-embedded or transplanted in mice, represent an interesting model to investigate
cellular and molecular aspects of pathogen-host interactions especially in the context of intestinal
barrier function.
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2.6.4. Lactobacillus rhamnosus GG

Probiotics are currently defined as “live microorganisms that, when administered in adequate
amounts confer a health benefit on the host” [99]. The beneficial role of probiotics relies on their ability
to impede gut pathogen colonization, to modulate host immune response and to enhance the intestinal
epithelial functions, among others [99,100].

Lactobacillus rhamnosus GG (LGG) is a probiotic originally isolated from the intestinal tract of a
healthy subject, which has been extensively used for its various health benefits. It has clinically been
shown to improve IBD symptoms and to maintain remission of ulcerative colitis [101]. Using organoids,
Han et al. investigated the protective role of LGG on epithelial barrier functions by incubating human
intestinal epithelial organoids with fecal supernatants of IBD patients or healthy subjects in the presence
or absence of LGG [88]. Intriguingly, fecal supernatants from IBD patients, but not from healthy
subjects, increased trans-epithelial permeability only in the absence of LGG supplementation. LGG
conditioned media restored epithelial barrier functions after a barrier disruption by pro-inflammatory
cytokines by normalizing TJ protein expressions, especially ZO-1 and occludin. Interestingly, only
secreted metabolites, and not bacterial cell wall or bacterial DNA, were able to prevent IFN-γ-induced
epithelial damages.

Identification of soluble factors mediating the effects of probiotics, or more generally of gut
bacteria, represent an opportunity to understand their mechanism of action as well as to develop
effective pharmacological strategies to circumvent issues posed using live bacteria. This study showed
the relevance of using intestinal epithelial organoid as a simplified, but highly relevant, in vitro model
to unravel the mechanisms involved in bacterial-epithelial cell interactions.

2.6.5. Viral Infections

Viral infection is the most frequent cause of gastroenteritis in humans, being involved in more than
60% of diarrhea symptoms [102]. Norovirus and rotavirus are highly prevalent in the gastrointestinal
tract, which spread through contaminated foods, surfaces or fecal-oral transmission. Viral replication
takes place within the gut lumen and requires direct interaction with the intestinal epithelium [103].
There is, to our knowledge, no study investigating the impact of viral infection on intestinal barrier
functions in organoid models. Nevertheless, it has been shown that intestinal epithelial organoids are
an excellent in vitro model to study rotavirus infections.

Absence of pharmaceutical prevention or treatment strategies for some virus, such as human
noroviruses (HuNoVs) is partly due to the lack of relevant in vivo and in vitro infection models.
Ettayebi et al. exploited human intestinal epithelial organoids as a monolayer culture to demonstrate
that HuNoVs can replicate in vitro [104]. Interestingly, these cultures also recapitulate genotype-specific
patterns of HuNoV susceptibility as cell cultures with the secretor positive genotype (Fucosyltransferase
2, FUT2) were more susceptible to viral infections than cultures isolated from secretor negative
individuals. This observation mirrors epidemiologic data suggesting that HuNoV infection is
dependent on the expression of genetically determined histoblood groups. Similarly, Yin and al.
demonstrated the ability of murine and human organoids to support rotavirus infections [105]. Indeed,
SA11 rotavirus replicons were detected in mice and human epithelial organoids 24 h post-incubation.
Viral infection was associated with increased INF-γ-mediated innate immune response of host cells.

These studies suggest that it is conceivable to take advantage of intestinal epithelial organoids
to investigate the impact of viruses on intestinal barrier functions. Patient-derived organoids can be
used to study the pathogenesis of gastroenteritis and to support development of new therapeutics.
Use of such organoids also revealed that the genetic and pathophysiological background of the stem
cell donors must be taken into consideration but can also represent a promising avenue to address
interindividual variability in gut microbiota-host interactions.
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3. Conclusions

Alterations in gut epithelial permeability and gut microbiota dysfunction are both tightly associated
to the pathogenesis of several chronic diseases, such as obesity and type 2 diabetes (T2D). Gut
bacteria-epithelial cell interactions have been suggested as a key contributor of epithelial permeability
in several segments of the gastrointestinal tract. In fact, several studies support the notion that
bacteria can regulate TJ expression and assembly, and thus regulate trans-epithelial permeability.
This review has discussed opportunities of using intestinal organoid as in vitro study models of gut
microbiota-epithelial cell interactions. While most studies have focused on human pathogens, the use
of bacterial and viral infections in intestinal epithelial organoids represents an excellent opportunity to
study the interactions of individual species or more complex bacterial communities with gut physiology
in states of gut dysbiosis. Comprehensive knowledge about the role of the gut microbiota on intestinal
barrier function from a highly relevant model, i.e., epithelial organoids, will be crucial in developing
strategies to resolve epithelial barrier dysfunctions in several non-infectious chronic diseases.
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