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Abstract: The normal cellular isoform of prion protein, designated PrPC, is constitutively
converted to the abnormally folded, amyloidogenic isoform, PrPSc, in prion diseases, which include
Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals.
PrPC is a membrane glycoprotein consisting of the non-structural N-terminal domain and the globular
C-terminal domain. During conversion of PrPC to PrPSc, its 2/3 C-terminal region undergoes marked
structural changes, forming a protease-resistant structure. In contrast, the N-terminal region remains
protease-sensitive in PrPSc. Reverse genetic studies using reconstituted PrPC-knockout mice with
various mutant PrP molecules have revealed that the N-terminal domain has an important role in the
normal function of PrPC and the conversion of PrPC to PrPSc. The N-terminal domain includes various
characteristic regions, such as the positively charged residue-rich polybasic region, the octapeptide
repeat (OR) region consisting of five repeats of an octapeptide sequence, and the post-OR region with
another positively charged residue-rich polybasic region followed by a stretch of hydrophobic residues.
We discuss the normal functions of PrPC, the conversion of PrPC to PrPSc, and the neurotoxicity of
PrPSc by focusing on the roles of the N-terminal regions in these topics.

Keywords: prion protein; prion; prion disease; neurodegeneration; protein conformation

1. Introduction

Conformational conversion of the normal cellular isoform of prion protein, designated PrPC, to the
abnormally folded, amyloidogenic isoform, PrPSc, is a key pathogenic event in prion diseases, a group
of fatal neurodegenerative disorders that include Creutzfeldt–Jakob disease (CJD) in humans, scrapie in
sheep, bovine spongiform encephalopathy (BSE) in cattle, and chronic wasting disease in deer [1–4].
These diseases are pathologically characterized by neuronal cell loss, spongiform degeneration, gliosis,
and PrPSc accumulation in the brain [5]. Prions, or proteinaceous infectious particles, are the causative
agents of these diseases [6,7]. It is believed that prions consist of, if not entirely, PrPSc molecules,
and catalyze conformational conversion of PrPC to PrPSc through a seeded protein polymerization
mechanism, eventually propagating PrPSc or prions themselves [6,7]. Indeed, it has been shown that
mice devoid of PrPC (Prnp0/0) are resistant to prion infection, neither propagating prions nor PrPSc in
their brains nor developing disease even after intracerebral inoculation with prions [8–11].

PrPC is a highly conserved, glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein
among mammalian species [12]. It is expressed most abundantly in the central nervous system,
particularly by neurons, and to a lesser extent in other non-neuronal tissues, such as the lymphoreticular
system, lung, and kidney [13]. PrPC consists of two domains; the highly flexible, nonstructural
N-terminal (residues 23–120) and the globular C-terminal (residues 121–231) [14–16] (Figure 1A).
The globular C-terminal domain is composed of three α-helices and two short anti-parallel ß-sheets.
Upon conversion to PrPSc, PrPC undergoes marked structural changes in its 2/3 C-terminal region to
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form a proteinase K (PK)-resistant structure, while most regions of the N-terminal domain remain
PK-sensitive [13]. Reverse genetic studies using reconstituted Prnp0/0 mice and various mutant PrP
molecules have revealed that the N-terminal domain has an important role not only in the normal
function of PrPC but also in the conversion of PrPC to PrPSc. The N-terminal domain includes several
characteristic regions, such as the so-called polybasic region (residues 23–31), which is rich in positively
charged residues, the octapeptide repeat (OR) region (residues 51–90) consisting of five repeats of an
octapeptide sequence, and the post-OR region (residues 91–120) including the second polybasic region
followed by a stretch of hydrophobic amino acid residues [1–4] (Figure 1A). Here we discuss the role
of each N-terminal region in the normal function of PrPC, the conversion of PrPC to PrPSc, and the
neurotoxicity of PrPSc.

2. The N-Terminal Domain in the Function of PrPC

2.1. Biosynthesis of PrPC

The gene for PrPC, termed Prnp, in human and mouse consists of 2 and 3 exons and resides on
chromosome 20 and 2, respectively. The protein coding sequence lies within the last single exon [17,18].
PrPC is synthesized as a precursor protein in the endoplasmic reticulum (ER). The N-terminal and
C-terminal sequences, which are rich in hydrophobic residues, are removed as a signal peptide
sequence and a GPI-anchor signal sequence, respectively, in the ER (Figure 1A) [17,18]. PrPC also
undergoes several post-translational modifications en route to the cell surface, including a GPI anchor
attachment at the C-terminus, N-glycosylation at two sites, and formation of a disulfide bond in
the C-terminal domain (Figure 1A) [19–24]. On the cell surface, PrPC is predominantly localized at
the so-called “raft” domains and constitutively internalized via clathrin- and caveolae-dependent
endocytosis (Figure 1B) [25–27]. Some of the internalized PrPC molecules are recycled to the cell surface
and others are trafficked to lysosomes for degradation (Figure 1B) [28,29].
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Figure 1. Structure and biosynthesis of PrPC. (A) Structural configuration of PrPC. Arabic numbers
indicate positions of amino acids. (B) Biosynthetic pathways of PrPC, including the vesicle transport
pathway from the ER to the plasma membrane, particularly raft domains, and the clathrin- or
caveolae-dependent endocytic pathway, which connects to recycling pathway or degradation pathway
to lysosomes.
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Copper is known to bind to the OR region and induce the clathrin-dependent internalization
of PrPC [30]. It has been suggested that copper binding could cause conformational changes in the
OR region and thereby dissociate PrPC from conjectural molecules located at raft domains, and that
dissociated PrPC then moves to non-raft domains, where it interacts with other conjectural non-raft
molecules through the N-terminal polybasic region to be endocytosed via clathrin-coated vesicles [30].
We have shown that sortilin, a type 1 glycoprotein in the vacuolar protein sorting 10 protein family,
interacts with the N-terminal domain of PrPC and functions as a sorting receptor for lysosomal
degradation of PrPC [31]. Sortilin also interacts with PrPSc and facilitates its lysosomal degradation [31].
We also have shown that sortilin-knockout mice develop prion disease with shorter incubation times
and rapid brain accumulation of PrPSc after inoculation with prions, compared to control wild-type
(WT) mice [31], suggesting that the sortilin-mediated trafficking of PrPC and PrPSc to lysosomes could
be a host defense mechanism in prion diseases. Low-density lipoprotein receptor-related protein 1
has also been reported as a cargo receptor for PrPC for transport from the Golgi apparatus to the cell
surface and from the cell surface to endosomes [32].

2.2. Various Abnormal Phenotypes Are Spontaneously Observed in Prnp0/0 Mice

Prnp0/0 mice are born with no obvious defects, indicating that PrPC could be dispensable for
embryonic development [11,33,34]. However, various neurophysiological and neuropathological
abnormalities have been reported in Prnp0/0 mice, including poor performance in certain behavioral
tests [35], impaired long-term potentiation (LTP) in the hippocampal CA1 neurons [36], altered sleep
and circadian rhythms [37], demyelination in spinal cords and peripheral nerves [38], and abnormal
olfactory function [39,40]. These results suggest that PrPC is involved in various neuronal functions.
However, normal LTP in Prnp0/0 mice has been reported by other investigators [41].

2.3. The OR Region in the Cell-Protective Role of PrPC

We and others have shown that Prnp0/0 mice are vulnerable to ischemic brain, heart, or kidney
damage, displaying higher apoptotic cell death and higher oxidative stress in the damaged
tissues [42–46]. We also recently reported that Prnp0/0 mice are highly sensitive to infection with
influenza A viruses (IAVs), showing higher morbidity and mortality with higher inflammation,
higher apoptotic cell death, and higher oxidative stress in their lungs [47]. Treatment with a scavenger
for reactive oxygen species (ROS) or an inhibitor for ROS-generating xanthine oxidase rescued Prnp0/0

mice from lethal IAV infection [47]. In contrast, PrP molecules lacking the OR region failed to
protect Prnp0/0 mice from lethal IAV infection and ischemic brain damage [47,48]. These results
suggest that PrPC could play a cell-protective role against oxidative stress through the OR region.
The OR region is known to bind copper [49]. Indeed, the copper content and enzymatic activity of
copper/zinc-dependent superoxide dismutase (SOD) were lower in Prnp0/0 lungs and brains than
in control WT tissues [47,49]. It is thus possible that PrPC could function as a transporter of the
OR region-bound copper to copper/zinc-SOD, thereby regulating enzyme activity and eventually
protecting from oxidative stress. It was reported that PrPC itself might have SOD-like activity [50].
However, other investigators have failed to detect SOD activity in PrPC in vitro and in vivo [51,52].

The OR region is also suggested to be involved in other cell-protective mechanisms of PrPC.
Overexpression of PrPC, but not an OR-lacking PrP molecule, was shown to protect against
Bax-mediated apoptosis in human primary neurons [53], suggesting that PrPC could function as
an anti-apoptotic molecule through the OR region. Oh et al. also reported that autophagy was activated
in Prnp0/0 hippocampal neuronal cultured cells under serum deprivation, and that expression of PrPC

prevented the activation of autophagy in the cells, but an OR-deleted PrP mutant did not [54], suggesting
that PrPC could regulate autophagy activity in neuronal cells through the OR region. It remains to be
determined if these functions of PrPC are attributable to the activation of copper/zinc-SOD.
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2.4. The Polybasic Region in the Function of PrPC

The polybasic region is also suggested to be involved in the anti-oxidative activity of PrPC.
Oxidative stress was shown to enhance cleavage of PrPC, releasing the N-terminal fragment, termed N2,
which encompasses residues 23–89 including the polybasic region [55], and the N2 fragment protected
neuronal cells against oxidative stress through stimulation of MEK1 signaling [56]. Two proline
residues in the polybasic region were shown to be important for the N2-mediated anti-oxidative
activity [55]. Other roles have also been reported for the polybasic region including that it is involved in
mediating the interaction of PrPC with tubulin or glycosaminoglycan [57–60], the ß-secretase-mediated
cleavage of the Alzheimer’s amyloid precursor protein [61], and DNA repair [62].

3. The N-Terminal Domain of PrPC in Prion Disease

3.1. The Polybasic Region in Prion Disease

Reconstituted Prnp0/0 mice by transgenic introduction of a mutant PrP with a deletion of the
polybasic region residues 23–31, designated Tg(PrP∆23–31)/Prnp0/0 mice, were shown to develop prion
disease with markedly elongated incubation times and delayed accumulation of PrPSc∆23–31 in their
brains after inoculation with RML scrapie prions (Table 1) [63]. PrPSc∆23–31 accumulated in the
brains of Tg(PrP∆23–31)/Prnp0/0 mice showed similar resistance to PK to WT PrPSc [63], suggesting
that the polybasic region does not affect the PK-resistance of PrPSc. These results suggest that the
polybasic region could play a crucial role in the pathogenesis of prion diseases. We have shown that
Tg(PrP∆25–50)/Prnp0/0 mice developed disease without elongated incubation times after infection with
RML and 22L prions (Table 1) [64], suggesting that the remaining residues 23 and 24 in PrP∆25–50
could be enough for the polybasic region to support prion pathogenesis. However, it was reported
that incubation times were only slightly longer or not elongated at all in Tg(PrP∆23–26)/Prnp0/0 mice
after infection with 127S and LA19K scrapie prions and BSE prions (Table 1) [65]. PrP∆23–26 includes
intact residues 27–31, but lacks residues 23 and 24 in the polybasic region. It is thus possible that the
polybasic region might require that both residues 23–24 and 27–31 are intact to fully support prion
pathogenesis [64]. Consistent with this idea, mutations of lysine residues at positions 24 and 27 together
with a mutation of an arginine residue at position 25 rendered ovine PrP highly resistant to 127S and
LA19K scrapie prions and BSE prions (Table 1) [65]. We also showed that Prnp0/0 mice transgenic
for mouse PrP with substitutions of lysine residues at positions 23, 24, and 27 to alanine residues,
or PrP3K3A, markedly reduced their susceptibility to RML and 22L scrapie prions (Table 1) [66],
suggesting that positively charged residues in residues 23–24 and 27–31 could be important for
the polybasic region to support prion pathogenesis. No PK-resistant PrP3K3A was spontaneously
produced in the brain of uninfected Tg(PrP3K3A)/Prnp0/0 mice [66], suggesting that mutations in the
polybasic region might not cause structural changes in mutant PrPs.

Table 1. Effects of various mutations in the polybasic region of PrPC on acquired prion diseases.

Disease Type PrPs
Amino Acid Sequence of

the Polybasic Region
(Residues 23–31) 1

Susceptibility to Prions References

Acquired prion
disease WT PrP KKRPKPGGW • Normal.

PrP∆23–31 − − − − − − − − − •Markedly reduced to RML scrapie prions. [63]
PrP∆25–50 KK− − − − − − − •Not reduced to RML and 22L scrapie prions [64]

PrP∆23–26 − − − −KPGGW • Only slightly or not reduced to 127S and
LA19K scrapie prions and BSE prions. [65]

PrP-M KQHPHPGGW •Markedly reduced to 127S and LA19K
prions and BSE prions [65]

PrP3K3A AARPAPGGW •Markedly reduced to RML and 22L
scrapie prions. [66]

1 Amino acids are indicated by single letters. Underline letters indicate amino acids mutated.
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3.2. The OR Region in Prion Disease

Insertion of various numbers of an OR sequence, ranging from one to nine, and deletion of one OR
sequence in the OR region have been identified in patients with hereditary CJD [67]. Brain homogenates
from patients with five, seven, or eight extra OR sequences in PrP can transmit the disease to animals
after intracerebral inoculation [68]. This suggests that disruption of the integrity of the OR region
by the insertion or deletion of the OR sequence could cause structural instability of mutated PrPs,
ultimately leading to their spontaneous conversion to pathogenic, infectious PrPs. We failed to detect
PK-resistant PrP in the brains of Tg(PrP∆OR)/Prnp0/0 mice, which express PrP with a deletion of the
OR region alone (Table 2) [69,70], suggesting that spontaneous conversion of mutated PrPs with extra
OR sequences to PK-resistant PrPs could be due to gain-of-function, but not due to loss-of-function,
of the mutated OR region. Consistent with this, Tg(PG14)/Prnp0/0 mice, which express a PrP mutant
with nine extra OR sequences in the OR region, developed spontaneous cerebellar neurodegeneration
including granule cell death, with very slight but substantial accumulation of PK-resistant PrPScPG14
in their brains (Table 2) [71,72]. However, PrPScPG14 had no prion infectivity in animal bioassays
(Table 2) [73]. Also, transgenic expression of bovine PrP with four extra OR sequences, or bo10OR-PrP,
caused a slowly progressive neurological disorder with ataxia, vacuolization, gliosis, and cerebellar
granule cell loss in Prnp0/0 mice (Table 2) [74]. Insoluble and slightly PK-resistant 10OR-PrPSc molecules
accumulated in their brains, but no prion infectivity was found associated with the insoluble 10OR-PrPSc

(Table 2) [74]. These results indicate that PrPPG14 and bo10OR-PrP spontaneously convert to PrPScPG14
and 10OR-PrPSc, respectively, with structural features shared with PrPSc that are responsible for the
neurotoxicity but not prion infectivity. These results also suggest that the structural features of PrPSc

that contribute to its neurotoxicity and prion infectivity are not identical.

Table 2. Effects of various mutations in the OR region of PrPC on hereditary and acquired prion diseases.

Disease Type PrPs Number of the OR
Sequence Clinicopathological Features References

Hereditary prion
disease PG14 14 1

• Spontaneously develop cerebellar
neurodegeneration.
• Accumulate very slightly but substantially
PK-resistant PrPScPG14 in the brain.
•No prion infectivity associated with PrPScPG14.

[71–73]

Bo10OR-PrP 10 2

• Spontaneously develop cerebellar
neurodegeneration.
• Accumulate insoluble and slightly PK-resistant
10OR-PrPSc in their brains.
• No prion infectivity associated with
10OR-PrPSc.

[74]

Disease Type PrPs Number of the OR
Sequence Susceptibility to Prions References

Acquired prion
disease PrP∆OR 0 1 • Reduced to BSE prions, but not to RML and

22L scrapie prions. [70]

Bo7OR-PrP 7 2 • Increased to BSE prions. [75]
Bo10OR-PrP 10 2 • Increased to BSE prions. [74]

PrP(TetraH>G)
5 1 (with 4 histidine
residues mutated to

glycine residues)
• Reduced to RML prions. [76]

1 Normal mouse PrPC contains 5 repeats of the OR sequence. 2 Normal bovine PrPC contains 6 repeats of the
OR sequence.

The OR region is also involved in prion infection. We have shown that Tg(PrP∆OR)/Prnp0/0

mice are highly resistant to BSE prions (Table 2) [70]. They developed the disease with markedly
elongated incubation times with delayed accumulation of PrPSc∆OR in their brains after inoculation
with BSE prions (Table 2) [70]. Consistent with our results, an increasing number of OR insertions
contrarily enhances BSE pathogenesis in mice. Prnp0/0 mice expressing bovine PrP with one extra OR
sequence had shortened incubation times when compared with Prnp0/0 mice expressing WT bovine PrP,
or bo6OR-PrP, after infection with BSE prions (Table 2) [75]. BSE-inoculated Tg(bo10OR-PrP)/Prnp0/0

mice were also shown to have further shortened incubation times when compared to BSE-inoculated
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Tg(bo6OR-PrP)/Prnp0/0 mice (Table 2) [74]. These results suggest that the OR region could play a
crucial role in BSE prions during the conversion of PrPC to PrPSc. In contrast, Tg(PrP∆OR)/Prnp0/0

mice remained susceptible to RML and 22L scrapie prions, developing the disease without elongated
incubation times with slightly less PrPSc∆OR in their brains after infection with RML and 22L
prions (Table 2) [70], suggesting that the OR region might be involved in prion pathogenesis in a
strain-dependent manner. However, Prnp0/0 mice expressing PrP with histidine residues in the OR
region replaced by glycine residues, termed PrP(TetraH>G), showed significantly prolonged incubation
times after infection with RML prions (Table 2) [76]. Further studies are needed to clarify whether or
not the OR region might mediate strain-dependent prion pathogenesis.

3.3. The Post-OR Region in Prion Diseases

Three mutations in the post-OR region, including P102L (substitution of a proline residue to
a leucine residue at position 102), P105L (substitution of a proline residue to a leucine residue at
position 105), and A117V (substitution of an alanine residue to a valine residue at position 117),
are associated with inherited human prion diseases [67], suggesting that the post-OR region also
plays a role in prion diseases. Tg(PrP-P101L) mice, which express high levels of mouse PrP-P101L,
the analogous mutation to human PrP-P102L, have been shown to spontaneously develop prion
disease-like diseases, with amyloid plaques, spongiform degeneration, and gliosis in their brains
(Table 3) [77]. Brain homogenates from ill Tg(PrP-P101L) mice transmitted the disease to 40% of
Tg(PrP-P101L) mice, which never spontaneously developed disease due to lower expression of the
mutant protein, and 10% of hamsters, but not to WT CD-1 mice, after intracerebral inoculation
(Table 3) [78], indicating that PrPSc-P101L could be infectious. Tg mice expressing mouse PrP-A116V
(the human homologue of PrP-A117V) at six times the endogenous levels of PrPC also spontaneously
developed progressive ataxia with vacuolation and PrP amyloid plaques in their brains (Table 3) [79].
The PrP molecules from Tg(PrP-A116V) brains were partly insoluble and weakly protease-resistant
(Table 3) [79]. No data are available regarding whether PK-resistant PrP-A116V is infectious.

The post-OR region could be also involved in prion infection. Tg(PrP∆32–80)/Prnp0/0 mice
developed disease without elongation in incubation times and accumulated PrPSc∆32–80 in their brains
after infection with RML prions (Table 3) [80], suggesting that residues 32–80 are dispensable for PrPC

to convert to PrPSc after prion infection. However, Tg(PrP∆32–93)/Prnp0/0 mice, which express PrP with
a deletion extending to the post-OR region at position 93 from the OR region at position 88, developed
disease with longer incubation times and with lower levels of infectivity and PrPSc∆32–93 in their
brains after infection with RML prions (Table 3) [81]. Moreover, PrP with a deletion further extending
to the post-OR region at position 106, or PrP∆32–106, neither converted to PrPSc nor supported prion
pathogenesis in Prnp0/0 mice after intracerebral inoculation with RML prions (Table 3) [82]. These results
suggest that the post-OR residues 91–106, which are completely deleted in PrP∆32–106 and partially in
PrP∆32–93, but intact in PrP∆32–80, could have a crucial role in prion infection. However, it remains to
be determined if the resistance of Tg(PrP∆32–106)/Prnp0/0 mice to RML prions could be due to deletion
of the post-OR residues 91–96 alone or together with deletion of other residues.

Table 3. Effects of various mutations in the post-OR region of PrPC on hereditary and acquired prion diseases.

Disease Type PrPs The Post-OR Sequence Clinicopathological Features References

Hereditary prion
disease PrP-P101L

Proline residue at
position 101 mutated to

leucine residue in
mouse PrP

• Spontaneously develop prion
disease-like diseases.
• Accumulate weakly protease-resistant
PrP-P101L in the brain.
• Accumulate prion infectivity associated
with weakly protease-resistant PrP-P101L.

[77,78]

PrP-A116V

Alanine residue at
position 116 mutated to

valine residue in
mouse PrP

• Spontaneously developed prion
disease-like diseases.
• Accumulate partly insoluble and weakly
protease-resistant PrP-A116V in the brain.
• No data available as to infectivity
associated with protease-resistant PrP-A116V.

[79]
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Table 3. Cont.

Disease Type PrPs The Post-OR Sequence Susceptibility to Prions References

Acquired prion
disease PrP∆32–80 Intact • Fully susceptible to RML scrapie prions. [80]

PrP∆32–93 The post-OR residues
91–93 deleted • Partially reduced to RML scrapie prions. [81]

PrP∆32–106 The post-OR residues
91–106 deleted • Resistant to RML scrapie prions. [82]

4. The N-Terminal Domain in Conversion of PrPC to PrPSc

The first step for conversion of PrPC to PrPSc is an intermolecular interaction between both
molecules. The polybasic region has been suggested to be involved in the binding of PrPC and/or PrPSc

to the extracellular matrix proteins glycosaminoglycans through the positively charged residues [58–60].
It is thus possible that the polybasic region might promote interaction between PrPC and PrPSc by
recruiting both molecules to glycosaminoglycans, thereby supporting conversion of PrPC to PrPSc

(Figure 2A). The polybasic region has also been suggested to mediate a direct interaction between PrPC

and PrPSc, thereby promoting the conversion of PrPC to PrPSc [63] (Figure 2B).
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Figure 2. Possible roles of the N-terminal regions in the conversion of PrPC into PrPSc. Upon conversion
of PrPC into PrPSc, PrPC might interact with PrPSc through glycosaminoglycans (A) or through the
polybasic and OR regions (B). (C) The polybasic and OR regions are also involved in endocytosis of PrPC

to endosomal compartments, where PrPC is considered to convert into PrPSc. Extra OR sequences in the
OR region (D) and point mutations in the post-OR region (E) might render mutated PrPs structurally
unstable, ultimately leading to their spontaneous conversion to pathogenic PrPs.

The next step for conversion is a structural unfolding of the interacting PrPC. PrPC is rich in α-helix
structures and soluble in non-ionic detergents [83]. In contrast, PrPSc is abundant in ß-sheet structures
and insoluble in non-ionic detergents, forming fibrils [83], suggesting that structural transition of
α-helices to ß-sheets in PrPC is an underlying mechanism of the conversion to PrPSc. Several structural
models have been proposed for PrPSc fibrils. The 4-rung ß-solenoid model postulates that a PrPSc

fibril consists of two intertwined protofilaments of PrPSc molecules [84,85]. In this model, single PrPSc

molecules adopt a solenoid structure of four rungs, each rung including three ß-strands, running
perpendicular to fibril axis, stacking each other. The upper and lower ß-solenoid rungs of PrPSc
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protofibrils could template an incoming unfolded PrPC molecule to create additional ß-solenoid rungs.
Once a new ß-solenoid rung has formed, it continues to template until the unfolded PrPC molecule
is completely converted to PrPSc conformer. In the parallel in-register intermolecular ß-sheet model,
single PrPSc molecules comprise the entire cross-section of a fibril, with many hairpins defined by
natural and artificial disulfide bonds [86,87]. They are stacked parallel in-register and perpendicular
to the fibril axis by forming intermolecular ß-sheet interactions between them. Endocytic/lysosomal
compartments are considered to be a site for conversion of PrPC to PrPSc [88,89], suggesting that acidic
conditions in the endosomal/lysosomal compartments might promote the structural unfolding of PrPC.
The polybasic and OR regions are involved in endocytosis of PrPC [30,90]. It is thus possible that
these regions might play a role in conversion of PrPC to PrPSc by mediating endocytosis of PrPC to
acidic endocytic/lysosomal compartments (Figure 2C). Insertion of extra OR sequences in the OR
region or mutations in the post OR region are associated with spontaneous conversion of mutated
PrPs to pathogenic PrPs, causing hereditary prion diseases in humans [67], suggesting that structural
instability of the OR region or in the post-OR region might also be involved in the unfolding of the
mutant PrPs (Figure 2D,E). Indeed, recombinant human PrPs with three or five extra OR sequences
have been reported to spontaneously form aggregates [91]. Copper binding to recombinant mouse
PrP was reported to cause novel intramolecular interactions, including those between the N-terminal
residues 90–120 and the C-terminal residues 144–147 and its nearby residues 139–143, and between the
N-terminal region comprising the OR region and the C-terminal residues 174–185 [92], suggesting that
copper binding might also be involved in the unfolding of PrPC. Copper is able to bind to histidine
residues located in the OR and post-OR regions [76]. We have shown that, while Tg(PrP∆OR)/Prnp0/0

mice were highly resistant to BSE prions, they still remained susceptible to RML and 22L prions [70],
suggesting that copper binding to histidine residues in the OR region might be irrelevant to the
unfolding of PrPC. Indeed, it has been shown that histidine residues in the post-OR could be important
for conversion of PrPC to PrPSc in acidic conditions [93].

5. The N-Terminal Domain and Neurotoxic PrP Molecules

The neurotoxic mechanism of PrPSc remains largely unknown. However, there have been several
reports of neurotoxic PrP molecules causing prion disease-like neurodegeneration, giving rise to an
interesting possibility that these neurotoxic PrP molecules might share their neurotoxic mechanism
with PrPSc. In addition to a GPI-anchored extracellular form of PrPC, another form of PrP, termed
CtmPrP, has been reported [94]. CtmPrP is a transmembrane form of PrP, with the N-terminus
facing the cytoplasm and the C-terminus exposed extracellularly. Increased hydrophobicity in the
post-OR region by mutations that cause residues to become hydrophobic, including the mutation
in hereditary prion disease (A117V), increase the ratio of CtmPrP to total forms of PrP molecules in
neuronal cells [94]. Interestingly, transgenic mice expressing these mutant PrPs spontaneously develop
prion disease-like neurodegeneration with focal vacuolar degeneration in the neuropil and astrocytic
gliosis [94]. Moreover, the ratio of CtmPrP was also reported to increase in the brains of mice infected
with prions [95]. These results suggest that CtmPrP might be responsible for neurodegeneration in
prion diseases. However, CtmPrP from transgenic mice is not infectious [94].

Other neurotoxic PrP molecules have also been reported. It was shown that Prnp0/0 mice
transgenic for PrP with a deletion of the N-terminal residues 32–121 or 32–134, which includes the OR
region and a section of the post-OR region, spontaneously developed cerebellar neurodegeneration,
with marked granule cell death [96]. Other investigators also showed that Prnp0/0 mice expressing
a PrP molecule, designated ∆CR, that harbors a deletion of residues 105–125, developed cerebellar
neurodegeneration [97], suggesting that deletion of the post-OR residues 105–125 alone could be
responsible for the neurodegeneration in Prnp0/0 mice expressing PrP∆21–121 and PrP∆32–134.
Interestingly, the neurotoxicity of these mutant PrPs in Prnp0/0 mice is abrogated by co-expression of
WT PrPC [96,97], suggesting that, while the toxic PrP molecules generate a neurotoxic signal, WT PrPC

transduces a neuroprotective signal to antagonize the neurotoxic signal of the mutant PrPs. It was
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shown that, in contrast to PrP∆32–134, PrP∆23–134 was not neurotoxic in Prnp0/0 mice, suggesting
that the polybasic region residues 23–31, which remain intact in toxic PrP∆32–134 but not in non-toxic
PrP∆23–134, are critical for the neurotoxicity of mutant PrPs [98,99]. Patch-clamp electrophysiological
experiments revealed that ∆CR induced abnormal spontaneous ionic currents in various cultured cells
and neurons through the polybasic region, and that these currents were suppressed by co-expression
of WT PrPC [100,101], suggesting that the abnormal ionic currents might be the neurotoxic signal of the
mutant PrPs. It would be thus worthy to investigate whether PrPSc could generate similar abnormal
currents in neurons.

6. Conclusions

It has been shown that the non-structural, flexible N-terminal domain, which includes various
specific regions such as the polybasic region, OR regions, and post-OR region, has a role in not
only the normal function of PrPC but also in the pathogenesis of prion diseases through regulation
of the conversion of PrPC to PrPSc and the neurotoxicity of PrPSc. Further elucidation of the exact
mechanism of how each of the N-terminal regions could regulate the normal function of PrPC and prion
pathogenesis would be of great help for understanding the function of PrPC and prion pathogenesis,
and eventually for developing therapeutics for prion diseases.
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