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Abstract: Physical exercise (PE) improves physical performance, mental status, general health, and
well-being. It does so by affecting many mechanisms at the cellular and molecular level. PE is
beneficial for people suffering from neuro-degenerative diseases because it improves the production
of neurotrophic factors, neurotransmitters, and hormones. PE promotes neuronal survival and
neuroplasticity and also optimizes neuroendocrine and physiological responses to psychosocial and
physical stress. PE sensitizes the parasympathetic nervous system (PNS), Autonomic Nervous System
(ANS) and central nervous system (CNS) by promoting many processes such as synaptic plasticity,
neurogenesis, angiogenesis, and autophagy. Overall, it carries out many protective and preventive
activities such as improvements in memory, cognition, sleep and mood; growth of new blood vessels
in nervous system; and the reduction of stress, anxiety, neuro-inflammation, and insulin resistance.
In the present work, the protective effects of PE were overviewed. Suitable examples from the current
research work in this context are also given in the article.

Keywords: Alzheimer’s disease; anti-inflammation; antioxidant; Irisin; neurodegenerative diseases;
Parkinson’s disease; physical exercise

1. Introduction

Neuroprotection broadly means the prevention of neuronal cell death by intervening and inhibiting
the pathogenetic process that causes cellular dysfunction and death. The concept of neuroprotection
has attracted significant interest among the scientific world in the search for novel therapies that can
help preserve brain tissue and improve overall outcome [1]. Aging is the most important risk factor
for the majority of neurodegenerative diseases (like Alzheimer’s and Parkinson’s disease)in elderly
individuals [2,3]. Alzheimer’s disease (AD) prevalence in individuals aged ≥95 years in the USA is
~50% [4] and Parkinson’s disease (PD) affects 2–3% of individuals aged ≥65 years [5]. Epidemiological
studies have found that physical activity reduces the risk of AD and dementia by 45% and 28%,
respectively [6].

Based on previous studies [7,8], PE has received greater attention as a potential disease-modifying
treatment approach [9]. PE has been described as a non-drug therapy against numerous diseases
like neurological diseases, metabolic diseases, psychiatric diseases, and cardiovascular diseases [10].
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For example, Lu et al. examined the beneficial effect of treadmill exercise upon cognitive function
in a streptozotocin (STZ)-induced AD rat model.Treadmill exercise significantly inhibited neuronal
apoptosis in the rat hippocampal CA1 region [11]. Tang et al. demonstrated treadmill exercise induced
angiogenesis possibly by upregulating MT1-MMP expression, thereby providing protection against
cerebral ischemia in rats [12]. Data from in vivo studies and human patients with neurodegeneration
have proved that exercise improves cognitive performance [13,14]. With the major advances in
molecular techniques, researchers have identified various molecules that are induced by PE [15] such
as increased superoxide dismutase (SOD), brain-derived neurotrophic factor (BDNF), endothelial nitric
oxide synthase (eNOS), insulin-like growth factor (IGF), vascular endothelial growth factor (VEGF),
and nerve growth factor (NGF) and decreased harmful free radicals production in hippocampus region
of brain, which are mainly involved in memory [16]. Thus, PE brings about many interrelated positive
effects in the brain, which have been summarized in Figure 1.
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Figure 1. Effects of exercise on the human brain.

PE is known to slow down the process of such neurodegeneration. Regular physical activities can
modulate the potential risk factors of dementia [17] and other neurodegenerative disorders like AD,
PD, and others. Recently, a meta-analysis prepared evidence on the safety and efficacy of physical
exercise as an additional therapeutic intervention for the quality of life, cognition, and depressive
symptoms across six chronic brain disorders. These disorders were Huntington’s disease, AD, PD,
multiple sclerosis, unipolar depression, and schizophrenia. This meta-analysis showed that 69% of
the studies reported no complications due to exercise [18]. The study also suggested that exercising
is superior to usual treatment in improving quality of life, depressive symptoms, attention, working
memory, and psychomotor speed [18]. Chang et al. (2010) had suggested on the basis of their Age
Gene/Environment Susceptibility Reykjavik Study in this regard that midlife physical activity may
contribute toward the maintenance of cognitive function and may help delay or reduce the risk of
late-life dementia [19]. Modifiable lifestyle factors such as physical activity and diet modulate common
neuroplasticity substrates (neurogenesis, neurotrophic signaling, inflammation, antioxidant defense,
and stress response) in the brain and hence these are considered to be important alternative therapeutic
options for conditions like dementia that develop with age [20]. A study done among school children
demonstrated a positive correlation between physical activity and their academic performance [21]. A
meta-analysis of 29 randomized controlled trials (n = 2049) demonstrated that individuals doing aerobic
exercise exhibited improvement in memory, attention, processing speed, and executive function [22].

Beneficial effects of exercise include increased blood flow from brain to the hippocampus and
increases in its size in humans [23] and decreased neuro-inflammation [24]. Silverman and Deuster
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(2014) suggested that regular physical activity affects the following biological pathways: (i) optimization
of neuroendocrine and physiological responses to psychosocial and physical stressors; (ii) acting as
buffer against stress and stress-related diseases/chronic diseases; (iii) promotion of anti-inflammatory
state; and (iv) enhancement of neuroplasticity and growth factor expression [25]. Not only is
the functionality of the brain affected by physical activity, but the structure is also altered due to it
for which there is clinical evidence. For instance, a neuroanatomical study of people between 55
to 79 years of age showed that age related reduction in the cortical tissue density of the temporal,
frontal, and parietal cortices was improved significantly as a function of cardiovascular fitness [26]. An
animal model-based study also supported similar findings where it was demonstrated that long-term
voluntary wheel running among rats changed their spine density and also altered arborization and
spine morphology [27]. The study reported that long-term voluntary running increased the density of
dendritic spines in the hippocampus, granule neurons of dentate gyrus, CA1 pyramidal neurons, and
in layer III pyramidal neurons of the entorhinal cortex of adult rats [24]. Upon reviewing the studies
related to the neuroprotective effects of physical activity on the brain in AD using the MEDLINE
database search, it was found that physical activity attenuates AD related neuropathology and brings
about positive effects in hippocampus mediated cognitive function, especially when started early in
the disease process; however, there is a lack of evidence in the literature to support the exact physical
activity guidelines [28]. On the basis of the 38 animal and human studies that met the desired criteria
in this study, it was suggested that incorporating regular physical activity in daily routines mitigates
AD related symptoms, especially if adopted earlier in the disease process [25]. Another meta-analysis
showed that physical activity is beneficial for patients with PD specifically in areas such as quality of
life, gait, speed, balance, strength, and physical functioning [29]. Exercise effects have also been shown
to decrease PD by 33% [30].

2. Physical Exercise and Neurodegenerative Disease

Lifestyle without sufficient exercise training may increase the risk of stroke, AD, and PD [31]. In
older adults, aerobic exercise showed improvement in cognitive function [32]. Monteiro et al. (2015)
suggested two hypotheses to explain the underlying mechanism: (a) PE reduces chronic oxidative stress
along with stimulating mitochondria biogenesis and upregulation of autophagy in PD; and (b) exercise
stimulates the synthesis of neuro-transmitters like dopamine and trophic factors like Glial-derived
neurotrophic factor (GDNF), insulin-like growth factor-1 (IGF-1), brain derived neurotrophic factor
(BDNF), and fibroblast growth factor 2 (FGF-2) [30].

PE affects many neurophysiological aspects and pathways such as autophagy, neuronal plasticity,
neurogenesis, anti-oxidant defense mechanisms, and more. It also decreases neural apoptosis
and neurodegeneration. PE can induce neuro-plastic changes in the human brain but with a wide
inter-individual variability [17]. Regular PE is an effective autophagy inducer [33] and improves
neurological function [12]. It also reduces chronic oxidative stress and promotes mitochondrial
biogenesis. It also promotes the expression of neurotrophic factors like BDNF, GDNF, neurotransmitters
like dopamine and hormone irisin, while downregulating Bax and neuro-inflammatory cytokines in
the hippocampus [34]. Regulation of BDNF through physical exercise is a major key point as BDNF is
a multifunctional molecule that has a role in neuronal plasticity, synaptic transmission and plasticity,
neuronal stress resistance, differentiation and maturation of neurons, activation of other supporting
molecules like NFκB, and dopamine in the neurons [15,35]. Thus, PE brings about many interrelated
positive effects in the brain, which have been summarized in Figure 1.

AD is the most common form of dementia and is a major challenge for healthcare in the 21st
century [36]. It is expected that in the U.S., about 15 million people (>65 years) will have AD by
2050 [37]. Since no disease-modifying treatment has been available until now, AD patients are normally
treated with combined pharmacological drugs, counseling, and social care to slow down the disease
progression [9,38]. Exercising is a non-pharmacological strategy that may help in protecting against
cognitive decline and decrease the risk of AD [39]. PE helps stabilize and improve the cognitive
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function in AD patients and reduces and delays the onset of severe neuro-psychiatric symptoms like
apathy, confusion, and depression [40]. Exercise has also been shown to induce anti-inflammatory
effects [41] and neurotrophic factors [42]. An experimental study done in mice suggests that exercise
prevented obesity-induced white matter damage by suppressing neuro-inflammation and vascular
dysfunction despite significant weight gain [43]. Aerobic training significantly increases the mRNA
expression of ABCA1, which may improve cognitive function by improving and preventing symptoms
of AD [44]. All these findings provide treatment options for age-related neurodegenerative disorders
like AD.

PD is the second most frequent age related neurodegenerative disease [45]. At the cellular level,
its pathology involves dopaminergic degeneration and accumulation of cytosolic protein α-synuclein,
linked with impaired autophagy-lysosome pathway (ALP) clearance [29]. Considering its therapeutic
aspect, many efforts have been made using different approaches, but even after many advances
in its treatment that slow down its progression and minimize locomotor impairment, its clinical
management is still a challenge [46]. Recent clinical finding data showed that only high-intensity
tread mill exercise training could successfully improve motor symptoms in PD patients [47]. Aerobic
walking in mild to moderate PD patients was safe, well-accepted, and improved aerobic fitness,
fatigue, motor function, mood, and quality of life [48]. Multi-component physical training (for eight
weeks) in PD patients improved gait speed and functional status functional status [49]. In another
experiment, voluntary exercise on a running wheel increased DJ-1, Hsp70, and BDNF concentrations
and decreased α-synuclein aggregation in the brains of exercising mice compared to the control
mice [50]. Biochemical analysis done in the same study showed that running mice had significantly
higher concentrations of Hsp70, BDNF, and DJ-1 [50]. Thus, this in vivo study is strong evidence to
support the notion that exercising may slow down PD progression through the prevention of abnormal
protein aggregation in the brain [50]. Physical activities such as horseback riding have also been seen
to improve balance and cognitive impairment in aged adults suffering PD, as described in a recent
simulation study [51]. Many studies have indicated that exercise can enhance brain function and also
attenuate neurodegeneration [52]. Neuroplasticity is improved by changing the synaptic structure and
function in different regions of brain and also modulates multiple systems that regulate glial activation
and neuro-inflammation [52]. Furthermore, exercising, in addition to carvacrol (a food additive), is
also helpful in reducing rotational behavior and improves aversive memory deficit and decreases
lipid peroxidation levels, along with increasing total thiol concentration in the hippocampus and/or
hemi-Parkinson rats [53]. This indicates that this combination of carvacrol and treadmill exercise can
be an effective therapeutic tool to treat neuro-behavioral deficits in PD patients [53]. Regular exercise
also contributes to health in PD patients as it improves the ability of the patient to adapt to barriers
encountered during gait, regardless of the medication state [54].

A preliminary study done on 36 PD patients reported the effects of coordination and manipulation
therapy in which patients performed various activities like dry land swimming and para-spinal muscle
stretching for 30 min every day for one year, while the control group did not exercise regularly. It
was found that the treated group exhibited improved balance, mobility disorder, and cardiac function
in PD patients [55]. Aaseth et al. (2018) have also suggested that by making appropriate lifestyle
changes such as PE and intake of natural anti-oxidants help reduce deterioration of dopaminergic
neurons, however, many other strategies are to be followed or compounds like iron binding agents
and oxygen radical scavengers are also required [56]. Minakaki et al. (2019) reported improvement of
gait activity, postural stability, and promotion of dopaminergic and α-synuclein homeostasis due to
treadmill exercise in their study based on mice models of PD; however, no significant induction of
cerebral ALP occurred due to it [57].
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3. The Role of Exercise in Neurological Diseases and Involved Mechanisms

3.1. Neuroendocrine Regulation by Physical Exercise

PE is a stressor for the human body and acts as an activator of the neuro-endocrine system
if the exercise is of sufficient intensity and/or duration [58]. Chronic exposure to exercise training
leads to neuroendocrine system adaptations such as a decrease in hormonal stress response to
sub-maximal exercise [58]. PE provokes many major changes in concentration of hormones
like vasopressin, cortisol, β-endorphin, adreno-corticotropic hormone, and some others from
resting levels. The greater the exercise volume (intensity and/or duration of exercise), the greater
the neuroendocrine response [59]. PE begins a coordinated series of physiological responses that
include the hypothalamic–pituitary–adrenal axis and sympathetic nervous system activation. This
combination leads to the appropriate selection and use of metabolic substrates. It acts as a powerful
stimulus for the hypothalamic–pituitary axis, but the nature of this stimulus depends on many factors
like the kind of exercise (intensity, aerobic, duration, strength), time of the day, meal ingestion, and
subject characteristics (previous training, gender) [60].

3.2. Neurotransmitter Regulation by PE

PE influences the central dopaminergic, seratonergic, and noradrenergic systems [61]. Peripheral
physiological adaptations toward exercise occur to adjust to the disturbance in resting homeostasis,
which is induced by exercise stimulus. Many experimental studies in which homogenized tissues
have been used to check the level of different neurotransmitters indicate that changes in the synthesis
and metabolism of monoamines and neurotransmitters occurs during exercise [61]. Application of
micro-dialysis and voltammetry for measuring in vivo release neurotransmitters have indicated that
then release of most neurotransmitters is influenced by exercise [61]. According to Lin and Kuo (2013),
dopamine (DA), noradrenaline (NA), and serotonin or hydroxytryptamine(5-HT) are the three main
monoamine neurotransmitters modulated by exercise [62] and their release is increased during exercise.
The extracellular levels of dopamine, noradrenaline, serotonin,γ-amino butyric acid (GABA), and
glutamate (GLU) are influenced by exercise training. Upregulation of DA in the brain is associated
with exercise induced higher levels of serum calcium that is transported in the brain and effects
calcium/calmodulin-dependent DA synthesis by activating the tyrosine hydroxylase enzyme [63]. In
addition, the binding affinity between DA and its receptor, which is determined by [3H]spiroperidol
binding, is enhanced by exercise training [64,65]. Furthermore, exercise provokes neuronal adaptation
in response to uncontrollable stress [66]. This protective mechanism of PE against stress is due to
the expression of galanin in the locus coeruleus [67], which hyperpolarizes noradrenergic neurons and
inhibits neuronal firing by locus coeruleus, causing suppression of norepinephrine (NE) release [68]. NE,
which targets the amygdala and frontal cortex, prohibits anxiety behavior upon decreased release [67].
NE also participates in the consolidation and retrieval of memory [69]. Chronic and wheel exercise
both increase the levels of NE in spinal cord pons-medulla in comparison to sedentary controls [70]
and the endogenous activity of NE is enhanced by exercise, showing a potential link between NE and
exercise-enhanced cognitive function [62].

The HT system is modulated by exercise, but this modulation is dependent on the brain region
and is also determined by the duration and intensity of exercise. For instance, four weeks of
moderate treadmill exercise decreased the 5-HT levels with no effect on the metabolism of 5-HT in
the hippocampus [71]. On the other hand, seven days of high-intensity treadmill exercise increased
the levels of hippocampal 5-HT significantly [72].

3.3. Exercise-Enhanced Neural Insulin Signaling

Brain insulin signaling is required for neuronal survival and maintenance of crucial brain
functions, and can both prevent and reverse the defects in the BDNF transport [73]. Insulin
deregulation are connected with diabetes, obesity, cardiovascular disease, and hypertension and
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abnormal neural insulin signaling pathways are linked with various neurodegenerative diseases and
learning memory deficits [74]. The insulin receptor (IR) is densely expressed in pyramidal cell axons
in the hippocampal-CAl region and is mainly distributed in the dominant learning, memory, and
cognitive function regions of the brain [75]. IR was found in different parts of the brain, however, it
was mainly seen in the hypothalamus, hippocampus, and cerebral cortex at high concentrations [76].
Among these regions, the hippocampus plays an important role in storing new memories [77]. During
normal physiological conditions, insulin and growth factors like BDNF, insulin like growth factors
1 and 2 (IGF-1 and 2) and VEGF transmit intracellular signals in the hippocampal neurons for their
integrity and to keep hippocampus functional [78]. However, when the functionality of these growth
factors is inhibited, the possibility of AD becomes high [78].

Aged rats showed decreased aversive memory as well as increased inflammatory markers such
as TNFα, IL1-β, and NF-kβ, and decreased anti-inflammatory cytokine IL-4 and global histone H4
acetylation levels. However, forced exercise(running daily for 20 min for two weeks)reversed this
effect in 20 month-old rats [79]. PE has been shown to exert anti-inflammatory effects and enhances
insulin signaling in the hippocampal neurons [78]. PE also elicits an insulin sensitizing effect in
the peripheral nervous system [80] and hence the possibility of it to bring about the same effect in
the central nervous system and play a neuroprotective role is quite possible [81]. There have been
many other experimental evidences to show that PE helps in neuroprotection through its effect on
the peripheral nervous system as well as central nervous system. In the peripheral tissues, PE promotes
uptake of glucose in an insulin independent way by activating protein kinase that is itself activated
by AMP (AMPK) and mammalian target of rapamycin (mTOR) [82]. On the other hand, the central
nervous system is affected by PE in quite different ways. For instance, it improves cognition and
synaptic plasticity [83,84], along with increasing neurogenesis [85] and angiogenesis [86]. It is also
shown to regulate the production and degradation of various neurotransmitters [87,88]. However,
the complete understanding of the molecular mechanisms involved is still lacking.

3.4. Exercise-Enhanced Brain-Derived Neurotrophic Factor BDNF-Signaling

BDNF is a neurotrophin expressed in the hippocampus and is involved in processes related to
memory and learning and is thought to play a crucial role in major depression [89]. BDNF is thus
a central regulator of neuronal plasticity inside the post-natal hippocampus [89]. It plays an important
role in synaptic plasticity and neuronal stress resistance [90]. It has an established role to play in
promoting differentiation and maturation of developing neurons [91], while in mature neurons, it
positively regulates the synaptic transmission and plasticity [92] and thus contributes to memory
formation and learning [93]. Raichlen and Gordon (2011) reported a positive correlation between
the size of the human brain and endurance exercise capacity, suggesting a co-evolution between
locomotion and cognition in human [94]. Mattson et al. (2012) suggested that since endurance exercise
clearly increases BDNF expression in the brain, improvement in exercise capacity may positively
enforce brain growth, especially in hippocampus [95]. Considering the cases of peripheral nerve
injury where transected fibers distal to the lesion are disconnected from the neuronal body, activity
dependent therapy like early treadmill running decreases the synaptic stripping and disorganization
of peri-neuronal nets on axotomized motor neurons. The underlying mechanisms that bring about
such effects are not known, but the benefits of exercise are attributed to increase in BDNF [96]. Exercise
training is known to enhance amygdala- and hippocampus-associated neuronal function [97]. Lin et al.
(2015) also suggested that PE may serve as a way to delay the onset of Alzheimer’s disease on the basis
of their APP/PS1 transgenic mice based study. It was reported that 10 weeks of treadmill training (from
the age of 1.5 to four months) of the transgenic mice increased their dendritic arbor of CA1 and CA3
neurons, hippocampus-associated memory, restored the amygdala-associated memory, and dendritic
arbor of amygdalar basolateral neurons [97]. Furthermore, they reported that PE increased the levels
of BDNF/TrkB signaling molecules (p-AKT, p-PKC, and p-TrkB) in the hippocampus and amygdala, in
addition to reducing the levels of soluble amyloid-β in both regions [97]. Fahimi et al. (2017) reported
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that around four weeks of treadmill and running wheel exercises in mice brought about many changes
such as (1) significant increase in BDNF mRNA and protein levels; (2) significantly increased synaptic
load in dentate gyrus; (3) changes in the morphology of astrocytes; and (4) orientation of astrocytic
projections toward dentate gyrus cells [98]. These changes were possibly linked to an increase in TrkB
receptor levels in the astrocytes [98]. Zsuga et al. (2016) suggested that BDNF modulates neuronal
dopamine content and its release, which are essential for neuronal plasticity, neuronal survival, and
learning and memory [99]. BDNF signaling is summarized in Figure 2.
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and irisin.

3.5. Irisin Production and Secretion

Irisin is basically a myokine that is secreted from the muscles in response to exercise [100] in
mice and human. FNDC5 is a muscle protein that is induced in exercise and is cleaved and secreted
as irisin [101]. Irisin serves as a circulating myokine that increases thermogenesis and improves
glucose homeostasis and obesity [102]. Wrann et al. (2013) found that forced expression of FNDC5 in
primary cortical neurons increased expression of BDNF [101]. In addition, the peripheral delivery of
FNDC5 to the liver through adenoviral vectors resulted in increased blood irisin, induced expression
of BDNF, and other neuroprotective genes in the hippocampus [101]. Thus, through their study,
Wrann et al. (2013) linked endurance exercise and metabolic mediators PGC-1α (regulator of neuronal
Fndc5 gene expression) and FNDC5 (exercise induced) with BDNF expression in the brain [101].
Zsuga et al. (2016) also suggested on the basis of their study that irisin may be a link between
physical activity and motivation and reward related processes [99] that are in turn related to
the neurotransmitter dopamine, which itself gets activated through BDNF’s activity. Furthermore, Li
et al. (2017) suggested that irisin decreases ischemia induced neuronal injury by activating Akt and
ERK1/2 signaling pathways and thus contributes toward neuroprotective effects of exercise against
cerebral ischemia [103]. This further indicates that irisin may be a factor that links metabolism and
cardio-cerebrovascular disorders [103]. Another recent study by Peng et al. (2017) showed that irisin
mitigates oxygen-glucose deprivation-induced neuronal injury in part by inhibiting the ROS-NLRP-3
(reactive oxygen species-Nod like receptor pyrin-3) inflammatory signaling pathway, indicating
a possible mechanism for irisin induced therapeutic effects in ischemic stroke [104]. Another aspect of
the beneficial effects of exercise is a reduction in neuropathic pain. Dameni et al. (2018) carried out their
study in a chronic constriction injury model in male rats and found that acute administration of irisin
increased pain threshold; however, irisin could not prevent the decline in the number of neurons [105].
Wang et al. (2018) reported on the basis of their study in primary cell cultures of astrocytes and neurons
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that a pretreatment of astrocyte-conditioned medium with irisin for about 12 h protected neurons from
the toxicity of amyloid-β [106]. Irisin could also attenuate the release of IL-6 and IL-1β from cultured
astrocytes and reduced expression of COX-2 and phosphorylation of AKT [106]. In addition, irisin
could decrease NFκB activation of astrocytes exposed to amyloid-β by preventing phosphorylation
and loss of IκBα [106]. Thus, irisin is supposed to be have a novel application in the treatment of AD
and memory dysfunction in diabetes mellitus in the future [106].

3.6. Anti-Neural-Inflammatory and Anti-Neural-Oxidative Responses of PE

In response to PE, the autonomic nervous system and the hypothalamic–pituitary–adrenal axis
come into action to maintain homeostasis. As a result, there is elevation in the level of cortisol and
cathecholamines in plasma [107]. Exercise stimulates the secretion of growth hormone and prolactin
and may influence the type of immunity by stimulating the TH2 response profile [107]. There have been
attempts to identify potential biomarkers to characterize the response to exercise and to understand
the molecular mechanisms leading to health benefits or mal adaptation due to physical activity, and
such a study was conducted recently using 2D-gel electrophoresis followed by protein identification
using liquid chromatography-tandem mass spectroscopy [108]. In this study done on six human
subjects, it was found that 20 resolved serum proteoforms were significantly altered at 5 min and 1 h
after high-intensity interval exercise, which included serpins (protease inhibitors), apolipoproteins, and
immune system proteins that have broad antioxidant and anti-inflammatory effects and are involved
in cardio-protective, neuro-protective effects, and lipid clearance [108]. There have been relevant
studies to elucidate the synergistic effects of physical activity and anti-oxidants on neurons to act as
a neuro-protective strategy in conditions like PD. One such study with a mice model of PD was recently
done by Gil-Martinez et al. (2018), which involved the study of a combination of physical activity
and an anti-oxidant named NAC (N-Acetyl-L-cysteine) as a neuro-protective strategy; however, this
study reported that physical activity is beneficial, but in the long-term only and the combination of
the NAC with physical activity brought about therapeutic benefits due to NAC only [109]. Another
aspect of the effect of PE with reference to neuronal physiology is that PE produces intracellular as
well as extracellular-heat shock proteins (iHSP70 and eHSP70, respectively) [110]. The activation of
iHSP70 is an absolute requirement for promoting tissue repair, cyto-protection, and anti-inflammatory
effect [110]. PE induces the appearance of HSP70 in extra cellular medium (eHSP70), which is involved
in the activation of the immune system.Since, iHSP70 is unable to respond to stress in the motor
neurons, the eHSP70 can be internalized by them to act as an intracellular chaperon, protecting the cell
against protein denaturation and oxidative damage [110]. A lowered iHSP70 expression capacity
is associated with neurodegenerative diseases like AD, PD, ALS, Huntington’s disease, and hence
the elucidation of the role of eHSP70 can be helpful in treating these neurodegenerative disorders
along with an understanding of the beneficial effects of PE in the neuronal cells [110]. Anti-oxidant
enzymes like SOD (superoxide dismutase) become more active in response to exercise [30]. All these
effects promote neuroplasticity, decrease neural apoptosis, and delay the neurodegeneration process,
thus decreasing or preventing PD development [31].

3.7. Neural Pro-Survival and Anti-Apoptotsis Effects of PE

PE not only affects the activity of different brain cells, but also determines their survival and death.
Recent evidence in a Long Evans rat model based study showed that voluntary exercise, in addition to
enriched environment improves cognitive function, promoted neurogenesis and brain microvasculature
in these rats exposed to hypobaric hypoxia at high altitudes by mediating VEGF signaling [111]. In
a Wistar rat model, it was demonstrated that early PE in childhood and adolescence induces long term
morphological alterations in hippocampal and cortical neurons even during the sedentary period of
rats [112]. It is supposed that PE enhances the expression of neurotrophic factors and promotes neuronal
growth, leading to usage of a neuronal reserve in later stages of life [112]. Furthermore, the study
showed that exercise during juvenile stages increased and maintained the number of hippocampal and



Int. J. Mol. Sci. 2020, 21, 5895 9 of 17

cortical neuronal cells and dendritic arborization [112]. In addition, the expression of survival proteins
like cortical mTOR and hippocampal BDNF was found to be enhanced at P60, but were restored to
control levels at P90 and P120 [112]. BDNF has been considered to be likely to also elicit the beneficial
effects of exercise with regard to protection against dementia and type-II diabetes [113]. Another
study done in rat models showed that changes in the expression of inflammatory and cell survival
proteins in the brain region of aged rats depended on the type of PE training [114]. The aerobic training
increased expression of proteins such as p38, Akt, ERK, and p70S6k in the cortex of the brain [114].
Another recent study based on middle aged APP/PS1 transgenic mice with AD showed the protection
of neurons and adult neurogenesis in the dentate gyrus and thus showed improved memory and
spatial learning due to running exercise [115].

In aged PS2 mutant mice, treadmill exercise prevented PS2 mutation-induced memory impairment
and decreased Aβ-42 deposition by inhibiting β-secretase (BACE-1) and its product C-99 in
the hippocampus and/or cortex of these mice [116]. In the same study, it was found that treadmill
exercise downregulated expression of GRP78/Bip and PDI proteins along with inhibiting the activation
of PERK, ATF6α, eIF2α, sXBP1, and JNK-p38 MAPK [116]. Furthermore, it activates caspase-3, -12,
and CHOP; upregulates expression of Bcl-2; and downregulates Bax expression in the hippocampus of
aged PS2 mutant mice [116]. Varying intensities of PE have different effects on the nervous system, for
example, instead of high intensity exercise, moderate intensity treadmill exercise has a neuroprotective
effect in rats suffering from cerebral ischemia. Thus, it is speculated that due to high intensity
treadmill exercise, the neurotrophic factors were downregulated, further affecting the expressions of
cell cycle-related proteins [117].

Voluntary running is considered a powerful neurogenic stimulus that triggers proliferation of
progenitor cells in the dentate gyrus, which is the site for adult neurogenesis occurring throughout
life [118]. The retinal ganglion cells that become increasingly vulnerable to injury with aging also
become protected through exercise, which is because PE prevents the loss of BDNF in retina post-injury,
along with preserving neuronal function and survival by the prevention of complement mediated
elimination of the synapses [119]. The examination of the effects of different intensities of aerobic
exercise on resting serum BDNF, IGF-1 concentration, and cortisol, the hormone released in response to
stress and memory of adolescent human, has been done in order to understand how PE brings changes
in their expression [120]. For this, 40 adolescent males were recruited who performed aerobic exercise
of moderate to high intensity, and it was found that PE also had a positive effect on the serum levels of
BDNF at rest and on cognitive function [120].

3.8. Autophagy

Evolution favored organisms with superior physical and cognitive abilities under stressful
conditions like limited food sources, and hence the brain function can be optimized by intermittent
dietary energy restriction and exercise [31]. These energy challenges engage various cellular
stress-response signaling pathways in the neurons involving protein chaperones, neurotrophic factors,
DNA-repair proteins, mitochondrial biogenesis, and autophagy [31]. Lack of physical activity,
overeating, and suppressing adaptive cellular stress responses thus may increase the risk of AD, PD,
depression, and stroke [31]. Mattson (2014) suggested that interventions like exercise intermittent
energy restriction can counteract neurodegenerative processes and improve brain function in animal
models. This is because these interventions may support neuronal adaptive stress response pathways
that enhance DNA repair, neurotrophic signaling, mitochondrial biogenesis, and proteostasis [121].
Pathways involving Ca2+, CREB, NFκB, and PGC-1α are activated in neurons upon physical activity
(aerobic exercise) and food deprivation and these stimulate cellular stress response and mitochondrial
biogenesis [122].

Autophagy ensures lysosome mediated breakdown and self-material recycling as it degrades
damaged intracellular components and provides building blocks for biosynthetic and energy
production [123]. Many animal model based studies, along with those involving drosophila, have
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shown that defects in the autophagic process cause a rapid decline in neuro-muscular function,
sensitivity to stress conditions like starvation or oxidative damage, neurodegeneration, and stem cell
loss [123]. Impairment of the autophagic pathway is known to play a role in β-amyloid production
and AD progression following a complex mechanism. In the Alzheimer’s disease mice model based
study, it was found that when autophagy is genetically hyperactivated by knocking-ina gene-point
mutation (Becn1F121A) in the autophagy essential gene (Beclin 1/Becn 1), a significant decrease in amyloid
accumulation is observed and there is a prevention of cognitive decline along with restoring the survival
of AD mice.This happens because the F121A point mutation induced in Becn 1 significantly decreases
the interaction of BECN 1 with its inhibitor BCL2, leading to constitutively active autophagy even in
non-autophagy inducing conditions [124]. It was observed that biochemically, amyloid-β-oligomers are
autophagic substrates and sequestered inside autophagosomes in the brain of autophagy hyperactive
AD mice [124]. The same study suggested that voluntary exercise is a physiological autophagy inducer
and exerts similar Becn1-dependent protective effects on amyloidβ removal and memory in these AD
mice [124].

4. Conclusions

Physical activities have been proven to have beneficial effects on the general health and well-being
of the people who exercise on a regular basis. Each and every part of the body is benefitted in one
way or another among regular exercisers. Talking specifically about their effects on neuronal cells
and brain function, there are many research-based evidences that prove that PE has neuroprotective
effects. Physical activities elicit their benefits through some signaling mechanisms that have, however,
not been completely elucidated to date, but neurotrophins like BDNF, hormones like irisin, and
neurotransmitters like dopamine are direct participants in these mechanisms. Considering its effect
among PD patients, it improves gait, balance, cognition, along with a slowing down progression
of the disease by avoiding protein aggregation in the brain. In AD patients, it also slows down
the progression of the disease, along with improvement in cognition, memory, and delays the onset of
neuro-psychiatric symptoms like depression, apathy, and others. The different physiological aspects
affected by PE are:hippocampal insulin signaling, autophagy, anti-oxidant and anti-inflammatory
responses, cell survival and death pathways. Physical activities enhance the expression of BDNF, which
is an essential mechanistic step involved in the beneficial process occurring due to them. Molecules like
dopamine, irisin, GABA, and Aktare also involved in these mechanisms. Still, PE cannot be applied as
a stand-alone way to handle neuro-pathologies. As an add-on therapy; however, it has great potential
in this regard.
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