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Abstract: The task of drug-target interaction (DTI) prediction plays important roles in drug
development. The experimental methods in DTIs are time-consuming, expensive and challenging.
To solve these problems, machine learning-based methods are introduced, which are restricted by
effective feature extraction and negative sampling. In this work, features with electrotopological
state (E-state) fingerprints for drugs and amphiphilic pseudo amino acid composition (APAAC) for
target proteins are tested. E-state fingerprints are extracted based on both molecular electronic and
topological features with the same metric. APAAC is an extension of amino acid composition (AAC),
which is calculated based on hydrophilic and hydrophobic characters to construct sequence order
information. Using the combination of these feature pairs, the prediction model is established by
support vector machines. In order to enhance the effectiveness of features, a distance-based negative
sampling is proposed to obtain reliable negative samples. It is shown that the prediction results
of area under curve for Receiver Operating Characteristic (AUC) are above 98.5% for all the three
datasets in this work. The comparison of state-of-the-art methods demonstrates the effectiveness and
efficiency of proposed method, which will be helpful for further drug development.

Keywords: drug-target interactions; E-state fingerprints; APAAC; distance-based negative sampling;
support vector machines

1. Introduction

Drug-target interaction (DTI) prediction is of great significance for pharmacology
development [1,2]. The problem can be solved by experimental ways. However, due to the lack of
relevant theoretical knowledge, experimental methods are easy to get a high failure rate, and are
restricted by their high economic and time cost [3,4]. According to reports, it often takes decades for a
new drug to be approved by US Food and Drug Administration (FDA) [5]. With the improvement
of a relevant knowledge system, the hypothesis that a single drug corresponds to a single target has
been extended, which makes the original DTI problems more complex [6]. Therefore, computational
methods have attracted more attention in DTI research in recent years [4,7–9].

The computational methods can be summarized as docking simulation and machine learning-based
methods. Docking simulation is the most successful method in drug-target interaction prediction
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when a three dimensional native structure of the target protein is available [10]. However, it is a
time-consuming and expensive process to determine the native structure of a protein by sophisticated
methods like X-ray Crystallography [11]. Thus, the 3D-structure of proteins are often unavailable.
Therefore, researchers are encouraged to apply machine learning-based methods to tackle the problems
by formulating DTIs as supervised learning models. It largely depends on the training dataset
composed with reliable positive and negative samples in supervised learning [12]. Yamanishi et al.
proposed gold standard datasets for supervised learning methods with four sets of target proteins and
drugs based on KEGG BRITE, BRENDA, SuperTarget and DrugBank [13]. These subdatasets have
been used in a large number of related papers [14–19]. Due to the small number of known validated
interactions among drug-target pairs, the unlabeled interaction pairs are considered as negative
samples in most research and thus they outnumber positive samples [6,11,20–22]. The imbalance of
DTI datasets is a major problem in supervised learning [11,23]. Another challenge is the representation
of the drug-target pair which is often generated from molecular fingerprints of drugs and sequence or
structure-based information of proteins [11].

Similarity-based and feature vector-based approaches are the main two aspects to solve DTI
problems in supervised learning [16,24]. Similarity-based methods were proposed based on the
assumption that “similar drugs share with similar targets” [16]. Yamanishi et al. proposed a
pharmacological space for DTI predictions based on similar structures, and first introduced a gold
standard dataset which has been exhaustively used by researchers [13]. PDTD (Predicting Drugs
Targets with Domains) made an appealing hypothesis that a similar domain reflects similar therapeutic
effect and protein domain was suggested as a powerful piece of information to discriminate drug-target
interactions [25]. Liu et al. considered the similarity of drug side-effects, protein-domain and function
annotation semantic of targets to predict DTIs [26]. Lan et al. added similar 3D-structures of proteins and
calculation based on GO term to screen the available drug-target pairs [27]. More details of DTI research
based on similarity can be found in the review written by Ozturk et al. [16]. Although similarity-based
methods have good effects on predictions of DTI, they are also restricted in the case of less information
with drug or target protein interactions. Feature vector-based methods can combine drug-descriptors
with target-descriptors to solve these problems. Wei et al. combined 881-dimensional drug-descriptors
from Pubchem, with 567-dimensional and 1449-dimensional target-descriptors from protein sequences
to predict DTIs [28,29]. The 1024-dimensional drug-descriptor extracted by PaDEL-descriptor,
and the 1287-dimensional target-descriptor calculated based on amino acid composition were used
for predictions of DTI [15,30]. The 193-dimensional drug-descriptor developed based on Rcpi
package is combined with the 1290-dimensional target-descriptors extracted from PROFEAT for DTI
predictions [7,31]. The commonly used classification models, such as support vector machines (SVM),
random forest, random walk with restart, and decision trees can be found both in similarity-based
and feature vector-based algorithms [8,14,15,32–34]. With the expansion of data scale, deep learning is
widely used in DTIs [11,35].

Deep learning-based methods have addressed many biological issues especially on large scale
datasets [36–38]. Deep-Belief Network (DBN) was proposed by Feng et al. to predict DTIs, which is
based on 6144-dimensional Extended-Connectivity Fingerprints (ECFP) of drugs, and 8420-dimensional
Protein Sequence Composition (PSC) of target proteins [39]. Wen et al. constructed a novel predictor
called DeepDTIs to predict possible interactions between drugs and targets [38]. Farshid et al. proposed
FRnet-Encode to extract 4096 features, and FRnet-Predict to predict drug-target interactions based on
deep convolutional neural network [11]. Hu et al. introduced a convolutional neural network system
to discriminate drug-target interactions [35]. A large number of hyper-parameters adjustment is the
key factor restricting the application of deep learning. Another challenge in DTIs is the increasing
dimension of features, even in deep learning.

In this work, an effective and efficient representation of drug-target pairs is introduced to infer
possible DTIs. The drug-descriptors are encoded based on the electrotopological state (E-state) of molecules,
which can be extracted by PaDEL-Descriptor [30,40]. The target-descriptors, called amphiphilic pseudo
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amino acid composition (APAAC), was first introduced by Chou, and it can be generated by the webservice
on PROFEAT [41–43]. For drugs and target proteins, the dimensions of these two descriptors are only 79
and 80, respectively. The gold standard datasets introduced by Yamanishi et al. is used for training and
testing in this work. To solve the imbalance problem of datasets, we calculated the Euclidean distance
between unlabeled drug-target pairs and positive ones, which is called distance-based sampling for negative
DTIs [35]. At last, SVM is used for classification with less parameter adjustment [33,44]. The experiments
are executed 100 times and the average results are shown. To further demonstrate the effectiveness of
proposed methods, external independent datasets are also tested. As a result, our work outperforms most
state-of-the-art methods on the same benchmark datasets.

2. Results

2.1. Performance Evaluation on DTIs

In the experiments reported in this paper, the gold standard dataset is used as benchmark for
training and testing. The dataset was first introduced by Yamanishi et al., and can be divided into four
subdatasets named by the enzyme, G-protein coupled receptors (GPCRs), ion channel and nuclear
receptors [13]. Each subdataset is split into two parts—train set and test set, with the ratio of 0.8 and
0.2, respectively. The train and test set are constructed with validated positive samples, and negative
samples calculated based on Euclidean distance. In addition, 5-fold cross validation is used to avoid
overfitting, i.e., each fold of each subdataset is tested once [45,46]. To obtain stable and reliable results,
all experiments are executed 100 times, and the average results are shown. The drug-descriptors, E-state
fingerprints, are extracted by PaDEL-Descriptor, which is a free software for compound descriptors
generation [30]. PROFEAT is a webservice for calculating protein features, which is used in this
paper for APAAC [41,42]. The dimensions of features used in this work are 79 and 80 for drugs and
targets, respectively.

Various performance criteria are available for drug-target interaction predictions.
The measurement of Accuracy is one of them, which shows that the accurate percentage of the
model, is sufficient in general, but holds no significance for imbalance datasets [11]. Some criteria such
as Recall, Precision and F1-scores, are also affected by the ratio of imbalance datasets. The metric,
namely area under curve for Receiver Operating Characteristic (AUC), is independent from the ratio of
the dataset, and is widely used in most research as standard criteria for comparison [11,21]. The range
of AUC is from 0 to 1, and the higher the value, the more effective the model is. When a random
classification occurs, the AUC is equal to 0.5. In this work, AUC is the main metric for model evaluation.
In addition, we extract the same number of negative samples as positive ones to make more evaluation
criteria feasible. The metrics used in this work except AUC are formulated as follows:

Acc. =
TP + TN

TP + TN + FP + FN
(1)

Rec. =
TP

TP + FN
(2)

Prec. =
TP

TP + FP
(3)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(4)

F1_score =
2× precision× recall

precision + recall
(5)

where the True Positive (TP) is the number of drug-target pairs predicted as interactions correctly;
the False Positive (FP) indicates the number of negative drug-target pairs classified as interactions
incorrectly; True Negative (TN) represents the number of negative pairs predicted as non-interactions
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correctly; False Negative (FN) is the number of positive pairs classified as non-interactions
incorrectly [47]. Acc., Rec., Prec., F1. and MCC are the short for Accuracy, Recall, Precision,
F1-scores and Matthews Correlation Coefficient, respectively [47].

The average prediction performance is listed in Table 1, with the representation value of average
± standard deviation. From Table 1, the results show that excellent precision values are obtained,
which means non-interaction pairs are not mispredicted. In addition, the good recall values indicate
that the model has less false negative samples. All of the four AUC values in subdatasets are higher
than 98.5%, which demonstrate the great prediction and the effectiveness of our proposed method.
The standard deviation value also shows the robustness of proposed work, which is important for
further generalization, as shown in Figure 1. To represent the stability of key measurement of the AUC
value clearly, Figure 2 plots the fluctuations with 100 times repeated experiments. It is shown that
poor robustness is obtained in nuclear receptors, compared with other three subdatasets. This may be
caused by the small size of nuclear receptors, which makes the training insufficient to obtain stable
models [11].

Table 1. Results of proposed method. Prec., Rec., Acc., F1., MCC and AUC are short for precision,
recall, accuracy, F1-scores, Matthews Correlation Coefficient and Area Under ROC-curves.

Enzyme GPCR Ion Channel Nuclear Receptor

Prec. (%) 100.00 ± 0.00 # 100.0 ± 0.00 100.0 ± 0.00 100.0 ± 0.00
Rec. (%) 97.85 ± 0.01 94.38 ± 0.28 95.46 ± 0.03 91.50 ± 0.68
Acc. (%) 98.92 ± 0.01 97.19 ± 0.14 97.73 ± 0.02 95.75 ± 0.34
F1. (%) 98.91 ± 0.01 97.11 ± 0.15 97.68 ± 0.02 95.56 ± 0.37

MCC (%) 97.87 ± 0.01 94.53 ± 0.27 95.56 ± 0.03 91.83 ± 0.63
AUC (%) 99.58 ± 0.02 98.66 ± 0.09 98.57 ± 0.07 98.51 ± 0.30

# The value in the table means that average value ± standard deviation.
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2.2. Comparison with State-of-the-Art Methods

Various algorithms based on the same gold standard datasets are compared. To make the
comparison comprehensive, we choose methods based on both similarity and feature vector.
Four similarity-based methods, Bipartite Graph Learning (Bigram), KBMF2K, NetCBP and PUDT are
compared [6,8,22,27]. The feature vector-based methods of Wang et al., MFDR, Cao et al. and FRnet-DTI,
are compared with our work [5,11,28,48]. Considering that different negative sampling methods will
affect the final results of predictions, we use random sampling for negative DTIs to test, just like other
methods based on feature vectors, to ensure the comparison is reliable. The results of these comparative
methods are taken from their papers. AUC is chosen as the unified measurement of the comparison,
as shown in Table 2. Our methods with random and distance-based sampling for negative DTIs are
marked as Ran-proposed and Dis-proposed, respectively. Although the performance of Ran-proposed
is not better than some of methods in Table 2, it is close to the best one of FRnet-DTI. Moreover,
compared with 4096 dimensions used in FRnet-DTI, Ran-proposed only used 159-dimensional features
to get closed results. That demonstrates the effectiveness of proposed features in this work are within a
lower computation cost. It can be seen from Table 2 that the results of Dis-proposed are the best in
enzymes, GPCRs, ion channel and nuclear receptors, which are 0.996, 0.987, 0.986 and 0.985, respectively.
Furthermore, the comparison between Ran-proposed and Dis-proposed shows that the distance-based
sampling for negative DTIs is more effective than random sampling. It is interesting to notice that
most results based on feature vectors have poor predictions in nuclear receptors, compared with other
three subdatasets. The problem may be due to it having the smallest size of dataset, which makes
the training of the model insufficient, but this is not obvious in our distance-based sampling method.
Our method is shown effective by the results, even in small datasets.

The external validation dataset is also used to prove the effectiveness of the proposed method.
Distance-based sampling for negative DTIs was first used in Hu et al., whose training sets were
composed of reference [1] and manually collected datasets [35]. The replication of the algorithm of
Hu et al. is difficult without their original dataset. Therefore, another algorithm, namely DeepDTI and
their dataset, which is also compared in Hu et al., is chosen for further comparison and validation
of our method. To make the comparison reliable, random sampling for negative DTIs, as same as
in DeepDTI, is used with the proposed features, which is marked as Ran-proposed. Meanwhile,
Dis-proposed represents the method with distance-based sampling for negative DTIs. The results
and their feature dimensions used are shown in Table 3. The True Positive Ratio (TPR) is defined as
TP/(TP + FN), which is equal to Recall, and the True Negative Ratio (TNR) is defined as TN/(TN + FP).
It is shown that the performance of Ran-proposed is slightly lower than that of the DeepDTI without
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considering the feature dimension. At the same time, the feature dimension of Ran-proposed is
only 159, which is obviously smaller than 14,564 used in DeepDTI. In addition, compared with
DeepDTI, Ran-proposed are only 0.6%, 7.82%, 3.19% and 2.54% worse on TPR, TNR, Accuracy and
AUC, respectively. In summary, Ran-proposed can still be considered a good predictor with its low
complexity. The superior performance of Dis-proposed is shown in Table 3, and its standard deviations
of TPR, TNR, Accuracy and AUC are 0.3%, 1.24%, 0.35% and 0.55% smaller than DeepDTI, respectively,
which proves the effectiveness and robustness of our work. In addition, the comparison results of
DeepDTI in Hu et al. are also shown in Table 3. It is shown that our work is superior than Hu et al.
with the same method of negative sampling.

Table 2. Comparison for state-of-the-art methods on gold standard datasets. Ran-proposed and
Dis-proposed represent that the methods with random and distance-based sampling for negative
DTIs, respectively.

AUC Enzyme GPCR Ion Channel Nuclear
Receptor

Dimension
of Features

Similarity-based

KBMF2K 0.832 0.857 0.799 0.824 -
NetCBP 0.825 0.823 0.803 0.839 -
Bigram 0.948 0.872 0.889 0.869 -
PUDT 0.884 0.878 0.831 0.885 -

Feature vector-based

Cao et al. 0.948 0.890 0.872 0.878 343
Wang et al. 0.943 0.874 0.911 0.818 1281

MFDR 0.969 0.904 0.933 0.886 1448/2330
FRnet-DTI 0.976 0.948 0.951 0.924 4096

Ran-proposed 0.973 0.926 0.967 0.928 159
Dis-proposed 0.996 0.987 0.986 0.985 159

Table 3. Comparison with DeepDTI and Hu et al. Ran-proposed and Dis-proposed represent the
methods based on random sampling and distance-based sampling for negative DTIs. TPR, TNR, Acc.
and AUC represent True Positive Ratio, True Negative Ratio, Accuracy and Area Under ROC-curves.

Methods TPR (%) TNR (%) Acc. (%) AUC (%)

DeepDTI 82.27 ± 0.65 # 89.53 ±1.30 85.88 ± 0.49 91.58 ± 0.59
Hu et al. of Random sampling 91.94 ± 0.91 91.14 ± 1.96 88.14 ± 0.75 95.27 ± 0.43

Hu et al. of Distance-based sampling 97.09 ± 0.67 96.86 ± 1.29 96.04 ± 0.32 99.47 ± 0.21
Ran-proposed 81.67 ± 2.33 81.71 ± 2.51 81.69 ± 1.72 89.05 ± 1.30
Dis-proposed 99.80 ± 0.30 99.97 ± 0.06 99.89 ± 0.14 99.98 ± 0.04

# The value in the table means that average value ± standard deviation.

To further demonstrate the effectiveness of our method, the independent dataset extracted
from ChEMBL is tested [49]. The dataset is extracted from Drug Mechanism of ChEMBL, retaining
the inhibitors and Homo sapiens. In this study, a total of 1928 drug-target interaction pairs are
obtained, which consisted of 1304 drugs and 682 targets. The repeated interactions in this study are
eliminated. In addition, we also test different negative sampling methods, that are random sampling and
distance-based sampling, which are marked as Ran-ChEMBL and Dis-ChEMBL, respectively. As shown
in Table 4, the performance of our method is satisfactory, which further proves the effectiveness and
lack of overfitting of the proposed work.

Table 4. Results of the Independent dataset from ChEMBL. Ran-ChEMBL and Dis-ChEMBL represent
the experiments with random sampling and distance-based sampling for negative DTIs, respectively.

Methods Prec. (%) Rec. (%) Acc. (%) F1. (%) MCC (%) AUC (%)

Ran-ChEMBL 72.48 ± 4.39 # 90.14 ± 1.22 77.68 ± 3.77 80.23 ± 2.75 57.34 ± 6.68 92.05 ± 1.35
Dis-ChEMBL 99.86 ± 0.24 98.99 ± 0.02 99.41 ± 0.13 99.42 ± 0.12 98.86 ± 0.25 99.83 ± 0.02

# The value in the table means average value ± standard deviation.
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3. Discussion

3.1. Effectiveness of Negative Generation

Two different methods for negative sampling are compared and tested in this work. Considering
the imbalance of the DTI dataset, most researchers select negative samples randomly from unlabeled
drug-target pairs, which is random sampling. Although the method has good prediction results in
various papers, there is still some shortcomings, such as difficulty in replication and ease for production
of incorrect negative samples. Hu et al. proposed a new method for negative sampling based on
Euclidean distance calculation, called distance-based sampling in this work. This method combines
drug and target-descriptors as a specific space, and all interactions and non-interactions are regarded
as nodes in this space. The Euclidean distance between each unlabeled drug-target pair and the
positive center is calculated, where the positive center is defined as the mean vector of all the positive
samples, which will be discussed later. The distance between two drug-target pairs is considered as a
measurement of their similarity, that is, the greater the distance, the less the similarity [35]. At the
same time, all unlabeled drug-target pairs are sorted according to the distances calculated, the less the
similarity, the greater the possibility of negative samples. Therefore, more reliable negative samples
are screened out than random sampling.

The method of obtaining the center of positive samples is discussed by experiment. Considering
the implicit correlation of each dimension of drug-target pairs, the principal component analysis
(PCA) is used firstly, and then the mean value of these orthogonal vectors is calculated as the
positive center [50]. In this work, the results with PCA processing is marked as With-PCA, and the
method of only calculating the mean of original features without PCA is marked as Without-PCA.
The experimental results of With-PCA and Without-PCA are based on datasets in DeepDTI, which are
represented with the AUC in Figure 3. More reliable results are obtained based on With-PCA, with a
standard deviation of 0.1%. For the results of Without-PCA, its standard deviation is only 0.1% lower
than that of With-PCA in Figure 3a, and the average results of 10-time repetition, which are shown in
Figure 3b, are very close. Considering the effect is comprehensive, Without-PCA, with good results
and low complexity, is selected in this work.
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Comparison between random and distance-based sampling for negative samples is shown in
Figure 4, where Ran-negative and Dis-negative represent the experimental setting of negative sampling
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with random-based and distance-based, respectively. The receive operating characteristic curves
(ROC-curves) show clearly that Dis-negative is superior than Ran-negative, and their robustness is
shown in Figure 5 with 100-times repetition. Ran-negative shows larger fluctuations, indicating that
the performance of Dis-negative used in this work is more stable.
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3.2. Discussion of E-State and APAAC

Electrotopological state fingerprints (E-state) and Amphiphilic Pseudo Amino Acid Composition
(APAAC) are for the first time being combined in drug-target interactions. Compound descriptors
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were always extracted based on their structure, substructure, or electronic characteristics. Even if some
indexes calculated both the topological structure and electronic features at the same time, different
measurements and metrics were used. The E-state indexes were first constructed by Lowell et al.,
which were derived from counts of electrons within the hybridization model of covalent binding,
and were the adjacency relations in the hydrogen-suppressed graph [40]. Furthermore, it was also the
first atom-level index which can combine both electronic structures and molecular topology into a
single index by using the same metric [40]. Given the results shown in this work, electronic structures
and molecular topology may both be important for drug-target interactions. For target proteins,
APAAC was proposed by Chou to reflect the sequence-order information, and consider hydrophobicity
and hydrophilicity of the constituent amino acids, which plays a very important role in protein
folding, and its interaction with environment [43]. It can be regarded as an extension of Amino Acid
Composition, adding more sequence-order information. In addition, APAAC had been successful
applied in protein representation for the prediction of enzyme subfamily, structure and interactions [43].
Our works extract these two feature vectors, train and test them in gold standard dataset, and obtain
good results. The proposed method is helpful for further predictions of drug-target interactions with
low complexity. Meanwhile, the relationship among drug-target interactions, electronic structures and
molecular topology, protein folding and sequence-order information will be further explored to find
out the essence features of DTIs.

3.3. Parameters Adjustment of Algorithm

The parameters adjustment of the algorithm is based on the measurements of AUC and their
robustness results in 100 repetitions. In this work, the tool of SVM, libsvm v3.23 is used to train,
validate and test [44]. According to other DTI methods based on SVM, the radial basis function (RBF)
kernel is selected. The kernel only needs to adjust two parameters of c and γ. The process of adjustment
is completed by grid search, that is to fix one parameter and change the other. The adjustment of the
two parameters is in the form of exponent, with the bottom of two, and the index ranging from −10 to
10 with step of one [51,52]. At last, the best performance is obtained when c = 4 and γ = 0.25.

4. Materials and Methods

4.1. Benchmark Datasets

The gold standard dataset is used to train and test in this work, which was firstly constructed
by from KEGG BRITE, BRENDA, SuperTarget and DrugBank by Yamanishi et al. [13]. The dataset is
divided into four subdatasets, i.e., enzymes, G-protein coupled receptors (GPCRs), ion channels and
nuclear receptors, based on different characteristics of target proteins. The gold standard dataset is
publicly available, and its statistics of datasets are shown in Table 5 [13]. The imbalance of datasets can
be reflected by the proportion of positive samples, which are only 0.99%, 3.00%, 3.45% and 6.41% in
enzymes, GPCRs, ion channels and nuclear receptors, respectively.

Table 5. Statistics of gold standard datasets.

Enzyme GPCR Ion Channel Nuclear Receptor

Drugs 445 223 210 54
Targets 664 95 204 26

Positive Interactions 2926 635 1476 90
Total DT-pairs 295,480 21,180 42,840 1404

proportion of positive 0.99% 3.00% 3.45% 6.41%

The dataset used in DeepDTI (Wen et al.), which is extracted from DrugBank (https://www.
drugbank.ca/, the Governors of the University of Alberta, Edmonton, AB, Canada), is for further
demonstration of effectiveness of our work [35,38]. There are 6262 drug-target pairs which are

https://www.drugbank.ca/
https://www.drugbank.ca/
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validated as positive samples among the whole dataset composed of 1412 drugs and 1520 targets.
Considering that the negative samples were generated by random sampling in DeepDTI, we also use
random sampling to conduct experiments to ensure the reliability of the comparison. In addition,
the proposed work with random sampling and distance-based sampling are marked as Ran-proposed
and Dis-proposed for short in Table 3, respectively.

It is extracted from Drug Mechanism of ChEMBL (https://www.ebi.ac.uk/, European Molecular
Biology Laboratory (EMBL), Cambridge, UK) to form an independent dataset [49]. The action type of
inhibitors, and interactions related with Homo sapiens are retained. At the same time, the interactions
which have been recorded in the gold standard dataset are removed. At last, a total of 1928 drug-target
interaction pairs are obtained, which consisted of 1304 drugs and 682 targets. The random sampling is
also tested and shown in Table 4.

4.2. Descriptors of Drugs and Targets

In this work, the electrotopological state (E-state) fingerprints, which are generated from both
electronic and topological characters of chemical molecules, are adopted as a drug-descriptor for the
prediction of drug-target interactions [40]. The E-state indexes were first constructed by Lowell et al.,
which were derived from counts of electrons within the hybridization model of covalent binding
and the adjacency relations in the hydrogen-suppressed graph [40]. In addition, it was the first
time that electronic structure and molecular topology were combined using the same metric [40].
In this work, E-state fingerprints are extracted by PaDEL-Descriptor (version 2.21, Yap Chun Wei,
Pharmaceutical Data Exploration Laboratory, Singapore), which is a public software for calculating
molecular descriptors and fingerprints [30]. There are 797 descriptors and 10 types of fingerprints that
can be achieved in the software [30]. E-state fingerprints are 79-dimensional binary feature vectors
with default parameters setting. The value marked with one indicates the drug has the corresponding
characteristic, otherwise it is marked as zero.

The target proteins are represented by amphiphilic pseudo amino acid composition (APAAC),
which was first proposed by Chou [43]. It is represented to effectively reflect the sequence-order
information, and consider hydrophobicity and hydrophilicity of the constituent amino acids,
which plays a very important role in protein folding, and its interaction with environment [43].
APAAC is considered effective in drug-target interactions, due to its successful application in protein
representation for the prediction of enzymes subfamily, structure and interactions [43]. PROFEAT is a
web server used to calculate commonly used structural and physicochemical features of proteins and
peptides from amino acid sequences, and is used in this work for calculation of APAAC. The dimension
of APAAC is 80, which is extracted by default parameters in PROFEAT [31,41].

4.3. Construction of Datasets and Algorithm

Negative instances are generated based on distance-based sampling from the unlabeled drug-target
pairs. The center of positive samples is defined as the mean value of all interaction pairs in each dataset.
In addition, the Euclidean distance from all the unlabeled samples to the positive center is calculated
and sorted. The farther the distance is, the more reliable the sample is to be negative. At the same time,
the number of negative samples should equal to the size of positive ones, which will make supervised
learning more accurate.

Each subdataset is split into two sets, train set and test set using 5-fold cross validation, with a
proportion of 80% and 20%, respectively. Moreover, each experiment is executed 100 times and the
average results are considered.

Support vector machines (SVM) and its toolbox Libsvm (version 3.23, Chih-Chung Chang and
Chih-Jen Lin, National Taiwan University, Taipei, China) are adopted in this paper [44]. The radial
basis function (RBF) kernel is selected for model construction, and two parameters, c = 4 and γ = 0.25,
are obtained and optimized based on grid search.

https://www.ebi.ac.uk/
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4.4. The Flowchart

The flowchart is shown in Figure 6, which represents the detail of our proposed method. As shown
in Figure 6, firstly, the feature vectors of drugs and targets are extracted and combined to form the
feature matrix of positive and unlabeled DT pairs. Then, negative samples are extracted based on
the positive center and unlabeled dataset. Finally, SVM is used for training and testing to obtain
better models.
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5. Conclusions

In this paper, low-dimensional features based on E-state fingerprints and APAAC are tested,
and satisfactory results are obtained. E-state fingerprints are calculated based on electronic structure
and molecular topology with the same metric. Compared with amino acid composition (AAC),
APAAC takes into account the sequence-order information of amino acid sequences.

Moreover, the distance-based sampling for negative DTIs is introduced and compared with
random sampling. The experimental results show the effectiveness of the proposed features and
method. Meanwhile, our method is further demonstrated by another two independent datasets.
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We believe that the excellent performance of our method will motivate other researchers to explore the
potential relationship between features and drug-target interactions.
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