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Abstract: During early plant embryogenesis, some of the most fundamental decisions on fate and
identity are taken making it a fascinating process to study. It is no surprise that higher plant
embryogenesis was intensively analysed during the last century, while somatic embryogenesis is
probably the most studied regeneration model. Encoded by the MIRNA, short, single-stranded,
non-coding miRNAs, are commonly present in all Eukaryotic genomes and are involved in the
regulation of the gene expression during the essential developmental processes such as plant
morphogenesis, hormone signaling, and developmental phase transition. During the last few years
dedicated to miRNAs, analytical methods and tools have been developed, which have afforded
new opportunities in functional analyses of plant miRNAs, including (i) databases for in silico
analysis; (ii) miRNAs detection and expression approaches; (iii) reporter and sensor lines for a
spatio-temporal analysis of the miRNA-target interactions; (iv) in situ hybridisation protocols;
(v) artificial miRNAs; (vi) MIM and STTM lines to inhibit miRNA activity, and (vii) the target genes
resistant to miRNA. Here, we attempted to summarise the toolbox for functional analysis of miRNAs
during plant embryogenesis. In addition to characterising the described tools/methods, examples of
the applications have been presented.

Keywords: miRNA; MIRNA genes; MIM; STTM; amiRNA; in situ hybridisation; miRNA-resistance;
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1. Plant miRNAs, What We Are Dealing With?

For many years, knowledge about the RNA functions has been limited to one type of protein-coding
RNA, mRNA (messenger RNA), and two non-coding RNAs—rRNA (ribosomal RNA), which builds
the ribosomes, and tRNA (transfer RNA), which is responsible for the transport of amino acids. A
big step forward was when the non-coding RNAs (ncRNA) that are engaged in the regulation of
gene expression were described. The division into infrastructural ncRNA and regulatory ncRNA
has also been performed. Included in the group of infrastructural ncRNA are rRNA, tRNA, small
nuclear RNA (snRNA), and small nucleolar RNA (snoRNA). Meanwhile, in the group of regulatory
ncRNA, several types have been distinguished as micro RNA (miRNA), PIWI-interacting RNA (piRNA;
animals only), small interfering RNA (siRNA), promoter-associated RNA (PAR), enhancer RNA
(eRNA), and long non-coding RNA [1–4]. The regulatory ncRNA groups differ in the lengths of their
molecules, transcript origin, and biogenesis pathway components. Among the ncRNAs, the most
interest has been focused on the functions of two groups of small RNAs—miRNA and siRNA [3].
miRNAs, which are a class of tiny, around 21 nucleotides, endogenous ncRNAs were described for
the first time in 1993 in nematode Caenorhabditis elegans [5] and in plants in 2002 in Arabidopsis [6].
The miRbase in 2002 had information about 218 miRNA loci in five plant species. Currently, the
presence of miRNAs has been proven in the entire Plantae starting from green algae, ferns, and
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mono-, di-cotyledons showing a strong evolutionary conservatism [7]. Today, we can find more
than 10,200 records for mature miRNA molecules in plants from 92 species in the miRbase, while
for Arabidopsis, there is information about 428 mature miRNA molecules (http://www.mirbase.org;
04.2020 [8]). miRNAs are encoded by MIRNAs (MIRs), which are intergenic or intronic genes that are
present in plant genomes in one hundred to as many as several hundred loci, which can be located in
genomic regions that are distinct from the known transcription units and that have their own promoter
and terminator sequences such as mono or polycistronic MIRs. In turn, intronic MIRs are processed
from the introns of the protein-coding genes [9,10]. There are more than 2000 miRNA families in the
most recent 22.1 release of miRbase [8], which reveal that the largest MIR families can have more than
sixty members (miR2592 in Medicago trancatula) that are coding similar, almost identical mature miRNA
molecules (http://www.mirbase.org). The multistep process of miRNA biogenesis (Figure 1) initiates
the transcription of the primary miRNAs (pri-miRNA) structures by DNA-dependent RNA polymerase
II (Pol II), which recognises the TATA box in the MIR promoter sequences. The pri-miRNAs containing
both the 5′cap and 3′poly A tail are processed into one strand precursor miRNA (pre-miRNA) molecules
by DICER-like1 RNase III endonuclease (DCL1), which catalyses the production of most plant miRNAs.
In Arabidopsis, four different DCL proteins have been described and all are engaged in a specific
sRNA-dependent gene silencing pathway with some redundancy [11]. The pre-miRNA is further
processed by DCL1 along with the double-stranded RNA-binding protein HYPONASTY LEAVES1
(HYL1) and the zinc-finger protein SERRATE to produce a 21-nt miRNA/miRNA* (passenger strand
designated with asterisk) duplex inside the nucleus within specialised compartments, which are
called Dicing-bodies. The miRNA/miRNA* duplex is then methylated at the 3′ terminal hydroxyl
group (2′OH) by the HUA ENHANCER1 (HEN1), which is a small RNA methyltransferase that acts
in a sequence-independent and structure-dependent manner. The 2′OH methylation is crucial for
protecting an unwound miRNA molecule from small RNA-degrading nucleases. The methylated
miRNA/miRNA* duplex is thought to be transported to the cytoplasm by HASTY. Only one guide
strand of the miRNA/miRNA* duplex (miRNA) is selectively loaded into the RNA-induced silencing
complex (RISC) via binding with the ARGONAUTE (AGO) protein, while the passenger strand
(miRNA*) is degraded. The selection of the guide strand is dependent on the 5′ end nucleotide, which
is also important in the AGO binding step. Most plant miRNAs carry the 5′ terminal U (uridine),
which is usually bound by AGO1 RNaseH-like that has an endonuclease activity; it is one of the ten
AGO proteins that are found in Arabidopsis and as many twenty-two in Glycine max [12]. The loaded
mature miRNA in the RISC regulates the target genes mainly at the post-transcriptional (PTGS) level
in two different ways, which results in transcript cleavage or translation repression. The miRNA-RISC
mode of action is dependent on the degree of the sequence complementarity between the miRNA and
their target. Although a high degree of sequence complementarity is required for mRNA cleavage,
there are examples such as miR172, miR171, and miR156, which may regulate the targets APETALA2,
SCARECROW-LIKE PROTEIN4, and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3),
respectively, by both the mechanisms of transcript cleavage and translation repression indicating that
this is not everything. Lastly, it has been found that the bond between a target transcript and a ribozyme
may trigger the translational repression as a miRNA mode of action even for an miRNA-target pair
with a high degree complementarity (reviewed in [13,14]).

It is worth mentioning that the biogenesis pathway is under a strict, very comprehensive
regulation [15] and that one of the factors that affects the miRNA biogenesis machinery are the miRNA
molecules themselves [16]. miR168 is present in all plants and acts as a regulator of AGO1 [17]; while,
in Arabidopsis and Physcomitrella patens, miR162 negatively regulates the DCL1 [18]. Interestingly,
in ancient plants, the regulation of DCL1 by miR162 was not present and the miR162 target site in the
DCL1 gene sequence seems to have been gained during plant evolution [19].

http://www.mirbase.org
http://www.mirbase.org
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Figure 1. A schematic overview of the plant microRNA (miRNA) biogenesis pathway. Pol II: DNA-
dependent RNA polymerase II; MIR: MIRNA gene; pri-miRNA: Primary-miRNA; pre-miRNA: 
Precursor-miRNA; DCL1: DICER-like1; HYL: HYPONASTY LEAVES1; SERRATE; HEN1: HUA 
ENHANCER1; 2′O-CH3: Methylated 2′ hydroxyl group; HASTY; AGO: ARGONAUTE; RISC: RNA 
Induced Complex; D-body: Dicing-body. 

A few years ago, ncRNA was sometimes called a junk RNA, but now we know that ncRNA plays 
a tremendous role in plant development in all/almost all plant processes [20]. miRNAs play crucial 
roles in most aspects of plant growth and development including the response to biotic and abiotic 
stresses and regulating embryogenesis (reviewed in [21,22]). Embryogenesis is a key developmental 
process that leads to the generation of a morphologically simple plant that is composed of only the 
most basic features such as the precursors for all the major tissues and stem cells. Embryo formation 
can be initiated from either a zygote after the fusion of the gametes (zygotic embryogenesis, ZE) or 
from the asexual embryos that are generated from somatic cells (somatic embryogenesis, SE), which 
is usually induced in vitro [23,24]. Zygotic embryo development in the dicot model plant Arabidopsis 
is well described and is a perfect model system to investigate the function of miRNAs in 
embryogenesis. Arabidopsis embryos undergo a simple and predictable pattern of stereotypical cell 
divisions during ZE and their development can be divided into eight different phases: preglobular, 
globular, early heart, late heart, early torpedo, late torpedo, bent cotyledon, and mature green [25–
27]. Each of the ZE stages has morphogenic specific features and a stage-specific modulation of 
distinct miRNAs sets with a particular pattern expression that is responsible for its precise functions 
during the different phases of ZE in dicots and monocots [28–30], so the validation of miRNAs role 
in the ZE process should be examined specifically in every distinct stage. 

Even though somatic embryos during development seem to progress through similar 
morphogenic stages as their zygotic counterparts including the globular, heart-shaped, torpedo, and 
cotyledonary stage [25,31,32], somatic embryos lack the endosperm and seed coat tissues [33], which 
are essential for ZE, while the conditions during in vitro cultures on hormone-rich media may cause 
the misidentification of the miRNAs that are specific for somatic embryos from those that are 
regulated in response to the application of an exogenous growth factor. The evidence on the stage-
specific modulation of miRNAs during SE has also been observed in Arabidopsis, cotton, and coconut 
[34–36]. Notwithstanding, the analyses that are performed are usually limited to the embryogenic vs. 
non embryogenic tissue or to the induction vs. developmental stage of SE. Lastly, a very promising 
paper which refers to the suspensor-derived SE system in Arabidopsis has been published [37], which 

Figure 1. A schematic overview of the plant microRNA (miRNA) biogenesis pathway. Pol II:
DNA-dependent RNA polymerase II; MIR: MIRNA gene; pri-miRNA: Primary-miRNA; pre-miRNA:
Precursor-miRNA; DCL1: DICER-like1; HYL: HYPONASTY LEAVES1; SERRATE; HEN1: HUA
ENHANCER1; 2′O-CH3: Methylated 2′ hydroxyl group; HASTY; AGO: ARGONAUTE; RISC: RNA
Induced Complex; D-body: Dicing-body.

A few years ago, ncRNA was sometimes called a junk RNA, but now we know that ncRNA plays
a tremendous role in plant development in all/almost all plant processes [20]. miRNAs play crucial
roles in most aspects of plant growth and development including the response to biotic and abiotic
stresses and regulating embryogenesis (reviewed in [21,22]). Embryogenesis is a key developmental
process that leads to the generation of a morphologically simple plant that is composed of only the
most basic features such as the precursors for all the major tissues and stem cells. Embryo formation
can be initiated from either a zygote after the fusion of the gametes (zygotic embryogenesis, ZE) or
from the asexual embryos that are generated from somatic cells (somatic embryogenesis, SE), which is
usually induced in vitro [23,24]. Zygotic embryo development in the dicot model plant Arabidopsis is
well described and is a perfect model system to investigate the function of miRNAs in embryogenesis.
Arabidopsis embryos undergo a simple and predictable pattern of stereotypical cell divisions during
ZE and their development can be divided into eight different phases: preglobular, globular, early heart,
late heart, early torpedo, late torpedo, bent cotyledon, and mature green [25–27]. Each of the ZE stages
has morphogenic specific features and a stage-specific modulation of distinct miRNAs sets with a
particular pattern expression that is responsible for its precise functions during the different phases
of ZE in dicots and monocots [28–30], so the validation of miRNAs role in the ZE process should be
examined specifically in every distinct stage.

Even though somatic embryos during development seem to progress through similar morphogenic
stages as their zygotic counterparts including the globular, heart-shaped, torpedo, and cotyledonary
stage [25,31,32], somatic embryos lack the endosperm and seed coat tissues [33], which are essential
for ZE, while the conditions during in vitro cultures on hormone-rich media may cause the
misidentification of the miRNAs that are specific for somatic embryos from those that are regulated
in response to the application of an exogenous growth factor. The evidence on the stage-specific
modulation of miRNAs during SE has also been observed in Arabidopsis, cotton, and coconut [34–36].
Notwithstanding, the analyses that are performed are usually limited to the embryogenic vs. non
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embryogenic tissue or to the induction vs. developmental stage of SE. Lastly, a very promising paper
which refers to the suspensor-derived SE system in Arabidopsis has been published [37], which could
help overcome the problem with tissue heterogeneity taking to SE analyses. In the mentioned system,
the cells undergoing SE are easy to identify so the performed analyses could be done on very specific,
homogeneous tissue fraction of somatic embryos. To date, miRNA analyses have not been performed
on selectively isolated somatic embryos in different stages of development without non-embryogenic
explant tissue. Nevertheless, comparisons of function of miRNAs in somatic versus zygotic embryos
in the future may reveal an miRNA-based regulation network of the embryonic differentiation events,
with common or specific miRNAs to both processes. In the ongoing debate about the ZE and SE
similarities, recent analyses of an embryogenic culture of Arabidopsis and Pinus pinaster showed that
the SE transcriptome seems to be distinctly different from the transcriptome of a zygotic embryo [38,39].
That finding highlighted how important the precise identification of the function of miRNAs in each
of the different phases of both analysed processes is, and the miRNA-dedicated tools for miRNA
functional analysis can make it possible.

In the face of the totipotency that is responsible for what governs a cell to become an embryo,
what limits the switch of the cells to embryogenesis, no matter what kind, is an important question.
Even in in vitro induced SE, not all cells can be reprogrammed. In fact, only a small number of cells
undergo a complete reprogramming. A major issue in plant developmental analysis is to unravel the
mechanisms that operate during embryogenesis that enable a plant to specify its body plan through
tissue differentiation patterns. Research in the last decade has demonstrated that miRNAs have crucial
roles during plant embryogenesis [40]. Plant miRNAs tend to target the genes encoding the key
developmental regulators among which are many transcription factors (TFs) [41], which have been
described as extremely important for ZE and SE [41,42]. Accordingly, Arabidopsis zygotic embryos,
which lack the DCL1 enzyme, arrest early in development [41] also, other miRNA biogenesis enzymes
and, by implication, miRNAs, seem to be important for the embryonic cell differentiation from the
earliest ZE stages including suspensor and embryo development [43–46]. From the other side, it has
been noticed that somatic explants of a dcl1 mutant are unable to initiate embryogenic induction
in vitro [47] suggesting a highly important role of miRNAs also during SE induction and somatic
embryos development. Therefore, a significant part of the knowledge of miRNA engagement in plant
development is based on an analysis of transgenic lines that have a modulated expression of the
miRNA biogenesis-related genes [3]. However, the functions of individual miRNA–target interactions
remain largely unknown. A functional analysis of miRNA molecules and their targets is challenging
due to the existence of multigene families of MIRs that often have redundant functions. The functional
diversity of the genes that are targeted by one mature miRNA adds further complications. Moreover,
difficulties in the interpretation of the results that are obtained from the expression profiling of MIRs,
are related with the diverse modes of the miRNA regulation of a target gene, which involves the
cleavage of the target mRNA or the inhibition of mRNA translation. In the concept of ZE or SE
functional analysis, a few additional aspects should be considered. Zygotic embryos are deeply
embedded within the maternal tissues, and process through the developmental stages with very
specific features also in terms of miRNAs activity. Moreover, the early stages of somatic embryo
development are very tricky to analyse due to the difficulty in distinguishing the cells that are triggered
towards embryogenic development from the other explant cells. Although, some of the problems can
be overcome by using the miRNA-dedicated tools, (i) databases for in silico analysis; (ii) miRNAs
detection and expression approaches; (iii) reporter and sensor lines for a spatio-temporal analysis of
the miRNA-target interactions; (iv) in situ hybridisation protocols; (v) artificial miRNAs; (vi) MIM and
STTM lines to inhibit miRNA activity; and (vii) the target genes resistant to miRNA (Figure 2), which are
described in the next paragraph, and most of them have been optimised for analyses of embryogenesis.
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for miRNA in silico analysis (Table 1), which has been collected in the tools4miRs platform [48] 
(reviewed in [49]) and led, among others, to predictions of novel miRNAs, miRNA targets, or 
miRNA-target interactions. Some of the available databases are general such as the largest miRNA 
database: miRbase [8], whereas others are specific, for example, only collecting the interactions 
between miRNAs and TFs: TransmiR [50] or are dedicated for medicinal plant miRNAs: MepmiRDB 
[51] and grapevine miRNAs: miRVIT [52] (Table 1). More than ten years ago when the bioinformatics 
that is known today was evolving, computational analysis was used to identify novel and conserved 
miRNA molecules [53,54]. Today, bioinformatic analyses are key components of high-throughput 
NGS (next generation sequencing) analysis such as RNA-seq or small RNA-seq (sRNA-seq) and 
without them the genomic approaches would be unthinkable. Advancements in the molecular and 
computational approaches has not only resulted in exponential growth in the discovery and study of 
sRNA but has also provided a deeper insight into the miRNA regulatory networks. With the 
accumulation of huge sRNA sequencing datasets from sRNA-seqs, it is almost impossible to analyse 
every sequence experimentally; however using the bioinformatics tools and databases enables huge 
data sets to be analysed in a short time with minimum costs and without compromising on the 
specificity of the analysis [55–57].
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using the in silico and experimental approaches.

2. Available Plant miRNA-Dedicated Research Tools

2.1. In Silico Analysis

Often the very first steps in the miRNA analysis are taken in front of a computer screen;
the popularity of such solutions is proven by the number of citations of publicly available
databases sources, which can be counted in the thousands. There is a wide variety of databases
and online tools for miRNA in silico analysis (Table 1), which has been collected in the tools4miRs
platform [48] (reviewed in [49]) and led, among others, to predictions of novel miRNAs, miRNA targets,
or miRNA-target interactions. Some of the available databases are general such as the largest miRNA
database: miRbase [8], whereas others are specific, for example, only collecting the interactions between
miRNAs and TFs: TransmiR [50] or are dedicated for medicinal plant miRNAs: MepmiRDB [51] and
grapevine miRNAs: miRVIT [52] (Table 1). More than ten years ago when the bioinformatics that is
known today was evolving, computational analysis was used to identify novel and conserved miRNA
molecules [53,54]. Today, bioinformatic analyses are key components of high-throughput NGS (next
generation sequencing) analysis such as RNA-seq or small RNA-seq (sRNA-seq) and without them
the genomic approaches would be unthinkable. Advancements in the molecular and computational
approaches has not only resulted in exponential growth in the discovery and study of sRNA but
has also provided a deeper insight into the miRNA regulatory networks. With the accumulation of
huge sRNA sequencing datasets from sRNA-seqs, it is almost impossible to analyse every sequence
experimentally; however using the bioinformatics tools and databases enables huge data sets to be
analysed in a short time with minimum costs and without compromising on the specificity of the
analysis [55–57].
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Table 1. The publicly available plant miRNA databases and web tools for in silico analyses [8,48,50–52,58–70].
WT: Wild type; R: References; E: Expression; I: Interaction.

Name miRNA Target I E Updated Website Additional Information R

tools4miRs
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2.2. miRNA Profiling—Isolation, Detection, and Quantification Methods

By taking advantage of in silico analysis, identifying a miRNA, miRNA target, or miRNA-target
pair that is engaged in the process of interest could be simple, rapid, and productive. However,
a scientific hypothesis that is based on in silico analysis should be validated.

Once a golden standard, the oldest method for miRNA detection is the Northern blot [5], which can
not only be used for discovery but also for the validation and expression of miRNAs. To date, a variety
of Northern blot protocols have been established with RNA or DNA radio-labelled and fluorescent
oligonucleotides as well as with LNA probes (lock nucleic acid), which have a high hybridisation
affinity [71,72].

Nowadays, there is a tendency to use the RT-qPCR (quantitative reverse transcription PCR)
methods for detecting miRNAs and analysing their expression, especially to verify other methods such
as the Northern blot. The detection of miRNAs is affected by their small size and the lack of a poly(A)
tail and 3′ end-modifications. To avoid these limitations, the stem-loop RT-qPCR method has been
designed to detect and quantify mature miRNAs in a precise and reliable manner. This method is based
on a miRNA-specific stem-loop RT primer that is hybridised to miRNA and then reverse transcribed.
The RT product can then be amplified and monitored in a qPCR reaction using a miRNA-specific
forward primer and a universal reverse primer. The developed protocols enable the profiling of
mature miRNA accumulation and high-throughput analysis of the miRNA expression, which has been
successfully used in the functional analysis of miRNA during ZE and SE [35,73–77].

The availability of many plant-dedicated protocols [73,78–80] and commercial kits (miScript
Plant RT Kit, TaqMan Assay, and the mirVanaTM qRT-PCR-miRNA Detection Kit) offers a picture
of the popularity of the RT-qPCR technique. It is impossible to find a study that describes
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the miRNA-target role in plant embryogenesis without a single RT-qPCR analysis, which is also
broadly used as a control for the results obtained from high-throughput data such as microarrays
and NGS. miRNA profiling using NGS has revolutionised miRNA analysis and there are still
new instruments, sequencing platforms, and new methods that appear, such as sRNA-seq using
single-cell sequencing [81] which provide new opportunities for analyses also during embryogenesis.
Until now, sRNA-seq analyses have been performed during embryogenesis in Picea sprus [82],
P. pinaster [39], Picea glauca [30], Triticum aestivum [83], Arabidopsis [28,30,35,38,41,84], Dimocarpus
longan [85], Zea mays [86], Citrus sinensis [87], Larix leptolepis [88], Gossypium hirsutum [89,90],
Phyllostachys heterocycla [91], Oryza sativa [92], and Lilium pumilum [93] (for SE reviewed in [94]).
Plant embryogenesis is challenging to analyse due to the small, early embryos that are deeply
embedded in the maternal tissues, which often results in RNA contamination from maternal tissue,
and due to difficult distinguishing of the cells that are undergoing SE within an explant tissue, protocols,
which are specifically dedicated for ZE and SE, have been developed and successfully used for miRNA
analysis [28,38,84,95]. Since the low-input small RNA sequencing (sRNA-seq) method, which can
be used to generate the profiles of miRNAs from as little as one to five ng of RNA and INTACT
(isolation of nuclei tagged in specific cell types) and FANS (fluorescence-activated nuclei sorting)
which permit the isolation of nuclei from cells that are undergoing SE or ZE from the majority of
non-embryogenic cells from an explant, it makes a high-throughput analysis during embryogenesis
much more accurate [28,84,96–99]. It is worth mentioning the requirement to share the data from NGS
during the publication process, which ensures access to big data without performing an experiment.
Lastly, an online website, Arabidopsis Small RNA Database (ASRD, http://ipf.sustech.edu.cn/pub/asrd),
which permits more than 2000 publicly available Arabidopsis sRNA libraries to be queried, has been
developed [100].

In addition to selecting the appropriate miRNA detection methodology, another bottleneck is
the RNA isolation step, which is highly relevant and is both species- and tissue-dependent. RNA or
dedicated kits/methods for isolating the sRNA fraction are available to analyse the miRNA expression
in explants/tissues that are undergoing SE or ZE. The TRIzol™ Reagent is primarily used in studies of
D. longan [85,101], Hordeum vulgare [102], and Arabidopsis [62,63,79]; Quick-RNA MiniPrep is used
in studies of Z. mays [86,103]; Plant/Fungi Total RNA purification is used in studies of P. pinaster [39];
C-TAB is used in studies of L. pumilum [93], and the mirVanaTM miRNA Isolation Kit is used in studies
of Arabidopsis [35,84], Acacia crassicorpe [104], and T. aestivum [83] to isolate RNA with an sRNA
fraction to analyse miRNAs during embryogenesis.

2.3. Monitoring the MIR/miRNA Localisation and Activity

MIR expression can be spatio-temporal depending on the species, organ, tissue,
developmental stage, or stress conditions, which has been described, among others, in Arabidopsis,
tobacco, soybean, rice, and wheat [105–110]. The precise localisation of mature miRNAs in a tissue
or organ is extremely important for understanding the biological function of the miRNA molecules.
The fact that the SE induction occurs in the upper part of explants, preferentially on the adaxial side
of the cotyledons; somatic embryos can be of a single-cell or multicellular origin and they develop
asynchronously from both the protodermal and subprotodermal cell layers [31,111]; and heterogeneous
cell populations of explants undergoing ZE and SE must all be taken into account, which often makes the
results that are obtained from transcriptomic analysis on whole explants difficult to interpret. Therefore,
identifying the embryogenesis-associated miRNAs or genes requires insight into the spatio-temporal
expression patterns of the candidates. Usually, a determination of the spatio-temporal expression
patterns of miRNAs relies on indirect detection using the reporter lines that have MIR promoter fusions
to GUS (glucuronidase) or fluorescent proteins such as GFP or YFP (Figure 3A). MIR reporter lines have
been used in the functional analysis of miRNAs: miR160, miR166, miR167, miR319, miR393, and miR396,
which are engaged in the regulation of embryogenic potential in the somatic cells and zygotic embryo
development in Arabidopsis [28,112–117]. However, small RNAs such as miRNA can move over short
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and long distances within cells, tissues and organs and localizing it may be different than finding the
site of the corresponding MIR gene expression [118–121]. The overwhelming majority of reporter
lines monitor a promoter activity rather than lead to the localisation of the corresponding transcript,
in this case, mature miRNA. Moreover, transgenic reporter-based methods are limited due to the
time-consuming steps of transgenic plant generation. Methods such as sRNA in situ on sections or
whole mount in situ (WISH), which are designed for sRNA, including miRNA, that has been optimised
and used for the functional analysis of miRNA in developing zygotic and somatic embryos seem
to be more accurate for the functional analysis of miRNAs. The developed protocols are based on
digoxigenin or fluorescent-labelled LNA probes and an sRNA-specific post-fixation step using EDC
as a cross-linker to increase the sensitivity and specificity of the hybridisation. It is even possible to
co-localise two sRNA molecules in one sample, which has been described during the development of
anthers in maize and litchi. The probe can be a sequence of a mature miRNA molecule or mRNA that is
targeted by the candidate miRNA [115,122–125]. Those methods enabled the localization of the miR156,
miR167, and miR390 accumulation and the engagement of miR160 and miR165/166 in the acquisition
of embryogenic capacity in Arabidopsis somatic cells to be determined [115,126] and miR160, miR166,
miR167, miR172, and miR390 in the bent cotyledon zygotic embryos in Arabidopsis to be detected [122].
The WISH-investigated accumulation of mature miR390 has been also linked with lateral root and
primary root meristem formation that has a genetic convergence into in vitro tissue dedifferentiation
and callus formation [127], which covers the hypothesis of miR390 engagement in the developing
somatic embryos that is based on the results of the WISH [115].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 24 
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Figure 3. The constructs that were used for the spatio-temporal analysis of the miRNAs; (A) the reporter
line construct with the promoter of choice (usually a promoter of the MIRNA gene); (B) the miRNA
sensor line construct that was used for the analysis of miRNA activity with the miRNA target site and
the control construct (C) for the sensor line analysis. FP: Fluorescent protein; c.s.: Coding sequence.

The discovery of the site of miRNA accumulation was a big step forward in acquiring knowledge
about the biological function of the analysed miRNA, while the sensor lines have been developed to
establish the miRNA activity in the tissue/cells in which it is accumulated. The design of a sensor
construct contains a 20-22-nt miRNA target site is in the 5′UTR region of a GFP coding sequence under
the promoter of choice (Figure 3B) [41]. An almost identical construct without the miRNA target site (the
gap is filled by 21-nt non-genome matching sequence) is used as the control (Figure 3C). The expected
observation is that a weaker GFP signal will be produced by a transgenic sensor line in the tissue in
which the promoter is expressed and that miRNA will mediate the target repression than in the control
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in which the GFP signal is not disrupted by the miRNA activity. To date, transgenic sensor lines have
been used to validate the miR156 repression of SPL10 and SPL11 (SQUAMOSA-PROMOTER BINDING
PROTEIN-LIKE), miR160-ARF17 (AUXIN RESPONSE FACTOR17), miR165/166-PHB (PHABULOSA),
miR167-ARF8, and miR319-TCP4 during the development of the Arabidopsis zygotic embryo and
ovule [28,41,114]. In addition to their use in the miRNA functional analysis in embryogenesis,
sensor lines have also been successfully used to verify the role of miR156-SPL10 in the root meristematic
cells and in root-derived shoot regeneration in Arabidopsis [128], which are processes that genetically
resemble in vitro induced embryogenesis from somatic cells [127]. Moreover, sensor constructs have
been used in miR156-SPL and miR159-MYB analyses in Rosa hybrida petals [129]. Sensor lines are broadly
used in functional analyses of miRNA molecules in mammalian cells, for example, to simultaneously
analyse the high-throughput miRNA activity for hundreds of miRNAs using a Sensor-seq assay [130].
This type of reporter sensor lines might be very helpful for the miRNA functional analysis because it
reveals the time and site of the miRNA target repression.

2.4. Artificial miRNA Molecules

Artificial miRNAs (amiRNA) are extensively used in the field of plant molecular biology as a
versatile tool of RNAi methods. Their mode of action is based on the miRNA repression of a targeted
gene expression, which is considered to be one of the highly conserved mechanisms in the plant
kingdom (reviewed in [131]). Similar to miRNAs, amiRNAs are short 21 nt, single-stranded sRNA
molecules that are generated from endogenous pre-miRNA structures (Figure 4). The mature miRNA
sequences of the miRNA/miRNA* duplex within the pre-miRNA have to be replaced by the designed
amiRNA/amiRNA* sequences. The construct that is generated under the promoter of choice that is
cloned into a vector has to be introduced to a plant via a genetic transformation procedure. Then, the
built-in amiRNA sequence in the endogenous pre-miRNA structure is processed through the standard
miRNA biogenesis pathway. The first protocols for amiRNA design were published only four years
after the discovery of miRNAs in plants [132] and since then, new solutions that increase efficiency, cut
the cost, time consumption, and broaden the spectrum of applications of this technique are constantly
appearing [133–137].

The design of a candidate amiRNA that is to be used for analysis has been simplified and automated
by a variety of web tools for amiRNA design such as Web MicroRNA Designer (WMD3, http://wmd3.
weigelworld.org/cgi-bin/webapp.cgi), AmiRNA Designer (http://www.cs.put.poznan.pl/arybarczyk/

AmiRNA/), and the Plant Small RNA Maker Suite (P-SAMS, http://p-sams.carringtonlab.org) and
there are published protocols that provide a step-by-step procedure and the necessary oligonucleotide
sequences for a broad range of mono- and dicot-plant species [132,138–141]. amiRNAs are commonly
used as an alternative to the knockout transgenic lines. Since the redundant multi-gene families
of MIRs which additionally are short, there are difficulties in generating MIR knockout mutants,
except for a few miRNAs, the advantages of amiRNAs has been applied to repress endogenous MIR
genes [142]. The application of the amiRNA approach enabled the repression of one or an entire family
of MIRs. At this time, only two analyses have been performed on zygotic or somatic embryos using
the amiRNA approach. One of them presented amiRNAs as a valuable tool in the functional analysis
of miR164, miR165/166, miR167, and their targets in Arabidopsis, tomato, and tobacco during the
embryonic meristem establishment in zygotic embryos, the differentiation of the lateral organs, vascular
development, flowering, and cell growth [143], while the other showed the functionality of amiRNAs
that were designed based on the Arabidopsis pre-miR319 in targeting the coat protein of Grapevine
fanleaf virus (GFLV) in grapevine somatic embryos. GFLV causes a fanleaf degeneration disease,
which is a major threat to grapevine production and amiRNA seems to be useful for engineering
GFLV-resistant grapes in the future [144]. Lastly, the company Thermo Fisher Scientific introduced
the mirVana™ miRNA inhibitors, which are chemically modified, single-stranded RNA molecules
that are designed to specifically bind to and inhibit endogenous miRNA and to enable the miRNA
functional analysis by downregulating the miRNA activity. These ready-to-use miRNA inhibitors,
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in other words, the amiRNAs are designed for a wide range of plant species and miRNA families.
The search tool for a candidate sequence is easy to use and is available online at the company website
(https://corporate.thermofisher.com/en/home.html). Furthermore, the application of amiRNA could
become a promising tool for determining the contribution of specific miRNA in embryogenesis and
other biological aspects of plant development, although the generation of transgenic plants is a
significant limitation.
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2.5. Target Mimicry—A Method to Regulate the miRNA Activity

A promising alternative technology for the MIR knockdown lines was developed in 2007 when
Franco-Zorrilla et al. described the miRNA target mimicry (TM), an endogenous mechanism for the
transcriptional regulation of miR399 activity in Arabidopsis [145], which are also called miRNA decoys,
sponges, or competing endogenous RNAs (ceRNAs), and were later also found for other miRNAs in
Arabidopsis and rice [146]. The mechanism is based on the presence of the long non-protein coding
mRNA (lncRNA) that carries the 23-nt partially complementary target site for miRNA, which led to the
sequestration of this miRNA and the arrest of its activity for the correct miRNA target, after which the
decrease in miRNA simultaneously led to an increased expression of the miRNA targets (Figure 5A).
Today, a TM database PeTMbase (http://petmbase.org) that collects the endogenous TMs for 11 plant
species [147], which makes the miRNA functional analysis easier, is available. A few years after
the discovery of miRNA TM [145], Yan et al. described a technique based on TM but with an even
higher efficiency in silencing the miRNA activity—the short tandem target mimic (STTM) [148,149].
The concept of STTM is based on the specific structure of the construct that is built with two short,
24-nt non-cleavable miRNA target sites that are separated by a 48-88-nt linker, which leads to the
degradation of the targeted miRNAs by small RNA-degrading nucleases (SDNs) (Figure 5B).

The first contrivance of TM activity was used to generate a large-scale collection of MIM lines
for 73 MIR families in Arabidopsis. Using the target-mimicry approach to reduce miRNA for a
loss-of-function analysis led to the successful knockdown activity of many miRNAs [150]. It is worth
mentioning that the miRNA target site is not the only key element in the TM sequence. A recent
study showed that minor mutations (nucleotide substitutions) in the flanking sequences of the miRNA
binding sites in lncRNA that have serving as a backbone for TM can strongly enhance or reduce

https://corporate.thermofisher.com/en/home.html
http://petmbase.org
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(target miRNA-dependent) TM-miRNA interaction and thus the effectiveness of the method [151].
An analysis of functions of miRNAs using the MIM lines showed that miR167, which regulates ARF6
and ARF8 may be engaged in ZE as MIM167 seeds were retained in the siliques and had an impaired
development [150]. The hypothesis about the involvement of miR167 in regulating zygotic embryo
development was also indicated in other analyses in Arabidopsis [28,41,152,153] and loblolly pine [29].
The importance of miR167-ARF6/ARF8 in the acquisition of embryogenic competence during SE has also
been indicated in cotton by a decrease in the miR167 activity, which led to enhanced callogenesis and
an increased production of somatic embryos [154], while an overexpression of MIR167 genes inhibited
the formation of somatic embryos in Arabidopsis, which showed that miR167 negatively regulates
SE induction [112]. Moreover, Lin et al. identified the expression of two endogenous TM transcripts
that modulate the miR167 activity during SE in D. longan, which resulted in increased expression
of ARF6 and ARF8, thus indicating the important role of miR167-ARF6/ARF8 in the development
of somatic embryos [155], which is in line with previous analyses that were carried out using other
available functional genomics tools ([75,156,157] reviewed in [94]). Moreover, the TM approach has
been successfully used for the functional analysis of miR156, miR160, miR166, miR393, miR396, miR398,
and miR1432, thereby indicating their importance in regulating sexual and asexual embryogenesis
in barley [102], tomato [158,159], rice [160,161], and Arabidopsis [115,126,162,163]. Note that MIMs
and STTMs have the advantage of being able to target miRNAs from multiple redundant MIR genes,
but that they also have a disadvantage that may not result in a complete loss of function, especially
in MIMs.
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2.6. Transcripts That Are Resistant to miRNA Cleavage

The role of miRNA is usually indirectly elucidated based on knowledge about the function of
their target genes. The miRNA-target transcripts that are resistant to the miRNA action can be used to
unravel the relationship between miRNA and putative targets. Multiple silent mutations are created
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within the miRNA binding site of a candidate target gene, which gives it the resistance to miRNA
regulation (Figure 5C) [164]. Then, a functional analysis of miRNA-mediated regulation is elucidated by
comparing the expression effect of a miRNA-resistant target vs. its wild-type counterpart. It seems that
the first miRNA-resistant line was generated accidentally via EMS mutagenesis before the discovery of
plant miRNA. The phb gain-of-function mutant phenotype is believed to be caused by PHB mRNA
resistance to the miR166-directed cleavage, which results in the overexpression of PHB [165–167].
Unintentionally, that mutant also became the first use of miRNA-resistant target mRNA in a miRNA
functional analysis of the development of zygotic embryos in Arabidopsis [166,167] and recently
during SE induction [126]. Later, this approach was applied to describe the engagement of miR156/157,
miR160, miR164, miR165/166, miR167, miR319, miR393, and miR396 in ZE regulation in Arabidopsis
and rice [28,41,113,117,168–173]. Except for the phb1 line, there are only a few examples of using
miRNA resistance in the SE analysis. An investigation of the ability of the mARF16 line, which carries
the miR160-resistant form of ARF16, to acquire an embryogenic potential contributed to the description
of an important role of miR160 in regulating the developmental plasticity of Arabidopsis cells under
in vitro conditions [126]. Additionally, an analysis of a transgenic line that had an overexpression
of a miR393-resistant form of TIR1 (TRANSPORT INHIBITOR1, mTIR1) showed an enhanced auxin
sensitivity and pleiotropic effects on plant development including the overproduction of lateral
roots [174], which was caused by the suppression of the miR393 activity. The significance of the
auxin sensitivity that is regulated by miR393 and TIR1 has also been indicated during SE induction
in Arabidopsis. Moreover, the indirect use of the miRNA-resistant line in a functional analysis of
SE may be elucidated based on a functional analysis of miR847, which targets the IAA28 encoding
auxin-responsive protein. The miR847 cleavage-resistant mutant mIAA28 showed the engagement of
the miR847-IAA28 pair in regulating meristematic competence, which determines the duration of cell
proliferation and lateral organ growth in Arabidopsis [175]. Moreover, the target genes mutated at
their miRNA target site and thus became less sensitive to miRNA inhibition, have been linked with
reporter genes and represent a powerful approach for unravelling the contribution of miRNAs and
their targets during the ZE and SE processes in a spatio-temporal manner. The pPHB::muPHB-GFP
line, which carries the mutated, version of the PHB transcript resistant to the miR165/166 cleavage,
was used to investigate the PHB signal with and without the miR165/166 regulation in the developing
zygotic embryos, ovule, and in the somatic cells undergoing the embryogenic transition that had been
induced in vitro in Arabidopsis [113,114].

The fact that miRNAs usually have more than one target and that the overexpression of a
miRNA-resistant target may not reveal a complete picture of the miRNA functions and phenotypes
corresponding to transgenic artifacts must be considered [176].

3. Conclusions and Future Perspectives

Although credible functional analyses of the role of the miRNA molecules in regulating ZE and
SE may be tricky, nowadays with the variety of specific miRNA-dedicated tools, they are within reach.
All the methods mentioned in this review have some advantages and limitations, making a decision of
choosing a proper research tool the crucial step on the way to obtain the credible and reliable results.
There is no gold standard in the preparation of a miRNA’s functional analysis ‘pipline’ for ZE or SE
processes. Based on the analysed species, specific miRNAs or/and targeted genes, and stage of the
ZE/SE process, the proper tools should be considered. In my opinion, the best toolbox to use in order
to find and check the engagement of miRNAs in ZE or SE in a model plant would be isolation of
the sRNA fraction from as much specific tissue fraction as possible, for example, from the manually
isolated embryos [97,177] or from a cell type-specific fraction obtained by fluorescence-activated cells or
nuclei sorting (FACS; FANS) or INTACT approaches [26,84,96]. Then, the low-input sRNA-seq can be
performed [28] and the obtained results should be randomly validated by the real-time quantification
preceded by stem-loop RT-PCR [76,77]. In the next steps, the localization of the candidate miRNA
should be examined in different developmental stages of ZE/SE by in situ hybridisation with LNA
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probes and EDC cross-linking [115,122,125], and their activity by using the miRNA sensor lines
should be verified [28,41]. To reveal the function of the candidate miRNA the examination of MIR
overexpression lines or amiRNA lines [132] to validate the effect of accumulation of miRNA vs. STTM
lines [161] (for whole miRNA families) or the lines harboring miRNA-resistant targets [164] resulting
in the abolition of the miRNA function should be performed.

Generally, analyses of the miRNAs should be comprehensive and a multitool that combines,
e.g., miRNA spatial and temporal analysis, miR-resistant target constructs, and miRNA mimicry,
to unravel the miRNA-target module in the investigative process. To date, the variety of functional
genomic miRNA’s research tools have been used to unravel the engagement of miRNAs in zygotic and
somatic embryogenesis process and within them the approaches that are based on in situ hybridisation
and mimicry have been used most often. All the research tools/methods discussed in this review,
that have been used in the ZE and SE analysis of miRNAs and their target genes are summarized in
Table 2. However, despite major efforts of scientists over the past several years, a complete miRNA
functional characterisation remains an inscrutable map that is yet to be explored. In the future,
the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats, CRISPR-associated
protein9 (Cas9)) gene-editing technology will probably be feasible for systematically generating MIR
knockout mutants to study their roles in regulation of plant embryogenesis. To date, CRISPR has been
used to knock out the MIR1514, MIR1509, MIR815, MIR820, MIR169, and MIR827 genes in soybean,
rice, and Arabidopsis, respectively [178–180].

It is worth mentioning the usefulness of the described tools not only in miRNA functional analyses
but also as an effective approach for improving the agronomic traits in model and crop plants (reviewed
in [181–183]).

Table 2. The tools that have been successfully used in the functional analyses of miRNAs during zygotic
(ZE) and somatic embryogenesis (SE). Some of the analyses are considered to be indirect (~) approaches
for revealing the function of miRNAs in the mentioned process. amiRNA: Artificial miRNA; STTM: Short
tandem target mimic; MIM: Mimic; eTM: Endogenous target mimic; rGEN: miRNA-resistant target gene.

Investigated miRNA
Feature Method miRNA miRNA-Target Species ZE/SE Reference

LOCALIZATION

MIRNA
Reporter

miR165/166, miR167 - A. thaliana ZE [112–114,117,153]

miR167, miR393,
miR396 - A. thaliana SE [47,115,116]

in situ
Hybridisation

miR156, miR160,
miR166, miR167,

miR390
- A. thaliana SE [115,126]

miR156/157, miR158,
miR159, miR160,
miR161, miR166,
miR167, miR168,
miR169, miR172,
miR390, miR396,
miR449, miR472

- A. thaliana ZE [28,122,153]

LOCALIZATION &
ACTIVITY

miRNA Sensor

miR156/157, miR160,
miR165/166, miR167,

miR319

SPL10,SPL11;
ARF17;PHB;
ARF8;TCP4

A. thaliana ZE [28,41,114]

miR156, miR159 SPL7;MYB (RU13577) Rosa rugosa ~ZE [129]

miR156 SPL10 A. thaliana ~SE [128]

mGENE+GUS miR167 ARF6, ARF8 A. thaliana ZE [117]

mGENE+GFP
miR165/166 PHB A. thaliana ZE [113,114]

miR165/166 PHB A. thaliana SE [126]
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Table 2. Cont.

Investigated miRNA
Feature Method miRNA miRNA-Target Species ZE/SE Reference

ACTIVITY

amiRNA

miR164, miR166/166,
miR167 - A. thaliana ZE [143]

miR164, miR165/166 - Solanum
lycopersicum ZE [143]

miR319 - Vitis Vinifera SE [144]

MIM

miR156, miR157,
mir159, miR160,

miR164, miR165/166,
miR169, miR170,
miR171, miR172,
miR319, miR393,

miR394

- A. thaliana ZE [150]

miR393 - Hordeum
vulgare ZE [102]

miR167 - Gossypium
arboreum ZE [154]

eTM miR167 - Dimocarpus
longan SE [155]

STTM

miR160, miR396 - S.
lycopersicum ZE [158,159]

miR160, miR172,
miR398, miR1432 - Oryza sativa ZE [160,161]

miR165/166 - A. thaliana ZE [162,163]

miR156, 165/166 - A. thaliana SE [115,126]

mGENE

miR156, miR160,
miR164, miR166,
miR167, miR319

SPL10, SPL11; ARF10,
ARF17; CUC1; CUC2;

PHB; ARF6, ARF8;
TCP4

A. thaliana ZE [28,41,117,152,166–
168,170,171,173]

miR160, miR396c ARF18; GRF4 O. sativa ZE [169,172]

miR160 ARF10 A. thaliana SE [126]

mir847 IAA28 A. thaliana ~SE [175]
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Abbreviations

AFB1 AUXIN F-BOX PROTEIN1
AGO ARGONAUTE
amiRNA artificial miRNA
ARF AUXIN RESPONSE FACTOR
ceRNA competing endogenous RNA
CRISPR clustered regularly interspaced short palindromic repeats
DCL1 DICER-like1
EDC N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride
eRNA enhancer RNA
FANS fluorescent-activated nuclei sorting
FACS fluorescent- activated cells sorting
GFLV Grapevine fanleaf virus
GFP green fluorescent protein
GUS glucuronidase
HEN1 HUA ENHANCER1
HYL HYPONASTY LEAVES1
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INTACT isolation of nuclei tagged in specific cell types
LNA lock nucleic acid
MIR MIRNA gene
miRNA microRNA
mRNA messenger RNA
ncRNA non-coding RNA
NGS next generation sequencing
PAR promoter-associated RNA
PHB PHABULOSA
piRNA PIWI-interacting RNA
Pol II DNA-dependent RNA polymerase II
Pre-miRNA precursor miRNA
Pri-miRNA primary miRNA
PTGS post-transcriptional gene silencing
RISC RNA-induced silencing complex
RNAi RNA interference
rRNA ribosomal RNA
SDN small RNA-degrading nuclease
SE somatic embryogenesis
siRNA small interfering RNA
snoRNA small nucleolar RNA
snRNA small nuclear RNA
SPL SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE
sRNA small RNA
STTM short tandem target mimic
TF transcription factor
TIR1 TRANSPORT INHIBITOR1
TM target mimicry
tRNA transfer RNA
U uridine
UTR untranslated region
YFP yellow fluorescent protein
ZE zygotic embryogenesis
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