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Abstract: In red blood cells, hemoglobin iron represents the most plausible candidate to catalyze
artemisinin activation but the limited reactivity of iron bound to hemoglobin does not play in favor
for its direct involvement. Denatured hemoglobin appears a more likely candidate for artemisinin
redox activation because it is expected to contain reactive iron and it has been described to release
free heme and/or iron in erythrocyte. The aim of our study is to investigate, using three different
methods: fluorescence, electron paramagnetic resonance and liquid chromatography coupled to mass
spectrometry, how increasing the level of accessible iron into the red blood cells can enhance the reactive
oxygen species (ROS) production derived from artemisinin. The over-increase of iron was achieved
using phenylhydrazine, a strong oxidant that causes oxidative stress within erythrocytes, resulting in
oxidation of oxyhemoglobin and leading to the formation of methemoglobin, which is subsequently
converted into irreversible hemichromes (iron (III) compounds). Our findings confirmed, using the
iron III chelator, desferrioxamine, the indirect participation of iron (III) compounds in the activation
process of artemisinins. Furthermore, in strong reducing conditions, the activation of artemisinin
and the consequent production of ROS was enhanced. In conclusion, we demonstrate, through the
measurement of intra-erythrocytic superoxide and hydrogen peroxide production using various
methods, that artemisinin activation can be drastically enhanced by pre-oxidation of erythrocytes.

Keywords: artemisinin; phenylhydrazine; oxidized erythrocytes; superoxide radicals; hydrogen
peroxide; LC-MS

1. Introduction

Dioxygen and iron constitute two of the major components of human erythrocytes and for this
reason red blood cells (RBCs) have the potential to catalyze the production of highly toxic reactive
oxygen species (ROS). Most of the major mutations in human erythrocytes linked to an iron overload
and the subsequent production of ROS are hemoglobinopathies, such as thalassemia [1] and sickle
cells disease (SCD) [2,3]. Iron commonly mediates ROS production, where iron cycles back and forth
between +2 and +3 states and in the process generates •OH free radical via the Fenton reaction [4].
In the erythrocyte, where •OH free radical will lead to Hb denaturation and further release of heme
iron, this process can be autocatalytic, leading an ever increasing oxidative stress once it is initiated
by the release of threshold amounts of free iron [4,5]. Not surprisingly, healthy RBCs are equipped
with multiple mechanisms to inactivate potent oxidants (superoxide dismutase, catalase, glutathione
peroxidase, peroxiredoxins, glutathione, methemoglobin (metHb) reductase, etc.), thereby suppressing
this auto-catalytic expansion of free iron, allowing them to circulate for 120 days before oxidative stress
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begins to promote their demise. In the case of hemoglobinopathies, antioxidant compounds were
reported as a therapeutic strategy [6–8].

On the contrary, one of the most potent drugs involving the production of ROS mediated by iron is
artemisinin (ART) and its derivatives, which contain an endoperoxide moiety that can be activated by
iron to form cytotoxic reactive species. This characteristic was applied for many pathologies including
malaria [9], cancer [10] and osteoporosis [11].

Malaria parasites experience a special challenge with oxidative stress when they invade a human
RBC and attempt to use the amino acids in hemoglobin (Hb) for proliferation of their progeny [12].
As Hb is consumed, free heme is released. The solution evolved by the parasite has been to polymerize
released heme into a polymer termed hemozoin that is largely inactive in catalyzing ROS production [13].
The selectivity of artemisinins (ARTs) (the most potent antimalarial drugs currently in the clinic) for
parasitized erythrocytes derives from their requirement of free iron to mediate their activation [14],
whereas the abundance of accessible ferrous iron in healthy RBCs is too low to mediate opening of
artemisinin’s endoperoxide ring, suggesting that this process occurs rapidly in parasitized cells where
the iron content is much higher [15–17]. In addition, it should be borne in mind that the existence of a
free ferrous (Fe2+)-heme during hemoglobin degradation and hemozoin formation has never been
unequivocally demonstrated [18,19].

In cancer, the therapeutic strategy relies on the fact that cancer cells contain significantly more
intracellular free iron than normal cells making them more sensitive to artemisinin [14]. It has been
shown that artemisinin and its analogs selectively cause apoptosis in multiple cancer cell lines [10,20–26].
Moreover, artemisinin loaded with transferrin in liposomes demonstrated anticancer activity [27].
A similar mechanism of action for artemisinin has been observed for diseases associated to osteoporosis.
In detail, ARTs revealed osteoprotective effects associated with excessive intracellular production of
ROS, which leads to inhibition of osteoclast differentiation (responsible for bone loss) by blocking
pathways involved in the receptor activator of nuclear factor kappa-B ligand (RANKL) and finally
promoting osteogenesis [11]. Considering the characteristic of high levels of intracellular iron in
osteoclasts, ART compounds could inhibit osteoclast differentiation via mechanisms associated with
intracellular iron, as assumed for the ARTs treatment in malaria parasites.

There is consensus on the need of reactive iron to generate pharmacologically active artemisinin
radical species. In malaria, hemoglobin iron represents the most plausible candidate to catalyze
artemisinin activation but the limited reactivity of iron bound to hemoglobin does not play in favor for
its direct involvement [28]. Denatured hemoglobin appears a more likely candidate for artemisinin
redox activation because it is expected to contain reactive iron and it has been described to release free
heme and/or iron in erythrocytes [28]. Hence, one strategy that can be used to increase the level of iron is
to oxidize RBC using phenylhydrazine. It is well known that phenylhydrazine (PHZ) causes oxidative
stress within erythrocytes resulting in oxidation of oxyhemoglobin leading to the formation of metHb,
which is subsequently converted into irreversible hemichromes (HMCs) that lead to the precipitation
of denatured hemoglobin in the form of Heinz bodies [29]. Methemoglobin has also been reported
as a redox-responsive nanocarrier to trigger the in situ anticancer ability of artemisinin [22]). Li et al.
demonstrated that the encapsulation of ART into the metHb nanocarrier activated iron-mediated
free radical generation and, consequently, triggered an elevated in situ tumor-reducing capacity,
proving the promising anticancer ability of the metHb-ART complex. In this paper, we demonstrate,
using three different methods: fluorescence, electron paramagnetic resonance (EPR) and LC-MS,
how modifying the redox state of red blood cells can potentiate the production of ROS derived from
artemisinin activation.
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2. Results and Discussion

2.1. Global Evaluation of ROS Production for Oxidized RBCs in the Presence of Artemisinins

The oxidation of RBCs was performed using phenylhydrazine (PHZ) as previously reported [30].
PHZ is described as the most potent oxidizing agent as it can oxidize leading to the production of a
number of oxidative products [31,32]. The global measurement of ROS produced in the presence of
artemisinins was carried out initially using the permeable fluorescent probe CM-H2DCFDA. The amount
of ROS was first evaluated in the presence of 200 µM artemisinin (ART) or dihydroartemisinin
(DHA), the active metabolite of all artemisinin compounds, after pre-treatment (4 h) with increasing
concentrations of PHZ. The corresponding results are presented in Figure 1A. The dosage of 200 µM of
ARTs was selected in order to be able to discriminate each condition.
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Figure 1. Reactive oxygen species (ROS) levels measured using CM-H2DCFDA. (A) Red blood cells
(RBCs) treated with a fix concentration of artemisinin (ART) and dihydroartemisinin (DHA) (200 µM)
after pre-treatment with PHZ (0.1–1 mM) and (B) RBCs pre-treated with 1 mM PHZ and then ART or
DHA (10–200 µM). Data are the average ± SD of 5 independent experiments. Significant differences to
untreated RBCs at * p < 0.05; ** p < 0.001.

Figure 1A shows that the higher the concentration of phenylhydrazine, the higher the production
of ROS in the presence of ART or DHA. There were no significant differences between ARTs. Moreover,
the production of ROS increased exponentially at a high dose of PHZ. In the absence of ARTs, a linear
PHZ dose-relationship was observed too. This phenomenon is in agreement with previous studies
which demonstrated that PHZ and its derivatives slowly oxidize to form ROS, the reaction catalyzed by
trace transition metal ions and, consequently, induced the formation of oxidized hemoglobin [31,33–35].

To confirm this interdependency between the oxidation level of erythrocytes and the amount
of artemisinin in the production of ROS, the same set of experiments was carried out for different
concentrations of ARTs at the fixed PHZ concentration of 1 mM, identified as the highest concentration
to oxidize RBCs without promoting lysis [30,36]. The corresponding results are presented in Figure 1B.
These results indicate, as expected, that the amount of ROS originating from the metabolization of ART
was drastically increased for PHZ-treated RBCs compared to the untreated ones. Moreover, in the
absence of the PHZ treatment, the level of ROS was very weak and did not increase with ARTs, indicating
the need of hemoglobin byproducts in the activation of artemisinin derivatives. Indeed, oxidation of
hemoglobin produces metHb that is followed by oxidative denaturation and conformational distortions
to form hemichromes and heme [37–41]. The same phenomenon is described in pro-oxidant mutations,
such as SCD, where accelerated denaturation of Hemoglobin S hemichrome formation and release of
heme may collectively induce oxidative stress within the RBC. Antioxidant compounds have been
produced in order to prevent oxidative stress presenting antisickling effects [7,8,42].



Int. J. Mol. Sci. 2020, 21, 4799 4 of 12

This conversion generates accessible iron for the activation of artemisinin via the endoperoxide
bridge and the subsequent production of ROS [43]. In these conditions, the production of ROS originating
from artemisinin is enhanced when increasing the iron pool available into the RBCs as it is the case in
malaria-infected erythrocytes where the degradation of hemoglobin-releasing heme takes place [44,45].
In light of these results, to undoubtedly demonstrate the implication of the RBC oxidation byproducts
in the artemisinin activation, the ROS produced were specifically detected and quantified using LC-MS.

2.2. Specific Evaluation of Superoxide Radicals and Hydrogen Peroxide in Oxidized RBCs in the Presence
of Artemisinins

The CM-H2DCFDA probe lacks specificity for the targeted reactive species and the autofluorescence
of RBCs could influence the interpretation of our data. To better understand and validate our results,
a new approach to measure superoxide radicals (O2

•−) and hydrogen peroxide (H2O2) in red blood
cells using LC-MS was carried out as previously described [46]. The method is based on the detection
of a specific adduct formed into the cell after reaction with DHE and CBA probes for O2

•− and
H2O2, respectively. The determination of superoxide and hydrogen peroxide are based on the
detection of their reaction product 2OH-E+ and COH, respectively [47,48]. The O2

•− and H2O2

levels, measured following the same set of experiments as for CM-H2DCFDA, are shown in Figure 2.
The concentrations of both ROS were significantly higher in PHZ-treated RBCs compared to the
untreated ones (Figure 2). The highest increase was observed in 1 mM-PHZ-treated RBCs in the
presence of ARTs. In this case, one can see that the level of hydrogen peroxide is 25% higher than
the superoxide one, indicating the probable dismutation of O2

•− into H2O2. Oxidized RBCs treated
with ARTs present a statistically significant PHZ dose-dependent increase of both O2

•− and H2O2 in
comparison with the untreated oxidized RBCs. No significant difference was observed between the
tested artemisinins. Both artemisinins induced the production of both reactive species and especially
the H2O2 derived from superoxide dismutation. In addition, the same set of experiments was carried
out with different concentrations of ARTs at a fix concentration of PHZ (1 mM) (Figure 3). As expected,
the higher the concentration of ARTs, the higher the production of both reactive species indicating
a linear ART-dose-relationship for both ARTs. LC-MS analysis confirmed the fluorescence results
giving more in depth details about the nature of the ROS produced and their concentration. Moreover,
a positive correlation (R = 0.94, p < 0.001) between the two methods in parallel was observed indicating
the reproducibility between our results. In this study, we decided to investigate the production of
superoxide since it is the first radical produced by one electron reduction of oxygen. This radical easily
transforms into H2O2 by dismutation that can be catalyzed by superoxide dismutase. The formed
H2O2 can then either react with transition metal to give the hurtful hydroxyl radical through the
Fenton reaction or be transformed into water by catalase enzymes. Few studies have reported that
patients with uncomplicated malaria (P. falciparum or P. vivax) have lower catalase levels and a higher
superoxide dismutase (SOD) level than healthy control ones [9,49,50]. An increased SOD activity
associated with a reduced catalase activity leads to accumulation of hydrogen peroxide that will
rapidly react with accessible ferrous iron to form hydroxyl radicals, promoting damages to essential
biomolecules [50]. Moreover, there is no doubt that superoxide is implicated in the mechanism of
action of artemisinin since SOD-like compounds was shown to drastically decrease the efficacy of
artemisinin on cancer cells [16].

Taken together, all these results confirmed that the activation of artemisinins and the subsequent
production of ROS can be enhanced by pre-oxidizing the red blood cells. This enhancement is linked
to the formation of denatured products of hemoglobin, may be ferro-protoporphyrin IX, known as
responsible of artemisinin activation rather than free ferrous iron [17].



Int. J. Mol. Sci. 2020, 21, 4799 5 of 12

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 12 

 

 

Figure 2. Superoxide radicals (A) and hydrogen peroxide (B) concentrations deduced from LC-MS 

analysis in RBCs treated with different concentrations of PHZ (0.2–1 mM) in fix concentration of DHA 

and ART (200 μΜ). Data are the average ± SD of 5 independent experiments. Significant differences 

to untreated RBCs at * p < 0.05; ** p < 0.001. 

 

Figure 3. Superoxide radicals (A) and hydrogen peroxide (B) concentrations deduced from LC-MS 

analysis in RBCs treated with ARTs (0.2–1 mM) and PHZ (1 mM). Data are the average ± SD of 5 

independent experiments. Significant differences to untreated RBCs at * p < 0.05; ** p < 0.001. 

2.3. Correlation of Total Reactive Species with Hemoglobin Byproducts 

Ferrous iron is known to be necessary for the activation of artemisinins in parasitized RBCs [17], 

cancer cells [51–53] and osteoclasts [54]. It has been demonstrated that PHZ induces into erythrocytes 

the efflux of denatured hemoglobin products as hemichromes, heme or even free iron. Figure 4 shows 

a strong correlation between the total amount of reactive species deduced from Figure 2 and 

hemichromes accumulation (R = 0.98, p < 0.001) as well as other hemoglobin byproduct release (R = 

0.87, p < 0.05) measured by spectrophotometry at increasing concentrations of PHZ. 

In favor of a causal relationship between hemichromes accumulation and hemoglobin 

byproduct release and total amount of reactive species, it should be noticed that both phenomena 

become evident from 0.1 mM concentration of PHZ. These results indicate the possible indirect 

participation of iron (III) compounds in the activation process of artemisinin. To confirm this 

hypothesis, the amount of ROS produced was measured in the presence of desferrioxamine, an iron 

III chelator [55]. In all cases, the activation of artemisinin was inhibited by desferrioxamine as 

demonstrated in Figure 5 using LC-MS (Figure 5A) and EPR measurements (Figure 5B). These results 

confirmed the implication of the accumulation of denatured hemoglobin as accessible iron in the 

activation process of artemisinin to produce radicals. Furthermore, as no radicals were measured by 

simple incubation of hemichromes with artemisinin, we hypothesized that the reactivity of 

hemichromes was made possible in reducing conditions. This hypothesis was verified by measuring 

the ability of the cytoplasm, supposed to contain many reducing metabolites, to induce over-

production of radicals in RBCs treated with artemisinin and/or PHZ. The cytoplasm was enriched 

with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as co-substrate of most redox 

enzymes. The corresponding results are presented in Figure 6. These results clearly demonstrate that, 

in strong reducing conditions, the activation of artemisinin and the consequent production of ROS 

Figure 2. Superoxide radicals (A) and hydrogen peroxide (B) concentrations deduced from LC-MS
analysis in RBCs treated with different concentrations of PHZ (0.2–1 mM) in fix concentration of DHA
and ART (200 µM). Data are the average ± SD of 5 independent experiments. Significant differences to
untreated RBCs at * p < 0.05; ** p < 0.001.
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2.3. Correlation of Total Reactive Species with Hemoglobin Byproducts

Ferrous iron is known to be necessary for the activation of artemisinins in parasitized RBCs [17],
cancer cells [51–53] and osteoclasts [54]. It has been demonstrated that PHZ induces into erythrocytes
the efflux of denatured hemoglobin products as hemichromes, heme or even free iron. Figure 4 shows a
strong correlation between the total amount of reactive species deduced from Figure 2 and hemichromes
accumulation (R = 0.98, p < 0.001) as well as other hemoglobin byproduct release (R = 0.87, p < 0.05)
measured by spectrophotometry at increasing concentrations of PHZ.

In favor of a causal relationship between hemichromes accumulation and hemoglobin byproduct
release and total amount of reactive species, it should be noticed that both phenomena become evident
from 0.1 mM concentration of PHZ. These results indicate the possible indirect participation of iron
(III) compounds in the activation process of artemisinin. To confirm this hypothesis, the amount of
ROS produced was measured in the presence of desferrioxamine, an iron III chelator [55]. In all cases,
the activation of artemisinin was inhibited by desferrioxamine as demonstrated in Figure 5 using
LC-MS (Figure 5A) and EPR measurements (Figure 5B). These results confirmed the implication of the
accumulation of denatured hemoglobin as accessible iron in the activation process of artemisinin to
produce radicals. Furthermore, as no radicals were measured by simple incubation of hemichromes
with artemisinin, we hypothesized that the reactivity of hemichromes was made possible in reducing
conditions. This hypothesis was verified by measuring the ability of the cytoplasm, supposed to
contain many reducing metabolites, to induce over-production of radicals in RBCs treated with
artemisinin and/or PHZ. The cytoplasm was enriched with reduced nicotinamide adenine dinucleotide
phosphate (NADPH) as co-substrate of most redox enzymes. The corresponding results are presented
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in Figure 6. These results clearly demonstrate that, in strong reducing conditions, the activation of
artemisinin and the consequent production of ROS was enhanced. It also confirms the role of Fe(III)
byproducts. Moreover, the amount of ROS produced was drastically reduced when replacing NADPH
with glutathione (GSH), a strong antioxidant able to trap radicals and oxidative species (Figure 6).

In conclusion, we demonstrate through the measurement of intra-erythrocytic superoxide and
hydrogen peroxide production using various methods, that artemisinin activation can be drastically
enhanced by pre-oxidation of erythrocytes by phenylhydrazine. This phenomenon is imputable to the
consequent accumulation of hemoglobin byproducts as heme or hemichromes that occur in oxidized
erythrocytes. Furthermore, these byproducts include iron (III) compounds that can be transformed,
in reductive conditions, into the reactive iron (II) form needed for artemisinin activation.
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Figure 6. Production of ROS measured by EPR in PHZ-treated and untreated RBC in the presence
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untreated RBCs at * p < 0.05; ** p < 0.001.

3. Materials and Methods

Unless otherwise stated, all materials were obtained from Sigma-Aldrich, St. Louis, MO, USA.

3.1. Blood Sample Collection

Whole blood samples from healthy donors, sex-matched with an average age of 45 ± 4.2 years,
were collected in EDTA (EthyleneDiamineTetraacetic Acid)-containing tubes in the morning and were
centrifuged at 200× g for 5 min at 4 ◦C to separate the cellular components from red blood cells.

3.2. Ethics Statement

Healthy donors, all adults, provided written, informed consent before entering the study. The study
was conducted in accordance with Good Clinical Practice guidelines and the Declaration of Helsinki.
Ethical approval to perform the present study was obtained from the local ethical committee of the
ASL 1-Sassari.

3.3. Treatment of Red Blood Cells

To stimulate HMC formation, RBCs were suspended at an hematocrit of 30% and incubated with
different concentrations (0, 0.1, 0.25, 0.5, 1 mM) of phenylhydrazine (PHZ) at 37 ◦C for 4 h as previously
described [30]. Each reaction was terminated by three washes with phosphate buffer saline containing
glucose (PBS-glucose). For all protocols described, untreated controls were processed identically except
that the stimulant/inducer was omitted from the incubation.

3.4. Fluorescence Assay

For the detection of intracellular reactive oxygen species (ROS), we employed the cell-permeable
ROS-sensitive probe 2′,7′-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) as previously
introduced [56], which fluoresces at 520 nm (λex 480 nm) upon oxidation. To conduct an adequate and
well-controlled study that would exclude any possibility to register autofluorescence, controls were
prepared without CM-H2DCFDA but only with its solvent, DMSO. In fact, no or little fluorescence
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was observed in control RBCs and ART/PHZ-treated RBCs (without incubation with CM-H2DCFDA).
Oxidation of CM-H2DCFDA (prepared as a 0.5 mM stock solution in DMSO) (incubated for 1 h) in
RBCs treated with different concentrations of ARTs and PHZ was monitored by measurement
of the fluorescence of the desired RBC suspensions (0.2% hematocrit) in 96-well black-walled
microplates (Corning®, Sigma-Aldrich, Saint Quentin Fallavier, France) using a SAFAS Xenius
(Monaco). The relative fluorescence is expressed as “% maximal emission” as determined with the
software ”Xenius”, where maximal emission was defined as the fluorescence emission obtained
following addition of 3 mM H2O2.

3.5. Liquid Chromatography Coupled to Mass Spectrometry Analysis

Superoxide radicals and hydrogen peroxide in PHZ-treated RBCs, after 1 h of incubation at 37 ◦C,
were analyzed by liquid chromatography coupled with mass spectrometry (LC-MS) as previously
described [46,57]. An Ultimate 3000 UHPLC system consisting of a solvent organizer SRD-3600 with
degasser, a high pressure binary gradient pump HPG-3400RS, a thermostated autosampler WPS3000TRS,
an oven TCC3000SD, an UV-Visible detector DAD3000 (ThermoFisher Scientific, Courtaboeuf, France)
and an LTQ-Orbitrap XL ETD mass spectrometer (ThermoFisher Scientific, Courtaboeuf, France) was
used. The detection of superoxide radicals was performed with a dihydroethidium (DHE) probe
(Sigma-Aldrich, St. Quentin Fallavier, France; Cat. no: 37291) via the detection of 2OH-E+ and the
detection of H2O2 using a coumarin boronic acid (CBA) probe (Sigma-Aldrich, St. Quentin Fallavier,
France; Cat. n◦: SY3397819310) through the detection of COH. Electrospray ionization (ESI) was
performed in the positive and negative ion mode for superoxide and hydrogen peroxide, respectively.
Quantitative analysis was performed using Xcalibur software and integrating the signal obtained
with the corresponding extracted mass (m/z 330 for 2OH-E+ and m/z 161 for COH) chromatograms.
In order to confirm the identity of the detected compounds, the mass spectrometer was used in FTMS
(Fourrier Transform Mass spectrometry) mode at a resolution of 15,000 for 2OH-E+ and 7500 for COH.
For 2OH-E+ detection, chromatographic separation was achieved on a Kinetex EVO C18 column,
(2.1 × 100 mm, 1.7 µm particle size) (Phenomenex, Le Pecq, France) at a flow rate of 400 µL/min and
column temperature set at 50 ◦C using an aqueous mobile phase containing acetonitrile. For COH
detection, chromatographic separation was achieved on a Kinetex C18 column, (2.1 × 100 mm, 1.7 µm
particle size) (Phenomenex, Le Pecq, France) at a flow rate of 500 µL/min and column temperature set
at 40 ◦C using an aqueous phase containing formic acid and acetonitrile.

3.6. EPR Assay

The detection of free radicals was carried out using N-tert-butyl-α-phenylnitrone (PBN) as a spin
trap. PBN (1 M stock solution in DMSO) was added to healthy RBCs treated with different concentrations
of PHZ and the volume was adjusted with PBS after the addition of dihydroartemisinin (200 µM
in DMSO) or their corresponding isolated cytoplasm (diluted 1:10) as previously described [58,59].
The solution was then transferred into a flat quartz cell (FZKI160-5 X 0.3 mm, Magnettech, Berlin,
Germany) for EPR analysis. EPR spectra were obtained at room temperature (RT) using the X-band
on a Bruker EMX-8/2.7 (9.86 GHz) equipped with a gaussmeter (Bruker, Wissembourg, France) and
a high-sensitivity cavity (4119/HS 0205). WINEPR and SIMFONIA software (Bruker, Wissembourg,
France) were used for EPR data processing and spectrum simulation. Typical scanning parameters
were scan number, 5; scan rate, 1.2 G/s; modulation frequency, 100 kHz; modulation amplitude, 1 G;
microwave power, 20 mW; sweep width, 100 G; sweep time, 83.88 s; time constant, 40.96 ms; and
magnetic field, 3460–3560 G. The intensity of the EPR signal was calculated by double integration of
the EPR signal.

3.7. Hemoglobin Release Analysis

Following centrifugation at 1000× g, hemoglobin concentration was measured in the tested
supernatants as previously described [59].
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3.8. Hemichromes Analysis

Phenylhydrazine-treated RBCs were incubated for 1 h with ARTs and then washed by cold PBS.
Their hypotonic membranes were prepared at 4 ◦C as previously described. To solubilize the HMCs
and to dissociate the cytoskeletal proteins, membranes were treated with 130 mM NaCl, 10 mM Hepes,
1 mM EDTA and 1.5% C12E8 and incubated under stirring (1400 rpm) at 37 ◦C for 15 min (Eppendorf
ThermoMixer®C) [51]. To eliminate insoluble aggregates and debris, detergent-treated membranes
were centrifuged for 5 min at 20 ◦C, 15,000× g. To isolate the high molecular weight protein aggregate
containing HMCs, the supernatant was loaded on a Sepharose CL6B column and chromatographic
fractions were screened by spectrophotometry. The fractions characterized by the absorption spectrum
of HMCs and lacking absorption peaks of hemoglobin at 280, 434, 520 nm were collected for the
quantitative measurement of HMCs and characterization of its components. HMCs were quantified in
the high molecular weight fraction by visible spectrophotometry using the following equation [36]:

[HMCs] = −133×A577 − 144×A630 + 233×A560 (1)

with the concentration of hemichromes to be expressed as nmoles/mL of solubilized membranes.

3.9. Data Analysis

Data were analyzed using the SPSS version 22.0 statistical package. Descriptive statistics presented
as mean ± standard deviation and frequencies presented as percentages. Pearson’s chi-square test or
the chi-square test of association was used to discover if there is a relationship between the categorized
data, while Fisher’s exact test was used when expected variables were 2% of the total number of
variables. Additionally, the independent sample t-test was used to compare between means. In all
statistical analysis, the level of significance (p-value) was set at α = 0.05.
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