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Abstract: Women with polycystic ovary syndrome (PCOS) are more likely to develop endometrial
cancer (EC). The molecular mechanisms which increase the risk of EC in PCOS are unclear.
Derangements in lipid metabolism are associated with EC, but there have been no studies, investigating
if this might increase the risk of EC in PCOS. This was a cross-sectional study of 102 women in
three groups of 34 (PCOS, EC and controls) at Nottingham University Hospital, UK. All participants
had clinical assessments, followed by obtaining plasma and endometrial tissue samples. Lipidomic
analyses were performed using liquid chromatography (LC) coupled with high resolution mass
spectrometry (HRMS) and the obtained lipid datasets were screened using standard software and
databases. Using multivariate data analysis, there were no common markers found for EC and PCOS.
However, on univariate analyses, both PCOS and EC endometrial tissue samples showed a significant
decrease in monoacylglycerol 24:0 and capric acid compared to controls. Further studies are required
to validate these findings and investigate the potential role of monoacylglycerol 24:0 and capric acid
in the link between PCOS with EC.
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1. Introduction

Endometrial cancer (EC) is a common cause of death from female cancers globally [1]. The incidence
of Type 1 EC, which is more preponderant amongst women of late reproductive age, is rising. Since
the 1990s, the incidence of EC has doubled [1]. It has also been predicted that the number of EC cases
will increase by 50–100% by 2030 because of rising obesity rates [2]. Research to identify and prevent
EC in women at increased risk is therefore vital. Although increasing age itself is one of the important
risk factors for EC, endocrine and metabolic factors also play an integral part in EC development.
Chronic unopposed oestrogen exposure to the endometrium, which is similarly present in women
with polycystic ovary syndrome (PCOS) and EC, is thought to be a key mechanism which increases the
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risk of PCOS women developing EC [3], especially as women with PCOS are 3–4 times more likely to
develop EC compared to women without PCOS [4,5].

Apart from chronic unopposed oestrogen exposure to the endometrium in women with PCOS,
other potential molecular mechanisms which are thought to increase the risk of EC in women with PCOS
include (i) insulin resistance and (ii) endometrial overexpression of insulin like growth factor-1 (IGF1),
IGF binding protein-1 (IGFBP1), PTEN genes [6], sterol regulatory binding protein-1 (SREBP1) and
adiponectin [7]. Nair et al. [7], reported that derangements in adipocyte, lipid and fatty acid metabolism
are associated with increased EC risk either through release of fatty acids from cancer-associated
adipocytes which are used for intracellular energy production in cancer cells or through the promotion
of inflammation. Prior to the commencement of this study, there had however been no reported
studies investigating how endometrial lipid profiles in women with PCOS compare to those in women
with EC.

Metabolomics is an increasingly important tool for oncology research, especially as it aims to
improve the early detection of pre-invasive lesions, triage neoplastic differentiation, monitor response to
cancer treatment, facilitate pharmacodynamic analysis and determine prognosis of disease. It has been
shown that in general, tumour growth and activity correlate to increased phospholipid, and glycolytic
capacity, with elevated choline containing compounds, phosphocholine, high glutaminolytic activity
and overexpression of the glycolytic isoenzymes, pyruvate kinase M2 [8]. Bathen et al., 2000 [9]
reported an accuracy of 83% in differentiating between cancer and normal samples by analysing
lipid metabolic profiles using nuclear magnetic resonance. However, it is also acknowledged that
different tumours may have distinct metabolites properties, and this may be difficult to determine [10].
An epidemiological case-control study identified 15 amino acids, 45 acylcarnitines and 9 fatty acid
metabolites differentially expressed in endometrial cancer in comparison to the normal population.
Among the control group, obesity itself produced a significant change in metabolite profiles with
elevated valine, octenoylcarnitine, palmitic acid, oleic acid and stearic acid [11]. Even after adjusting
for obesity, the study reported a significant difference in spectrometric profiles of metabolites, namely
C5-acylcarnitine, octenoylcarnitine, decatrienoylcarnitine and linoleic acid, which were found to be
lower in the endometrial cancer group. As women with PCOS have a three to four-fold increased risk
of EC, investigating endometrial lipid profiles of women with PCOS and EC may, therefore, help us
better understand the mechanisms which increase the risk of EC in PCOS.

The aim of this study, therefore, was to investigate whether lipid profiles were similarly altered in
the endometrium of women with EC (without PCOS) and women with PCOS (without EC), compared
to a control group of women who did not have a diagnosis of EC nor PCOS, by measuring the
endometrial lipidomic profiles in women with PCOS, EC and controls. This would be an important
finding as it will offer the potential to facilitate screening and early diagnosis of pre-cancerous cells in
the endometrium, thus preventing the development of EC in women with PCOS. Although a range of
factors have been identified previously, which were thought to increase the risk of EC in PCOS, there
had been no previously published studies investigating endometrial lipid profiles in women with
PCOS and EC, despite the known changes in serum lipid profiles in PCOS and recent associations
between changes in lipid metabolism and increased EC risk. Our null hypothesis was that there would
be no difference in endometrial lipid profiles between groups.

2. Results

2.1. Demography

The demographic data are shown in Table 1. There was no statistically significant difference in the
mean age between PCOS and controls. However, the mean age was significantly higher in women with
EC (63.44 ± 10.07 years) compared to PCOS (31.8 ± 5.97 years) and controls (43.68 ± 13.12 years) [6].
PCOS women and controls had a similar body mass index (BMI) and waist–hip ratio (WHR), but these
were higher in women with EC. Although at recruitment, only PCOS women in their proliferative
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stage of the menstrual cycle (based on the date of their last menstrual period) were included, on
histological examination of the endometrial biopsies, of the 34 samples, three women were in the
secretory phase and eight samples were inadequate for histological classification. In the EC group,
participants who were diagnosed as endometroid adenocarcinoma subtype and scheduled for surgical
staging by either laparoscopy or laparotomy were recruited. Moderately differentiated endometroid
adenocarcinoma was more prevalent in the EC group, 44.1%, followed by poorly differentiated and
well differentiated, 29.4% and 26.5%, respectively. Biochemically, only fasting glucose was significantly
different among the groups (higher in EC women) with no statistically significant difference noted in
the other parameters measured (p > 0.05).

Table 1. Patient Demographics.

Variable (Mean ± SD) Polycystic Ovary
Syndrome (N = 34) Endometrial Cancer (N = 34) Control (N = 34)

Age (Years) 31.8 ± 5.97 63.44 ± 10.07 * 43.68 ± 13.12

Menstrual phase Proliferative = 34
Premenopause = 4

Perimenopause = 13
Postmenopause = 17

Premenopause = 20
Perimenopause = 14

BMI (kg/m2) 29.28 ± 2.91 32.22± 5.70 * 28.58 ± 2.62
WHR 0.88 ± 0.03 0.91 ± 0.04 * 0.85 ± 0.02

Systolic BP 133.4 ± 7.09 146.7 ± 10.7 * 134.5 ± 8.4
Diastolic BP 82.2 ± 7.95 87.5 ± 6.9 80.56 ± 7.0

Fasting Glucose
(mmol/L) 5.16 ± 0.78 6.3 ± 1.5 * 4.9 ± 0.5

HOMA-IR 0.25 ± 0.39 0.28 ± 0.33 0.17 ± 0.10
LDL (mmol/L) 2.74 ± 0.77 2.57 ± 1.07 2.75 ± 0.80
HDL (mmol/L) 1.44 ± 0.33 1.63 ± 0.34 1.47 ± 0.33
TG (mmol/L) 1.43 ± 0.51 1.51 ± 0.54 1.38 ± 0.60

Total Cholesterol 4.73 ± 0.91 4.59 ± 1.39 4.94 ± 0.98

*—p-value < 0.001; HOMA-IR—homeostatic model assessment of insulin resistance; BP—blood pressure;
SD—standard deviation; BMI—body mass index; WHR—waist–hip ratio; TG—triglycerides; LDL—low density
lipoproteins; HDL—high density lipoproteins.

2.2. Lipidomic Profiling

On initial analysis, by LC-MS, the lipidomics data from the samples identified >20,000 peaks
of lipid compounds. We then used multivariate analysis (MVA) and univariate analysis (UVA) to
define lipids which were significantly different between the three study groups (control, EC and
PCOS). Following MVA, we did not identify any visible separation between the three study groups in
a principal component analysis (PCA). Further orthogonal projections to latent structures discriminant
analysis (OPLS-DA) model (Figure 1), however, showed a complete separation of detected ions in
tissue from control, PCOS and EC groups, with a R2X(cum)-value of 0.286 and a Q2(cum)-value of
0.514, which are typical for clinical samples. We also found that the CV-ANOVA p-value was highly
significant (p = 6 × 10−7), which indicates a good model. Separations were also identified in detected
ions in plasma and tissue from control vs. EC subjects (Figures 2 and 3) and control and PCOS subjects
(Figures 4 and 5).
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Table 2 shows the significantly changed lipid compounds that were decreased or increased
between PCOS and control plasma samples on univariate analysis. Heptadecanoic acid (17:1),
palmitoleic acid (16:1), pentadecnoic acid (15:1), palmitic acid (16:0), Heptadecanoic acid (17:0), Myristic
acid (14:0), Docosatrienoic acid (22:3) and Eicosadienoic acid (20:2) were decreased and a steroid
(dihydrotestosterone or isomer) sulphate, hexacosahexaenoic acid FA (26:6) and a steroid (testosterone
or isomer) sulphate were increased in PCOS compared with control plasma. We however, did not
identify any lipid compounds that were obviously, similarly increased or decreased in both PCOS and
EC women compared with controls. Dihydrotestosterone and testosterone were raised as expected in
PCOS compared to EC and controls.

Table 2. Significantly changed lipid compounds that decreased or increased between PCOS and control
(plasma samples). Discovery determined using the two-stage linear step-up procedure of Benjamini,
Krieger and Yekutieli, with Q = 5%. Each row was analysed individually, without assuming a consistent
SD. * Metabolite identification confidence score as described elsewhere [12].

Name
Identity

Confidence
Score *

m/z Retention
Time (min)

Increase (↑) or
Decrease (↓)

Fold
Change t-Test (p) Q-Value

Heptadecanoic acid
(17:1) 2 267.232 1.70 ↓ 0.59 5.27 × 10−6 7.84 × 10−3

Palmitoleic acid (16:1) 2 253.217 1.52 ↓ 0.57 5.60 × 10−6 7.84 × 10−3

Pentadecenoic acid
(15:1) 2 239.201 1.35 ↓ 0.65 4.76 × 10−5 2.16 × 10−2

Palmitic acid (16:0) 2 255.233 1.81 ↓ 0.74 6.30 × 10−5 7.84 × 10−3

Heptadecanoic acid
(17:0) 2 269.248 2.03 ↓ 0.78 1.07 × 10−4 3.21 × 10−2

Myristic acid (14:0) 2 227.201 1.40 ↓ 0.65 1.41 × 10−4 3.95 × 10−2

Docosatrienoic acid
(22:3) 2 333.279 2.11 ↓ 0.64 1.71 × 10−4 4.45 × 10−2

Eicosadienoic acid
(20:2) 2 307.264 1.99 ↓ 0.70 3.79 × 10−3 2.16 × 10−2

Steroid
(dihydrotestosterone
or isomer) sulphate

4 369.172 0.45 ↑ 2.79 1.00 ×10−5 9.64 × 10−3

Hexacosahexaenoic
acid (26:6) 2 383.297 2.05 ↑ 1.23 5.13 × 10−5 2.23 × 10−2

Steroid (testosterone
or isomer) sulphate 4 367.158 0.43 ↑ 2.23 5.20 × 10−5 2.23 × 10−2
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In tissue samples (Table 3), the following lipid compounds were increased in EC compared
with control tissue; hydroxyundecanoyl carnitine, phosphorylcholine, diglyceride (26:4e) or
secosteroid, phosphatidylcholine (36:6), phosphatidylethanolamine (38:2), ceramide (d29:2+O),
phosphatidylethanolamine (36:6e), diglyceride (36:6), ceramide (d34:0), phosphatidyl glycerol (36:2),
acylcarnitine (17:0), monoacylglycerol (18:2), phosphatidylcholine (16:1e). On the other hand, the
following were decreased; triglyceride (33:0), monoacylglycerol (24:0), hexacosanoic acid, diacylglycerol
(36:4), monoacylglycerol (24:1), monoacylglycerol (22:0), sterol at C27H48O5, monoacylglycerol
(22:4), oxotestosterone (or steroid isomer), triglyceride (28:0) adduct, monoacylglycerol (22:2),
monoacylglycerol (24:4), dihydrotestosterone (or steroid isomer) sulphate, triglyceride (24:0), capric
acid. A scatter dot plot of these biomarkers, from tissue samples (Figure 6) did not identify any lipid
compounds that were clearly similarly increased or decreased in PCOS and EC compared with controls
apart from decreased monoacyl glycerol 24:0 and capric acid 10:0.

Table 3. Significantly changed lipid compounds that decreased or increased between endometrial cancer
and control (tissue samples). * Metabolite identification confidence score as described elsewhere [12].

Name
Identity

Confidence
Score *

m/z Retention
Time (min)

Increase (↑) or
Decrease (↓)

Fold
Change t-Test (p) Q-Value

Hydroxyundecanoyl
carnitine 4 363.290 0.64 ↑ 3.48 8.68 × 10−9 1.39 × 10−4

Phosphorylcholine 3 184.074 0.66 ↑ 2.29 3.38 × 10−8 1.71 × 10−4

Diglyceride (26:4e) or
Secosteroid 4 480.405 3.56 ↑ 6.94 1.30 × 10−7 3.76 × 10−4

Phosphatidylcholine
(36:6) 3 778.539 4.82 ↑ 2.99 7.26 × 10−7 6.26 × 10−4

Phosphatidylethanolamine
(38:2) 3 772.586 6.31 ↑ 2.45 2.00 × 10−6 9.66 × 10−4

Ceramide (d29:2+O) 3 482.421 4.47 ↑ 6.29 5.00 × 10−6 1.53 × 10−3

Phosphatidylethanolamine
(36:6e) 3 722.511 4.43 ↑ 2.46 5.00 × 10−6 1.53 × 10−3

Diglyceride (36:6) 3 630.511 4.15 ↑ 5.71 7.00 × 10−6 1.68 × 10−3

Ceramide (d34:0) 3 540.534 4.59 ↑ 2.82 9.60 × 10−5 7.39 × 10−3

Phosphatidyl Glycerol
(36:2) 3 773.533 2.84 ↑ 4.84 1.57 × 10−4 1.01 × 10−2

Acylcarnitine (17:0) 3 414.358 2.72 ↑ 3.39 3.21 × 10−4 1.45 × 10−2

Monoacylglycerol (18:2) 3 372.311 1.69 ↑ 2.38 9.79 × 10−4 2.69 × 10−2

Phosphatidylcholine
(16:1e) 3 538.352 1.99 ↑ 3.77 1.50 × 10−3 3.35 × 10−2

Phosphatidyl Glycerol
(34:1) 3 747.522 3.17 ↑ 2.82 2.30 × 10−3 4.17 × 10−2

Triglyceride (33:0) 3 614.535 2.14 ↓ 0.12 1.00 × 10−6 9.60 × 10−4

Monoacylglycerol (24:0) 2 437.363 2.11 ↓ 0.11 2.00 × 10−6 9.66 × 10−4

Hexacosanoic acid 2 395.389 4.52 ↓ 0.17 1.30 × 10−5 2.27 × 10−3

Diacylglycerol (36:4) 3 675.520 5.00 ↓ 0.52 1.40 × 10−5 2.45 × 10−3

Monoacylglycerol (24:1) 2 439.378 2.09 ↓ 0.07 1.70 × 10−5 2.56 × 10−3

Monoacylglycerol (22:0) 2 413.363 1.98 ↓ 0.08 1.90 × 10−5 2.77 × 10−3

Sterol at C27H48O5 4 451.343 1.24 ↓ 0.09 4.00 × 10−5 4.22 × 10−3

Monoacylglycerol (22:4) 2 405.301 1.24 ↓ 0.06 4.90 × 10−5 4.93 × 10−3

Oxotestosterone
(or steroid isomer) 3 320.218 0.79 ↓ 0.04 5.30 × 10−5 5.20 × 10−3

Triglyceride (28:0)
Adduct 3 585.484 3.89 ↓ 0.04 8.90 × 10−5 7.13 × 10−3

Monoacylglycerol (22:2) 2 409.332 1.70 ↓ 0.11 1.59 × 10−4 1.01 × 10−2

Monoacylglycerol (24:4) 3 433.332 1.56 ↓ 0.10 2.27 × 10−4 1.22 × 10−2

Dihydrotestosterone
(or Steroid isomer)

sulphate
4 369.172 0.45 ↓ 0.13 4.85 × 10−4 1.80 × 10−2

Triglyceride (24:0) 3 493.355 2.76 ↓ 0.10 1.11 × 10−3 2.86 × 10−2

Capric acid 2 171.139 0.69 ↓ 0.22 1.32 × 10−3 3.13 × 10−2
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Figure 6. (a) Compounds that significantly increase in concentration in the endometrial cancer group;
(b) Compounds that significantly decrease in concentration in the endometrial cancer group. Scatter
dot plots of example potential biomarkers in endometrial tissue samples. All shown biomarkers
fulfil criteria of both multivariate analysis (MVA) and univariate analysis (UVA). MVA criteria were a
Variable Importance Projection (VIP) value > 1 in the OPLS-DA model shown in Figure 1. Criteria for
UVA were a q-value < 0.05 (control vs. endometrial cancer only), for all control vs. EC, Q > 0.05 and a
fold change <0.8 or >1.2. Dots show the normalised intensity metabolites from control endometrial
cancer and PCOS tissue samples (n = 34), samples.

3. Discussion

Our results showed that although there were two metabolites (monoacylglycerol 24:0 and capric
acid) similarly decreased in PCOS and EC tissue compared to controls on univariate analysis, no
common markers were found for the EC and the PCOS samples using OPLS-DA models. Lipid
compounds were also identified, which were significantly decreased or increased between EC and
control tissue samples; there was, however, no obvious correlation with plasma results and therefore,
they are not currently potential biomarkers for EC in PCOS without further research. However,
although women with EC had increased age, BMI and fasting glucose levels, baseline metabolic
characteristics (BMI, markers of insulin resistance and lipid profiles) were not statistically different
between PCOS and control women. The potential significance of this is the fact that women with PCOS
were showing comparable tissue changes in these two metabolites (monoacylglycerol 24:0 and capric
acid), to women with EC, at an earlier age and lower BMI. If validated in future studies and correlated
with plasma results, they, therefore, could act as potential early biomarkers for future development of
EC in women with PCOS.

As the baseline sample size calculation for this study was based on the ability to detect an outcome
from a previously published study on IGF1 gene expression [6], we are unable to exclude the possibility
of a type 1 statistical error in the observed differences in monoacylglycerol 24:0 and capric acid in
PCOS and EC tissue compared to controls. We were, therefore, unable to confidently reject our null
hypothesis that there would be no endometrial lipid profile, common to EC and PCOS endometrium
but different from that found in the endometrium of control women.

It is also difficult at this stage to speculate on how the decreased monoacylglycerol 24:0 and capric
acid found in endometrial tissue from women with EC and PCOS compared with controls may explain
the link between PCOS and EC and further research is required. We were, for example, unable to
identify any previously published studies measuring caproic acid levels in women with PCOS or EC.
Caproic acid (Hexanoic acid) is, however, the carboxylic acid derived from hexane and is thought to be
involved in cell signalling, fuel and energy storage, fuel or energy source, membrane integrity/stability,
vasorelaxation and has inflammatory effects [13–15]. Interestingly, there is evidence that caproic
acid can inhibit proliferation of a number of different cancer cell types in vitro [16], suggesting that
a decrease in physiological levels of caproic acid may have a pro-oncogenic effect. A decrease in
physiological levels of caproic acid may have a pro-inflammatory effect which is relevant in cancer.
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Notably, in plants, caproic acid has been shown to influence expression of redox-sensitive genes and
reduce oxidative stress [17]. NQO1 is another key regulator of cellular redox status and was recently
shown to be increased in the endometrium of women with EC or PCOS [18]. There is also increasing
evidence supporting a role for NQO1 in metabolic regulation [19,20], including lipid metabolism.
NQO1 expression is elevated in adipose tissue, is reduced by diet-induced weight loss and may
contribute to the physiological consequences of obesity [21]. Consistent with this, NQO1−/− mice
accumulate significantly less abdominal adipose tissue, with concomitant increase in liver triglycerides
and reduction in liver glycogen [20]. The potential functional interaction of increased NQO1 expression
and decreased caproic acid in EC should therefore be examined.

Although we were also unable to identify any previous studies on monoacylglycerol and EC
tissue, monoacylglycerol is a bioactive compound and its biosynthesis and metabolism modulate a
range of cellular processes including proliferation, migration, and apoptosis. Monoacylglycerol lipase
levels have been shown to be overexpressed in EC [22], which is consistent with the lower levels of
monoacylglycerol identified in our study. On the other hand, higher levels of serum monoacylglycerol
1-oleoylglycerol [23] were found in recurrent cases of endometrial cancer compared with non-recurrent
cases, but how this finding fits in our results is however currently unclear.

As with the case of EC tissue, we could not find any previous studies on whether there is any
link between decreased levels of monoacylglycerol and endometrial tissues obtained from women
with PCOS. We did, however, find one study [24] which showed that plasma monoacylglycerol levels
were up to 5-fold higher in women with PCOS. As the samples were from plasma and the direction
of change differed from our results (plasma in contrast to tissue; higher instead of lower), it is again
challenging to speculate on any consistent patterns.

The molecular mechanisms which lead to an increased risk of EC in PCOS probably arise as a
result of complex interactions between a range of systems and pathways, including chronic unopposed
oestrogen, the insulin and the lipid pathways and tumour regulatory genes. More recent research has
also suggested a potential role for micro-RNAs [25], excess androgens and Visfatin [26]. More studies
are, therefore, required to validate our findings and to investigate how these various pathways interact
in such a way as to increase EC risk in women with PCOS.

The strengths of our study were the detailed clinical description of study participants, the originality
of the lipidomic approach and the rigorous methodological approach involved. The limitations,
however, include the histological heterogeneity of tissue samples obtained from both EC and PCOS
women and the age and BMI differences between the groups. In the context of the pilot nature of
this study, these confounders should be addressed in any future validation studies. The age and
BMI, however, were not statistically different between PCOS and control women. Obesity and type 2
diabetes are risk factors for EC which would explain the higher BMI and glucose in the EC group.

Although the baseline sample size calculations were based on the outcomes from another study
on IGF-1, the overall sample size of 34 in each group was not unreasonable if considered as a pilot on
which to base sample size calculations for future studies aiming to validate our findings. It would also
have been ideal to have included the specificity and sensitivity of the tested model. However, this
study was intended as a pilot to investigate possible metabolic perturbations which might be common
between PCOS and EC. We are, therefore, not proposing that the study data be used as a predictive
model for diagnostic purposes, and hence, we believe that the calculations of specificity and sensitivity
were not relevant. In any case, there were insufficient subjects to allow for the building of “training”
and “test” sets to validate a prediction model from the data, so calculations of specificity and sensitivity
would not have any real meaning for this pilot dataset. It could also be argued that to improve the
understanding about which groups of metabolites and pathways were involved in PCOS and EC, we
could have performed a metabolite group enrichment analysis and/or a clustering exploratory analysis.
However, our study was primarily done to look for any common metabolic changes in both PCOS and
EC. Tools to enable mapping of the complex lipid pathways, based on individual lipid entities, are not
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yet fully established. Hence, we could not perform detailed pathway analysis, but we have outlined
the changes in levels of lipid families, such as fatty acids, glycerides and phospholipids, in our results.

4. Materials and Methods

4.1. Study Design

This was a two-year cross-sectional study conducted at Nottingham University Hospital, NHS
Trust, in the United Kingdom. Recruitment was conducted in the Department of Obstetrics and
Gynaecology and Gynaecologic Oncology Unit from July 2013 to February 2014, following research
ethics approval (13/EM/0119, 8 April 2013). Parts of this research project on insulin signalling
pathways [6] and SREBP expression [27] have been previously published.

4.2. Recruitment

Patient recruitment has been previously described [6,27]. Briefly, 102 women in total were
recruited into three groups of 34 each (PCOS, EC and controls). PCOS was diagnosed based on the
Rotterdam criteria [28]. Their ages ranged between 18 to 45 years. The women were not on any
form of hormonal and infertility therapy and were not pregnant. In the women with EC, participants
diagnosed with the endometroid adenocarcinoma subtype and scheduled for surgical staging by either
laparoscopy or laparotomy were recruited. For the control group, women with benign gynaecology
problems undergoing surgery (i.e., to remove uterine fibroids, hysterectomy, tubal ligation and remove
benign ovarian cysts) were recruited. All participants were identified in the Gynaecology clinic and
Gynaecology Oncology clinic at the Nottingham University Hospitals, NHS Trust, United Kingdom.

After obtaining informed consent, the participants were assessed clinically and biochemically.
Baseline demographic details (i.e., ethnicity, age, medical, reproductive and family history) and clinical
physical assessments (i.e., blood pressure, BMI, Ferriman–Gallwey scoring, measurements of the hip
and waist circumference) were performed. Serum blood samples for biochemical variables were then
obtained. Following that, an outpatient endometrial tissue sampling was taken from the women
in the PCOS subgroup with a Pipelle® endometrial catheter. In the EC and controls groups, the
endometrial tissue samples were obtained in the operating theatres either at the time of hysterectomy
or hysteroscopy. The samples obtained were then frozen at −80 ◦C in liquid nitrogen and stored for
future analysis.

4.3. Endocrine and Metabolic Assays

The biochemical assays were processed in the clinical chemical department at Nottingham
University Hospital, NHS Trust. Cobas 8000® System (Roche, UK) was used to measure the levels of
fasting blood sugar, high density lipoprotein (HDL), low density lipoprotein (LDL) and triglycerides.
The Architect 12000SR® equipment (Abbott, UK) was used for immunoassays of luteinizing and
follicular stimulating hormone (LH and FSH), oestradiol and testosterone levels. Serial verification
methods, namely precision, accuracy, linearity and method comparison studies were performed for
validation and they had intra-assay CVs of 2.3–4.1%, 2.2–2.6%; 4.4–10%, and 2.9–5.0%, respectively;
and inter-assay CVs of 5.3–6.6% and 4.9–6.3%, 8.8–12.4%, and 9.1–10.9%, respectively [6,27].

Untargeted lipidomic analysis was performed using liquid chromatography and accurate mass
high resolution mass spectrometry, based on a previously reported method [29]. For plasma and
endometrial tissue lipidomics analysis, the samples used for quality control (QC) were created by
pooling equal volumes from all samples and injected 6 times at the start and end of the sequence
and every ten samples. The samples were all randomized before extraction and injection. Pooled
QC samples were then used to evaluate the analytical performance. The raw data obtained were
acquired using Xcalibur software (Thermo Scientific, Hemel Hempstead, UK). Pre-processing of the
data was performed with the Progenesis QI software (Nonlinear Dynamics, Newcastle upon Tyne,
UK). The process of peak picking was undertaken using auto threshold and an automatically chosen
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QC injection was used as reference for chromatographic alignment and normalisation. The peak
intensities were normalised to all compounds. This involved calculating abundance ratios between
each sample and the reference run for all compounds. The validity of the lipidomics analysis was
confirmed by monitoring in the study QC samples (n = 21) a representative selection of specific lipids.
The RSD% of lipid peak areas (5–17.6%) and retention times (0.23–2.37) were within generally accepted
guidelines for metabolomics analysis (Supplementary Table S1). Biomarkers that were filtered by
univariate or multivariate statistical analysis were identified by searching for their m/z values in the
following databases (Human Metabolome Database (www.hmdb.ca), METLIN Metabolomics Database
(www.metlin.scripps.edu) and Lipid Maps (www.lipidmaps.org)). Putative identifications were based
on mass error < 5 ppm, relative retention time within a lipid family and demonstrated or expected
presence in the human organism. The confidence of metabolite identification was categorized using
identification classes [12]. Univariate analysis (UVA) was performed using Student’s t-test. False
discovery was determined using the two-stage linear step-up procedure of Benjamini, Krieger and
Yekutieli [30], with Q at <5% using GraphPad Prism v 8. For further advanced multivariate analysis
(MVA), the datasets were imported to SIMCA (Version 13.0, Umetrics AB, Umea, Sweden) for principal
component analysis and subsequent partial least squares discriminant analysis.

Apart from the statistical methods used for the lipidomic analysis outlined above, the overall
sample size considerations and statistical methods used for this cohort have been previously
published [6] and calculated to detect a 40% difference in IGF1 gene expression in women with
PCOS compared with controls and women with PCOS compared with endometrial cancer; this was the
primary outcome measure of the study on which the samples used for the current study were derived.

5. Conclusions

In conclusion, no strongly predictive model common to both PCOS and EC was identified by
lipidomic analysis of endometrial biopsies and plasma taken from 34 women with EC, 34 PCOS women
and 34 control women. However, on univariate analyses, both PCOS and EC endometrial tissue
samples showed a significant decrease in monoacylglycerol 24:0 and capric acid levels as compared to
controls. Further studies are, however, required to validate these findings and explore how the other
lipid changes found in this study may explain the link between PCOS and EC. Given the complexity
of the pathogenesis of PCOS, simultaneous investigation of how these molecules link with known
genetic pathways and environmental factors which increase the risk of EC is required to reduce the
mortality from EC in PCOS women.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/13/4753/s1,
Table S1: Relative standard deviation (RSD%) of peak areas and retention times of a range of specific lipids
representing major lipid families observed in plasma QC samples (n = 21), which were monitored during the
analysis of the study samples.
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PCOS Polycystic Ovary Syndrome
EC Endometrial Cancer
MVA Multivariate Analysis
UVA Univariate Analysis
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OPLS-DA Orthogonal projections to latent structures discriminant analysis
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