Supporting Information

A "population dynamics" perspective on the delayed life-history effects of environmental contaminations: an illustration with a preliminary study of cadmium transgenerational effects over three generations in the crustacean *Gammarus*

Pauline Cribiu ^{1,2}, Alain Devaux ², Laura Garnero ¹, Khédidja Abbaci ¹, Thérèse Bastide ², Nicolas Delorme ¹, Hervé Quéau ¹, Davide Degli Esposti ¹, Jean-Luc Ravanat ³, Olivier Geffard ¹, Sylvie Bony ², Arnaud Chaumot ^{1,*}

¹ INRAE, UR RiverLy, Laboratoire d'écotoxicologie, 5 rue de la Doua CS 20244, F-69625 Villeurbanne, France

² ENTPE, INRAE, CNRS UMR 5023 LEHNA, rue Maurice Audin 69518 Vaulx-en-Velin CEDEX, France

- ³ CEA, LAN, 17 rue des martyrs 38054 Grenoble CEDEX 9, France
- * Correspondence: <u>arnaud.chaumot@inrae.fr</u> (A.C.)

Figure S2: Life cycle graph of the *Gammarus fossarum* laboratory population with 7 size-classes. P_i = proportion of surviving and remaining organisms in size-class *i*, G_i = proportion of surviving and moving individuals from size-class *i* to size-class *i*+1, F_i = fertility in size-class *i*.

Figure S3: Feeding rate of F0 parents. n = 4.

Figure S4: Standardized mean secondary follicle surface of F0 females. n = 9 (control), n = 6 (0.3 µg Cd /L) and n = 5 (3 Cd µg/L).

Figure S5: Sperm viability in F0 male gammarids. Control: $n = 10, 0.3 \mu g$ Cd/L: $n=9, 3 \mu g$ Cd /L: n=8.

Figure S6: Global cytosine methylation level in F0 male gammarids. Control: $n = 10, 0.3 \mu g Cd/L$: $n=11, 3 \mu g Cd/L$: n=10.

Figure S7: Survival of F1 juveniles. The star denotes a significant difference between C-F0 and 0.3Cd-F0 conditions, p<0.05.

Figure S8: Weekly growth rate of F1 juveniles. n=20.

Figure S9: Oocyte production in F1 generation (size-standardized oocyte number per females). n=10.

Figure S10: Standardized mean secondary follicle surface of F1 females. Control: $n = 3, 0.3 \mu g Cd/L$: $n=7, 3 \mu g Cd/L$: n=4.

Figure S11: Feeding rate of F1 males. n = 4.

Figure S12: Sperm viability in F1 males. Control: $n = 9, 0.3 \mu g Cd/L$: $n=9, 3 \mu g Cd/L$: n=10.

Figure S13: Mean tail DNA intensity (comet assay) in sperm of F1 males. Control: $n = 5, 0.3 \mu g Cd/L$: $n=7, 3 \mu g Cd/L$: n=5.

Figure S14: Global cytosine methylation level in F1 males. Control: $n = 10, 0.3 \mu g Cd/L$: $n=9, 3 \mu g Cd/L$: n=14. The star denotes a significant difference between 0.3Cd-F0 and 3Cd-F0 conditions, p<0.05.

Figure S15: Survival of F2 juveniles. The star denotes a significant difference between conditions.

Figure S16: Weekly growth rate of F2 juveniles. Control: n = 15, $3 \ \mu g \ Cd/L$: n=13.

Figure S17: Oocyte production in F2 generation (size-standardized oocyte number per females). Control: $n = 11, 3 \mu g Cd/L$: n=10.

Figure S18: Embryo number per female in F2 generation (size-standardized embryo number). Control: n = 11, $3 \mu g Cd/L$: n=7.

Figure S19: Mean tail DNA intensity (comet assay) in sperm of F2 males. Control: n = 7, 3 µg Cd/L: n=7. The star denotes a significant difference between conditions, p<0.05.