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Abstract: Drought is the leading cause of agricultural yield loss among all abiotic stresses, and the link
between water deficit and phloem protein contents is relatively unexplored. Here we collected
phloem exudates from Solanum lycopersicum leaves during periods of drought stress and recovery. Our
analysis identified 2558 proteins, the most abundant of which were previously localized to the phloem.
Independent of drought, enrichment analysis of the total phloem exudate protein profiles from all
samples suggests that the protein content of phloem sap is complex, and includes proteins that
function in chaperone systems, branched-chain amino acid synthesis, trehalose metabolism, and RNA
silencing. We observed 169 proteins whose abundance changed significantly within the phloem
sap, either during drought or recovery. Proteins that became significantly more abundant during
drought include members of lipid metabolism, chaperone-mediated protein folding, carboxylic acid
metabolism, abscisic acid signaling, cytokinin biosynthesis, and amino acid metabolism. Conversely,
proteins involved in lipid signaling, sphingolipid metabolism, cell wall organization, carbohydrate
metabolism, and a mitogen-activated protein kinase are decreased during drought. Our experiment
has achieved an in-depth profiling of phloem sap protein contents during drought stress and recovery
that supports previous findings and provides new evidence that multiple biological processes are
involved in drought adaptation.
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1. Introduction

Plant vasculature, composed primarily of xylem and phloem, is responsible for the long-distance
transport of resources and molecular signals throughout the plant. The xylem functions in a passive
unidirectional fashion, transporting predominately water and minerals upward from root tissue [1].
In contrast, the phloem is a bidirectional active transport system with a diverse array of molecular
contents. In addition to carbohydrates produced by photosynthesis, the phloem also contains primary
metabolites such as amino acids [2], secondary metabolites such as flavonoids and phenylpropanoids [3],
coding and non-coding RNA [4], hormones [5], lipids [6], and protein [7,8], collectively referred to
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as phloem sap. Indeed, phloem contains a large and diverse collection of molecule types involved
in nutrient transport, inter-organ signaling, and adaptation to stress. The phloem consists of multiple cell
types, including an enucleate sieve element and a neighboring nucleate companion cell. Consequently,
the sieve element is not transcriptionally active, and the mRNA, protein, and other contents of
the phloem sap, therefore, reflects the activity and plasmodesmatal export from their adjoining
companion cells, primarily through plasmodesmata. However, bound within the sieve elements,
the phloem sap contains much of the cell’s translational machinery and may be capable of nascent
protein production [7], although this has yet to be demonstrated [9].

To capture and study the protein profile of phloem sap, an EDTA-facilitated exudation technique
is often used. The EDTA-facilitated exudation technique involves excision of the plant stem or
petiole to expose sieve elements, after which the excised plant organ is placed in an EDTA-containing
solution. This technique exploits the divalent cation binding capacity of EDTA to sequester Ca2+

ions, thereby preventing wound-induced Ca2+-dependent sieve element occlusion [10] and allowing
the phloem sap contents to exude into a collection buffer. The EDTA, however, can cause tissue damage,
cell lysis, and subsequent contamination of phloem sap exudates by the contents of neighboring
non-vascular cell types. This has been partly remedied by decreasing the incubation time with the EDTA
solution, followed by the collection of phloem sap exudate in distilled water [11]. While convenient,
the EDTA-facilitated exudate collection technique still results in contamination by the neighboring
cells [12]. For example, multiple publications identify ribulose bisphosphate carboxylase (Rubisco)
and other photosynthesis-related proteins in phloem exudates, despite the apparent absence of
photosynthesis in sieve elements [8,9,13]. Hence, use of EDTA even at low concentrations does likely
introduce proteins that are not part of the proteome of the phloem sap, but experimental design
and careful analysis can aid in its interpretation.

Reviewed by Carella et al. and Rodriguez-Celma et al., previous studies have captured
and examined the protein content of phloem sap from different plant species in both stressed
and stress-free conditions [14,15]. It is apparent that regardless of species, most plant phloem
proteomes contain representatives of particular biological process ontologies, including redox regulation
(e.g., peroxidases and oxidoreductases), protein quality control and degradation (e.g., chaperones
and proteases), polysaccharide metabolism (e.g., glucosidases and galactosidases), and defense
(chitinases and thaumatins) [8,15]. In response to stress, multiple reports show changes in the abundance
of proteins associated with defense, lipid transport [6,16], and redox regulation [14].

Despite a growing understanding of the phloem sap contents in multiple species, much remains
to be learned about phloem sap dynamics in response to abiotic stress. In particular, little is known
about the phloem proteome of Solanum lycopersicum (tomato), and, to the best of our knowledge, no
global protein profiling of tomato phloem sap has been performed. Tomato is both a model plant with
a wealth of genetic and molecular resources [17] and an important agricultural crop, making it an
attractive candidate for phloem exudate studies. Like most agricultural crops, tomato is subjected to
abiotic and biotic stresses, such as drought and predation by phloem-feeding insects. Because drought
results in the largest decreases in agricultural crop productivity among all biotic and abiotic stresses,
the research community would benefit from an improved quantification of tomato phloem sap contents
and their dynamics in response to the onset of drought stress and drought recovery.

We report here a comprehensive characterization of tomato phloem sap protein profiles during a
period of drought stress and drought recovery using the EDTA-facilitated phloem exudation method
followed by LC-MS/MS. Our analysis resulted in confident identification of >2500 proteins from
15 samples (5 groups of 3 biological replicates), and shows extensive consistency with previous phloem
sap protein profiles. Our global dataset suggests many biological pathways beyond previous reports are
present within the phloem sap. Only 31 proteins were detected uniquely in drought-stressed phloem,
while the abundance of 169 proteins changed significantly during our experiment. Analysis of this subset
of proteins suggests that, within phloem sap, the proteins associated with the biological processes
lipid metabolism, chaperone-mediated protein folding, cytokinin biosynthesis, and branched-chain
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amino acid metabolism became more abundant in response to drought. Conversely, the proteins
involved in particular biological processes, including carbohydrate and lipid metabolism, are became
less abundant during drought stress.

2. Results

2.1. Drought and Phloem Exudate Proteomics

To determine the impact of drought on the protein profile of tomato phloem, an experiment
was executed that incorporated a period of drought stress followed by drought recovery. Phloem
exudates were sampled after withholding three alternate day waterings (T1), and following
drought-stressed plant recovery with ample watering over 2 days (T2). Drought-stressed tomato
plants exhibited a visible loss of turgor pressure that was ameliorated upon a return to watering
(Figure 1A). Throughout the experiment we observed that the fluctuations in total pot weight steadily
increased, driven by plant transpiration. To prevent premature drought stress, this was accounted for
by periodically increasing the watering regimen (Figure 1B). As expected, the drought-stressed plants
exhibited a significant 1.5-fold reduction in both aerial and root tissue water content (g H2O/g tissue
dry weight) (Figure 1C, Welch’s t-test p-value < 0.005). Phloem exudates were collected via the EDTA
method for 6 h, and the protein profile of each sample was determined via LC-MS/MS. Our LC-MS/MS
analysis of phloem exudate proteins resulted in the identification of 3569 proteins. To add confidence to
our identifications, we reduced our dataset by limiting our analysis to proteins identified with≥2 unique
peptides, as well as to proteins that were reproducibly identified in all three biological replicates of
at least one treatment group (e.g., all three drought T1 replicates). This resulted in the confident
identification and quantification of 2558 S. lycopersicum proteins (Supplemental Table S1). Because
the peptide quantities were normalized prior to injection, each dataset was median normalized to
account for small differences in sample loading (Figure 2, Supplemental Table S1).
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Figure 1. Phenotypic impacts of drought, watering regime, and impacts on plant water content.
(A) Pictures of representative plants showing evidence of turgor pressure loss during drought at T1
(left) and after recovery at T2 (right). (B) Pot weight fluctuations based on total pot weights and water
addition weight between regular watering intervals (left axis, box plots) and watering regimen for
each watering (right axis, dots). (C) Water content in both aerial (top) and root (bottom) tissues during
drought and recovery. Asterisks denote a t-test p-value < 0.05.
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Figure 2. Data normalization. Violin plot representation of the raw protein abundances (left) and after
normalization (right) for each sample after log2 transformation and median subtraction to normalize
for slight differences in amounts of protein injected into the mass spectrometer. The horizontal dotted
line in each graph is centered along the median protein abundance for all proteins in all samples.

2.2. Tomato Phloem Exudate Proteome Confirms Previous Findings

To evaluate whether our technique successfully captured the protein profiles representative of
the phloem, as well as the extent to which proteins from other cell types are present in our samples,
we evaluated the identities of the most abundant proteins within our dataset. The presence of
Ribulose-6 phosphate carboxylase (RbcL) in phloem exudates is sometimes used as a metric to evaluate
contamination from other cell types. Although RbcL was present in our protein profile, the two most
abundant proteins across all 12 biological replicates were a sieve element occlusion B-like P-protein
(Solyc03g111820) and a Bet V1 domain containing protein (Solyc04g005695), each 2.5- and 2.1-fold more
abundant than RbcL, respectively. Orthologues of both Solyc03g111820 [18] and Solyc04g005695 [7]
have been shown to be abundant in the sieve element. A further comparison of the most abundant
proteins identified across all samples from this experiment reveals a strong overlap with those
identified in previous phloem exudates (Table 1, and Supplemental Table S1). For example, using
NCBI protein BLAST [19], the nearest homologs of acyl-CoA binding protein (Solyc08g075690) [20],
lipoxygenase C (Uniprot accession Q96573) [21], and stress-response protein (Solyc11g066950) [22]
were each identified in previous phloem exudates. Similarly, the nearest homolog identified for
17 of the 20 most abundant proteins in our phloem exudate were previously identified in phloem
exudate experiments [7,13,15,20–30]. Our analysis also identified a phloem-transported flowering
time regulator, FLOWERING LOCUS T-like protein (Solyc05g053850), that was recently shown to
regulate flowering time in tomato [31]. Similarly, we observe the phloem-mobile cyclophilin protein
(Solyc01g111170), which was recently shown to regulate the shoot-to-root ratio, as a highly abundant
protein in our phloem exudate [32]. Taken together, these data strongly support that our phloem
exudate collection strategy successfully captured a protein profile representative of S. lycopersicum
sieve elements.

Table 1. Cross reference with the literature of the 20 most abundant proteins identified in this work.

Tomato Protein Name
This Work Prior Work

Accsn Ab. Name Accession Primary Reference

Sieve Element Occlusion (P-protein) Solyc03g111820 781 SEO-F1 A8C977 (1) Knoblauch et al. 2001 [23]

Bet V 1 protein Solyc04g005695 669 MLP31 AT5G28010.1
(2) Carella et al. 2016 [8]

Ribulose bisphosphate carboxylase large chain A0A0C5CHE6 314 RbcL ATCG00490.1
(2) Rodriguez-Celma et al. 2016 [15]

Acyl-CoA Binding domain-containing protein Solyc08g075690 289 ACBP6 AT1G31812 (2) Ye et al. 2016 [20]
Lipoxygenase LoxC Q96573 253 LoxC Q96573 (1) Hause et al. 2003 [21]

Stress-response A/B barrel domain-containing
protein Solyc11g066950 234 N/A AT5G22580 (2) Z Rahmat 2012 (PhD Thesis) [22]

Glyceraldehyde-3-phosphate dehydrogenase Solyc05g014470 223 GAPC-2 AT1G13440 (2) Batailler et al. 2012 [13]
Bet V 1 protein (likely Polyketide cyclase/dehydrase,

lipid transport protein, or MLP) Solyc10g048030 215 MLP43 AT1G70890 Giavalisco et al. 2006 [25]
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Table 1. Cont.

Tomato Protein Name
This Work Prior Work

Accsn Ab. Name Accession Primary Reference

Peroxidase Solyc01g006300 197 N/A XM_023130287
(3) Walz et al. 2002 [26]

Nucleoside diphosphate kinase Solyc01g089970 174 NDPK1 AT4G09320 (2) Batailler et al. 2012 [13]
Malate dehydrogenase Solyc09g090140 171 MDH Q7XDC8 (1) Du et al. 2015 [27]

Nascent polypeptide-associated subunit β Solyc07g008720 169 BTF3 AT1G17880 (2) Lin et al. 2009 [7]
Peptidyl-prolyl cis-trans isomerase (PPIase,

Cyclophilin) Solyc01g111170 168 CYP3 AT2G16600 (2) Deeken et al. 2008 [28]

Uncharacterized protein Solyc05g054760 159 DHAR2 AT1G75270 (2) Walz et al. 2002, 2004 [26,29]
Histone H4 Solyc11g072840 156 HIS4 AT2G28740 (2)

Bet_v_1 domain-containing protein Solyc04g007820 145 MLP43 AT1G70890 (2) Giavalisco et al. 2006 [25]
Uncharacterized protein Solyc07g045440 140 FLA2 At4G12730 (2) Anstead et al. 2013 [30]

SCP domain-containing protein (likely PR-protein) Solyc02g065470 135 CAP At5G66590 (2)
Non-specific lipid-transfer protein 2 (LTP 2) Solyc10g075090 131 LTP2 AT2G38530 (2)

Acidic 27 kDa endochitinase (likely PR protein) Solyc02g082930 131 CHIB/PR3 AT3G12500 (2) Rodriguez-Celma et al. 2016 [15]

Abbreviations: 1 = UniProt; 2 = TAIR; 3 = NCBI; Ab., Abundance; Accsn, Accession.

2.3. Multiple Biological Processes are Represented in Tomato Phloem

To determine what biological processes (BP) may occur at the protein level within the phloem we
performed a gene ontology (GO) enrichment analysis on the total phloem proteome observed in all
samples (i.e., all 2558 proteins from all 15 samples, Supplemental Table S1) [33]. We observed a significant
over-representation of many GO:BP slim terms after a conservative Bonferroni multiple hypothesis test
correction (Supplemental Table S2). Due to the redundancy in GO terms, this list was condensed using
REVIGO [34], resulting in 90 reduced redundancy GO:BP terms (Supplemental Table S2, column n).
Selected GO:BP slim terms, their Bonferroni adjusted p-values, and their fold-enrichment are shown
in Figure 3.

Proteins belonging to multiple biological processes previously observed within the phloem were
also observed in this work. For example, oxidation-reduction (GO:0055114), proteasome-mediated
ubiquitin-dependent protein catabolism (GO:0043161), and translation (GO:0006412) were each
significantly 4.7-, 2.7- and 3.6-fold enriched within the phloem, respectively (Bonferroni-corrected
p-value < 0.05) [7]. Consistent with the enucleate nature of sieve elements, we observed a significant
~3-fold underrepresentation of proteins associated with transcription (GO:0042446) within the phloem
exudate (Bonferroni-corrected p-value = 1.6 × 10−6) (Figure 3, Supplemental Table S2). These data
suggest that the protein contents of phloem sap are complex and that multiple biological processes are
likely occurring within the phloem.

2.4. Novel Proteins and Processes in the Tomato Phloem

The depth of our proteome facilitated the identification of proteins not previously identified
in the phloem, including members of RNA silencing and trehalose metabolism. For example,
members of the Argonaute protein family detected include AGO1A, AGO2A2, AGO4A, and AGO4B,
(Solyc06g072300, Solyc02g069260, Solyc01g008960, and K4LP77, respectively). Expression of ago1
in A. thaliana was shown to be vascular-specific [35], but to our knowledge its detection at the protein
level within the phloem has not been previously reported. Similarly, three proteins predicted to be
involved in trehalose metabolism were also detected in phloem exudates, including Solyc02g072150,
Solyc07g055300, and Solyc08g079060. Sequence homology by BLASTp suggests that Solyc02g072150
and Solyc07g055300 are homologous to A. thaliana trehalose-phosphate synthases, while Solyc08g079060
is homologous to an A. thaliana trehalose-phosphate phosphatase. Our analysis also identified eight
proteins involved in branched-chain amino acid metabolism (BCAA, GO:0009082), and three proteins
involved in K-63 linked protein ubiquitination (GO:0070534) (Supplemental Table S2). Similarly,
15 and 25 proteins associated with reactive oxygen species (ROS) metabolism and chaperone-mediated
protein folding, respectively, were identified in the phloem. However, six of the 15 proteins associated
with ROS metabolism were identified in previous phloem exudate studies (Supplemental Table S2).
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These data suggest that RNA-silencing, trehalose metabolism, BCAA biosynthesis, and other previously
unreported biological processes are present within the phloem.
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2.5. Drought Stress Alters Phloem Proteome

To determine the extent to which water deprivation impacts the phloem protein profiles,
we performed a drought experiment followed by protein profiling of the phloem exudates (Figure 1).
Drought stress, particularly the loss of turgor pressure, was apparent at Timepoint 1 (T1) after
withholding three alternate-day waterings (Figure 1A). As shown by a clear increase in turgor pressure
and leaf tissue water content, drought symptoms were alleviated at Timepoint 2 (T2), two days after a
return to watering (Figure 1A). Only 31 proteins were identified exclusively in phloem exudates of
the drought-stressed plants (Supplemental Table S1). While no particular protein ontology was enriched
within this subset of unique drought-specific proteins, members include two lipid transfer proteins
(Solyc01g081600, and UniProt accession O24024), a universal stress protein (Solyc04g014600), and 12
uncharacterized proteins.
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To evaluate whether changes in protein abundances collected from phloem exudates were
statistically distinguishable, we performed a principal component analysis (PCA) (Figure 4A).
Component 1 of the PCA score plot comprises 21.1% of the data variation and is caused by changes
between the T1 watered and T1 drought-stressed plants. The second component, comprising 16% of
the data variation, is caused by differences between the T2 watered and all other samples, suggesting
the phloem protein profiles change over time as plant size increases for these growth conditions.
The location of the T2 drought-recovered plant samples on the score plot is between the T1 watered
and T1 drought samples, consistent with a partial return to pre-drought levels. A pairwise comparison
and Pearson correlation coefficient (PCC) was calculated using the abundances of each protein profile
for all samples (Figure 4B). The PCCs ranged from 0.755 to 0.925, suggesting a relatively strong positive
correlation between the phloem exudate protein profiles from all samples, regardless of drought.
However, the lowest correlations observed were between the T1 drought and T1 watered samples
(PCC range from 0.756 to 0.873). These PCA and PCC data suggest that drought impacts the phloem
sap protein content and that partial restoration of pre-drought protein abundances occurs after plants
are returned to the healthy watering regimen.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 21 
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Of the 2558 proteins confidently identified in our study, the abundances of 169 proteins
were significantly changed between the different samples (ANOVA p-value < 0.01, 10% FDR,
Supplemental Table S1). To further understand the regulation of these 169 proteins, we performed
a hierarchical clustering analysis (Figure 5A, Supplemental Table S1), which resulted in five distinct
clusters (C1–C5, Figure 5B). Cluster C1 contains the proteins whose abundances increase in response
to drought, while the abundances of proteins in Cluster C4 decrease during drought. Cluster C2
appears to contain proteins whose abundances increase naturally during plant development from T1
to T2 under non-drought conditions but are suppressed in response to drought. Similarly, phloem
proteins in Cluster C3 appear to decrease from T1 to T2 when plants are well watered but remain at an
intermediate elevation in T2 recovered samples. Interestingly, Cluster C5 contains proteins that are
mildly elevated in response to drought at T1 and increase substantially in abundance after a return to
watering in T2 drought-recovered samples.
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Figure 5. Hierarchical cluster analysis (HCA), cluster-specific Z-score trends, and gene ontology (GO)
enrichment analysis of each cluster. (A) Hierarchical clustering analysis of 169 proteins with an adjusted
ANOVA p-value <0.05. (B) Z-scores from each cluster averaged by sample. Error bars denote standard
deviation. The number of proteins in each cluster is shown on each graph. (C) Selected ontology
terms enriched among proteins from each cluster (C1–C5) via the Panther overrepresentation test
(Bonferroni-adjusted p-value < 0.05). The Log2-fold enrichment for each GO term is represented as a bar
on the top axis, and the associated -Log10-adjusted p-values for each GO term are represented as black
dots on the bottom x-axis. The number of proteins contributing to each GO term is shown beside
the respective term in parentheses. For reference, the vertical dotted line denotes a -log10-adjusted
p-value of 0.05. Additional GO terms can be found in Supplemental Tables S3–S7. T1, Timepoint 1; T2,
Timepoint 2.



Int. J. Mol. Sci. 2020, 21, 4461 9 of 20

2.6. Positively Regulated Drought-Responsive Proteins

To identify the proteins whose abundance changed during our experiment, a permutation-based
FDR-adjusted ANOVA was performed and only proteins with an adjusted p-value threshold < 0.01 are
included in this section. To determine whether a protein abundance changed specifically in response
to drought, further analysis of T1 drought and T1 watered was performed by a post-hoc t-test using
only the 169 proteins with a significant change as determined by the ANOVA. Of particular interest are
the 61 increased drought-responsive proteins belonging to Cluster C1 (Figure 5B). The enrichment
analysis revealed that among the C1 proteins multiple GO terms, including the lipid metabolic
process (GO:0006629), chaperone-mediated protein folding (GO:0061077), as well as response to
oxygen-containing compound (GO:1901700), are significantly 5.6-, 20.3-, and 6.6-fold overrepresented,
respectively (Figure 5C, Supplemental Table S3) (Bonferroni-adjusted p-value ≤ 0.02). Proteins within
the lipid metabolism GO term include the temperature-induced lipocalin (TIL) (Solyc07g005210), which
showed a significant 48-fold increase in response to drought (post-hoc t-test p = 0.02). Members of
the chaperone-mediated protein folding term (GO:0061077) in Cluster C1 include the likely HSP70
protein (Solyc10g086410) and likely GROES-like protein (Solyc07g008800), both of which exhibiting
a significant 1.6- and 2-fold increase in response to drought, respectively (post-hoc t-test p = 0.04
and p = 0.001, respectively). The abscisic acid and environmental stress-inducible dehydrin protein
TAS14 (P22240, Solyc02g084850) is a member of the “response to oxygen-containing compound” GO
term family and exhibited the largest drought-induced increase in protein abundance, reaching a
238-fold higher abundance during drought (post-hoc t-test p = 0.03).

Independent of the ontology overrepresentation tests, members of the 61 Cluster C1 proteins
suggest multiple processes are impacted by drought within the phloem, including amino acid
and carboxylic acid metabolism, abscisic acid signaling, and lipid metabolism. For example,
the ∆1-pyrroline-5-carboxylate synthase (P5CS, Solyc06g019170), involved in proline biosynthesis
and plant osmoregulation [36], is a member of Cluster C1 and significantly 1.5-fold more abundant
in response to drought (post-hoc t-test p = 0.002). Similarly, the Bet v1 domain-containing protein
(Solyc04g007820), likely involved in fatty acid and/or cytokinin binding [37], is significantly 2.6-fold
increased during drought (post-hoc t-test p = 0.04). We also observed a significant 8-fold increase
in the abundance of the cytokinin activating protein (Solyc08g062820) during drought (post-hoc
t-test p = 0.01). The semi-aldehyde dehydrogenase domain-containing protein (Solyc01g005250),
also in Cluster C1 (significantly 2-fold increased by drought, post-hoc t-test p = 0.01), is likely involved
in the metabolism of amino acids, including isoleucine, lysine, and methionine. Two additional
lipid-related proteins, the plastid-lipid-associated protein O24024 and non-specific lipid-transfer
protein Solyc01g081600, had respectively 5.5- and 4.8-fold increase in response to drought (post-hoc
t-test p = 0.002 and 0.0004, respectively). These observations suggest that tomato responds to drought
by altering its amino acid metabolism, stress response, cytokinin, and carbohydrate metabolism within
the phloem.

2.7. Downregulated Drought-Responsive Proteins

Cluster C4 is comprised of proteins whose abundance in the phloem exudate apparently
decreases in response to drought. The Panther enrichment analysis revealed a significant >100-,
7.7-, 6.3-, 4.7-, and 3.4-fold overrepresentation of proteins belonging to the GO terms phospholipid
catabolic process (GO:0009395), cell wall organization or biogenesis (GO:0071554), carbohydrate
metabolic process (GO:0005975), signal transduction (GO:0007165), and organic substance catabolic
process (GO:1901575), respectively (Figure 5C, Supplemental Table S4). The only protein within
the phospholipid catabolism GO category is a likely non-specific phospholipase (Solyc01g008790),
whose abundance was significantly 17-fold reduced in response to drought (post-hoc t-test
p = 0.002). While members of the signal transduction GO category significantly changed by ANOVA,
including the xyloglucan endotransglucosylase (Solyc03g093130), 12-oxophytodienoate reductase
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(Solyc10g086220), and the likely HIPL1 protein (Solyc03g113470), only the endotransglucosylase
significantly decreased 34-fold during drought (T1 watered vs. T1 drought post-hoc t-test p = 0.01).

Independent of the overrepresentation tests, additional members within Cluster C4 include
proteins likely involved in carbohydrate metabolism and primary cell wall remodeling. For example,
the abundance of α-L-arabinofuranosidase (Solyc12g100120), O-glycosyl hydrolases (Solyc05g050130
and Solyc01g104950), and the xyloglucan endotransglucosylase (Solyc03g093130) were each significantly
3.7-, 78-, 9.2-, and 34-fold reduced during drought, respectively (post-hoc t-test p < 0.05). Two of
the three proteins with the largest reduction in abundance during drought are glycoside hydrolases
Solyc04g077190 and Solyc05g050130, which show a 111- and 78-fold decrease (post-hoc t-test p < 0.009).
Similarly, the likely fasciclin-like arabinogalactan Solyc07g045440 was significantly 6-fold reduced
during drought (post-hoc t-test p = 0.003). These observations suggest that aspects of carbohydrate
metabolism within the phloem sap may be altered in response to drought.

Other proteins with large reductions in abundance during drought include likely
A1-domain-containing peptidases Solyc06g068550, Solyc03g117690, and Solyc08g067100, each of which
are significantly 168-, 51-, and 14-fold less abundant, respectively (post-hoc t-test p < 0.006). We also
observed a significant 4.3-fold reduction in the abundance of the mitogen-activated protein kinase 3
(MAPK3, Solyc06g005170) (post-hoc t-test p = 0.02). The neutral ceramidase protein Solyc03g006140,
likely involved in sphingosine metabolism, was 2-fold decreased in abundance during drought
(post-hoc t-test p = 0.03). Taken together, these data suggest that particular aspects of peptidase
metabolism, lipid metabolism, and at least one likely MAP kinase is decreased in tomato phloem
during drought.

2.8. Persistent Post-Recovery Impact of Drought on Phloem Protein Profiles

During drought, the abundance of proteins in clusters C1 and C4 apparently increase and are
decreased, respectively, before returning to the approximate abundance observed in watered T2 plants,
suggesting that these proteins return to non-drought stressed levels upon recovery from drought
stress. However, of the 169 proteins that changed significantly via ANOVA, 40 proteins remained
significantly changed between T2 drought recovered and T2 watered samples (post-hoc t-test, 5% FDR,
supplemental Table S1). From clusters C1 (n = 61) and C4 (n = 70), 16 and 11 proteins remain elevated
and suppressed, respectively, upon a return to ample watering and relief of drought at T2. The remaining
13 proteins that do not appear to return to non-drought homeostatic levels belong to Clusters C2 (n = 2),
C3 (n = 10), and C5 (n = 1) (Figure 5B). In Cluster C2, for example, a thioredoxin domain-containing
protein (Solyc02g068500) and a likely glutathione hydrolase (Solyc12g008640) are significantly 2.1-
and 5.3- fold less abundant in the T2 recovered versus T2 watered samples, respectively (post-hoc
t-test p < 0.02). Conversely, members of the Cluster C3 proteins include a lipase domain-containing
protein (Solyc01g100930) and an uncharacterized but likely ubiquitin-fusion degradation protein
(Solyc01g110410), both of which remained significantly 9.4- and 5.6-fold more abundant in recovered
T2 compared to watered T2. Of the three proteins in Cluster C5, only the pyruvate carrier protein
(Solyc08g082760) remained significantly 48-fold more abundant after drought recovery (recovered
T2) compared to watered T2 plants (post-hoc t-test p = 0.0003). These data suggest that while most
drought-responsive proteins quickly return to pre-drought abundance levels, some processes remain
elevated or suppressed. Members of these clusters, as well as the ANOVA and post-hoc analyses can
be found in Supplemental Table S1.

3. Discussion

The phloem is a vital plant system necessary for the distribution of photosynthates, hormones,
and many other signaling molecules between distant plant parts. Understanding the contents of
phloem sap and their change in response to different stimuli is therefore crucial to improve crop
performance [38]. To this end, our study employed the EDTA-facilitated method to capture the phloem
exudates of tomato leaves as they endure and recover from drought. As indicated in prior reports,
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the EDTA method has technical limitations, but nevertheless has successfully identified phloem
sap contents that are subsequently confirmed by orthogonal techniques. Our analysis did identify
Rubisco (RbcL), indicating partial contamination of the non-vascular photosynthetic cells surrounding
the phloem, and likely xylem sap. However, a careful comparison of the most abundant proteins in our
dataset with previous findings indicate successful enrichment for phloem-specific proteins.

Our proteomics workflow consisted of nano-UPLC peptide separation followed by ESI-MS/MS
and resulted in the confident identification of >2500 proteins. The use of gene ontology enrichment
(GO) analyses is a commonly employed strategy to determine whether particular biological pathways
are overrepresented within a dataset more so than would be expected by chance given the natural
abundance of those proteins within the genome. Phloem remains a relatively understudied tissue,
however, and consequently few GO terms are associated with phloem processes. Nevertheless,
we applied GO enrichment analyses to both our total phloem protein profile, as well as those proteins
whose abundance are significantly changed by drought. Our GO enrichment analysis of the total
phloem profile resulted in a surprisingly large number of significantly enriched GO terms after a
conservative Bonferroni p-value adjustment [33]. Conversely, our GO enrichment analysis also found a
significant underrepresentation of transcription-related proteins, consistent with the enucleate nature
of sieve elements. Examples of previously identified phloem proteins identified in our exudate
include the flowering locus T-like protein (Solyc05g053850), the sieve element occlusion p-protein
(Solyc03g111820), and the BET v1 protein (Solyc04g005695).

While our total exudate protein profile is enriched for processes previously identified within
the phloem, including proteasome-mediated protein catabolism and ribosomal systems [39], we also
identified novel biological processes in the phloem. For example, we observed a large number
of proteins involved in chaperone-mediated protein folding within the phloem. Chaperones have
been identified in multiple previous phloem exudate studies and were shown to be suppressed
in the phloem of A. thaliana during infection with the pathogen Pseudomonas syringae [8]. However,
the large number of chaperones identified here suggests that independent of drought, much more of
the phloem protein landscape is dedicated to protein trafficking and quality control than previously
thought. Similarly, a large number of branched-chain amino acid (BCAA) biosynthetic proteins were
detected in the total phloem. While BCAAs comprise only a relatively small portion of the free
amino-acid pools of tomato phloem, their abundance is increased during infection with tomato yellow
leaf curl-virus [40]. Amino-acid loading to and from the phloem is well studied, and our findings
suggest BCAA synthesis may also occur within the phloem and become enhanced during drought
stress to provide energy compensation during reduced photosynthate production [38,41]. Our total
phloem profile is also enriched for three K63 ubiquitinating E2 ligase proteins. In addition to potentially
targeting proteins for degradation by the proteasome, K63 ubiquitin modifications may regulate protein
activity and localization. Phloem proteins are known to be K63 ubiquitinated [39], and our findings
suggest three candidates as E2 ligase enzymes responsible for targeting particular phloem proteins
for ubiquitination (Supplemental Table S1). Our experiment also identified multiple members of
the Argonaute protein family, which play a central role in RNA silencing. Previous reports indicate
Argonaute gene expression in A. thaliana vasculature [35,42] and suggest possible roles in anti-viral
gene silencing. Our data indicate small RNA processing systems are indeed present in the phloem,
including AGO1. It should be noted, however, that without further experimentation, we are unable to
say conclusively that these proteins are actively functioning within the phloem.

In addition to identifying new proteins and processes in the total phloem sap protein profile
as a whole, our experiment also sought to identify the drought-responsive proteins by withholding
watering from a subset of test plants. Our comparative analysis consisted first of an ANOVA,
which resulted in 169 proteins with an adjusted p-value threshold < 0.01. To determine whether
these 169 proteins changed specifically in response to drought, we also performed post-hoc t-tests
using drought T1 and watered T1 samples, resulting in 127/169 proteins with a significant change,
indicating many of the changes observed by ANOVA are indeed caused by drought. Among these
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127 proteins are many known and novel drought-responsive proteins. For example, the dehydrin
protein TAS14 (Solyc02g084850) has been shown to be expressed in phloem companion cells and to
become transcriptionally upregulated in response to abscisic acid, elevated salt, and other stresses [43].
Our experiment identified TAS14 and found its abundance in the phloem to increase significantly
in response to drought, likely to protect proteins or membranes from damage [44]. Similarly, we show
a significant increase in the temperature-induced lipocalin (TIL) during drought. TIL is known
to be necessary for thermotolerance in A. thaliana [45] and may interact with sucrose transporters
in potato [46]. The drought-increased Bet v1 protein we identified has also been detected in previous
phloem exudates [25,47] and likely binds to lipids [6,11], as well as fatty acids and cytokinins [37],
but to the best of our knowledge has not been previously associated with drought stress.

We observed a significant increase in the phloem abundance of ∆1-pyrroline-5-carboxylate
synthase during drought (P5CS, Solyc06g019170). The P5CS protein was originally shown to be
involved in proline biosynthesis and inducible upon salt-shock in drought-resistant moth bean [36].
Overexpression of P5CS has since been shown to confer osmotic stress tolerance in tobacco [48],
potato [49], and rice [50]. Our data, therefore, suggests that tomato may similarly adapt to drought by
upregulating P5CS and increasing the levels of osmoprotectants, such as proline. Our observation
that the cytokinin biosynthesis protein Solyc08g062820 is significantly more abundant in the phloem
during drought stress is consistent with previous observations in maize [51]. Cytokinin is a plant
hormone involved in many biological processes, and cytokinin levels in phloem sap have been linked
to flowering time [52–54]. Comprehensively reviewed by Paul et al. [55], while cytokinin levels
appear to decrease in vascular tissues of poplar during drought, they also point out that elevating
the cytokinin biosynthesis genes under a stress-inducible promoter confers enhanced drought tolerance
in multiple species [56–59]. Our observation that a cytokinin biosynthetic protein is induced upon
drought stress suggests cytokinin biosynthesis in tomato phloem may play a similar role in adaptation
to drought stress.

The semi-aldehyde dehydrogenase domain-containing protein Solyc01g005250 is also significantly
more abundant upon drought stress. Aldehyde dehydrogenases are a large protein family
likely involved in the oxidation of aldehydes to carboxylic acids and are known to be both up
and downregulated during drought stress in soybean [60]. Overexpression of some aldehyde
dehydrogenases was shown to confer oxidative and osmotic stress tolerance in A. thaliana [61].
It is possible that the increased abundance of our observed semialdehyde dehydrogenase functions
to prevent accumulation of aldehydes formed during oxidative stress. Another phloem protein that
substantially increased during drought is the non-specific lipid-transfer protein (nsLTP) Solyc01g081600.
The nsLTP proteins have been shown to bind phospholipids, glycolipids, steroids, and acyl-CoAs [62],
as well as confer additional drought [63] and pathogen [64] stress tolerance. Lipid transfer proteins
have been implicated in long-distance systemic signaling in plants, and Solyc01g081600 may function
similarly within the phloem during drought by maintaining membrane homeostasis or long-distance
lipid transport.

Multiple proteins were also detected whose abundance decreased significantly during drought.
For example, we observed a significant reduction in a Calreticulin protein (CRT), which is known to
participate in the endoplasmic reticulum as a Ca2+-binding protein chaperone, and also localize to
the plasmodesmata in maize [65,66]. Interestingly, CRT is induced upon drought in G. max and results
in added drought tolerance when expressed in tobacco, but is significantly reduced upon drought
in Quercus robur [67]. It has been suggested that CRT may play a role in determining the strength
of the source-sink relationships in the phloem by controlling phloem unloading and are likely to be
different in annual versus perennial plants [68,69]. We also observe a significant reduction in a likely
fasciclin-like arabinogalactan (FLA) protein. The FLA protein was previously identified in phloem
exudates [8] and also shown to be downregulated in response to a pathogen challenge [70] and drought
stress [71]. The FLA protein family is involved in plant growth, development, biotic and abiotic stress
adaptation, and are expressed within vascular tissues [71,72]. The observed tomato FLA is most
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homologous to A. thaliana FLA2 (At4G14360), which was shown to rapidly decrease at the transcript
level in response to abscisic acid and may play a role in shoot tissue regeneration [73]. It is likely that
the FLA2 decrease in phloem sap functions similarly in signaling that leads to changes in stomatal
behavior and root morphology [73].

We also observed a significant reduction in a neutral ceramidase Solyc03g006140 protein during
drought. The neutral ceramidase proteins are involved in sphingolipid metabolism by hydrolyzing
ceramide to sphingosine and a fatty acid. Our ceramidase Solyc03g006140 is most homologous to
the Arabidopsis neutral ceramidase AtNCER1 (At1g07380), which was shown by knockout to accumulate
hydroxyceramides and become sensitive to oxidative stress [74]. While few studies exploring
hydroxyceramide accumulation in plants exist, many reports show a link between hydroxyceramide
levels and cell signaling, membrane homeostasis, and cell death in mammals [75]. However,
it was recently shown that an Arabidopsis Atncer1 knockout resulted in elevated hydroxyceramide
levels, accumulation of jasmonoyl-isoleucine in leaves, and resulted in early leaf senescence [76].
Our findings suggest that ceramide metabolism in the phloem might prepare plants for leaf loss as a
proactive mechanism for severe drought.

We observed a large decrease in abundance of an O-glycosyl hydrolase (GH) domain-containing
protein Solyc05g050130. The GH protein family hydrolyzes carbohydrates from other molecules,
and have been linked to many biological processes [77] but are most likely involved in cell
wall modification [78,79]. Another substantially decreased phloem sap protein, the xyloglucan
endotransglucosylase (XTH, Solyc03g093130), is also likely involved in cell wall development,
and similar XTH proteins are known to be involved in vascular cell wall expansion in poplar [80].
Our data suggest that particular aspects of cell wall remodeling may be decreased during drought
stress, although the lack of experimental validation of the GH and XTH protein function precludes
us from suggesting a specific mechanism. Interestingly, we also observed a significant decrease
in a mitogen-activated protein kinase protein Solyc01g094960. Previous reports have linked
MAPK3 proteins to virus tolerance [81], botrytis tolerance [82], and drought tolerance in Solanum
pimpinellifolium [83]. To date, the phosphorylation status of phloem sap proteins has not been explored,
and our findings suggest that a changing phosphoproteome within the phloem may have a role
in adaptation to drought stress.

Our study has identified a large number of known and novel proteins within phloem sap, as well
as proteins whose abundance changes in response to drought. Novel phloem sap proteins identified
here include those associated with ROS, BCAA, and trehalose metabolism, as well as RNA silencing.
Drought-responsive proteins include those associated with thermotolerance and osmoprotectant
production, lipid metabolism, cell wall modification, ceramide metabolism, and mitogen-activated
protein phosphorylation. While further experiments are necessary to confirm the activity of such
proteins within the phloem sap, these findings open multiple avenues for future research of the role of
plant vasculature in drought-stress adaptation.

4. Materials and Methods

4.1. Plant Growth

Solanum lycopersicum cv. “Florida Lanai” seeds were collected from plants grown in greenhouse
conditions. All subsequent growth was carried out in a Percival growth chamber (AR75L3X configured
with white LED tubes and red/far-red LED light bars) with light levels set at 50 and 100% for red
and white light, respectively, resulting in ~100 W/m2 (~400 PAR) light as quantified with a LI-COR
light logger (LI-COR Biosciences, Li-1500, Lincoln, NE, USA) equipped with a LI-COR pyranometer
sensor (Li-200R, Lincoln, NE, USA). To begin the experiment, two seeds were sown into 4.12” × 5”
(Dillen Products, DSQVP45PF/D, Middlefield, OH, USA) containing 300 g of Scotts Miracle Gro™ soil
(Scotts, Marysville, OH, USA) moistened with 200 mL of water prior to sowing. Pots were covered with
plastic wrap and not watered for 6 days during germination. Upon germination, 6 days post sowing
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(DPS), the plants were uncovered and thinned to a single plant per pot. The initial watering regimen
consisted of 40 mL H2O every other day starting at 7 DPS. The growth chamber conditions facilitated
rapid growth and transpiration, necessitating an increase in watering to prevent premature drought
stress, noted in Figure 1. At 25 DPS, 6 biological replicates of plants selected at random were subjected
to drought stress by withholding water for an additional 4 days, while control plants continued to
receive 150 mL H2O every other day. After skipping 3 alternate day waterings (totaling 6 days since
the last watering), phloem exudate was captured from half of the drought-stressed plants at 29 DPS
as the initial comparative drought condition, constituting Timepoint 1 (T1). Drought-recovered plants
were watered 150 mL H2O on 29 and 30 DPS. A second phloem exudate was collected from both
the drought-recovered and watered plants, constituting Timepoint 2 (T2), at 31 DPS. Tissue dry weights
at harvest were obtained by collection of the entire (minus sampling) aerial or root mass (obtained
with thorough soil removal by rinsing) and placement in pre-tared foil pouches dried at 70 ◦C for
3+ days, followed by closing of the foil pouches; an additional day of drying followed by cooling
under desiccation before final weights. Weights were repeated after subsequent further drying to
confirm a constant dry weight (DW).

4.2. Phloem Exudate Collection

Phloem exudate was collected as previously described with minor modifications [84]. Briefly,
leaf three was excised at the petiole from three biological replicate tomato plants (each at the 5/6
leaf-stage) using a scalpel. The cut petiole of each excised leaf was transferred immediately into a
solution containing 20 mM EDTA for 30 min in a humid chamber followed by immersion in distilled
water with 0.4 mM Roche Pefabloc SC Plus (Sigma-Aldrich cat#11873601001, St. Louis, MO, USA)
to prevent protein degradation within the captured exudate. Phloem exudates were collected inside
a humid chamber for six hours in the dark, at which point the phloem exudates were snap-frozen
in liquid nitrogen.

4.3. Protein Sample Preparation and LC-MS/MS

Frozen phloem exudate was cryogenically lyophilized and resuspended in 8 M urea in 50 mM
NH4HCO3. Protein was then quantified via Pierce BCA (Thermo Scientific, Cat# 23225, Waltham, MA,
USA). Protein disulfide bonds were reduced by the addition of dithiothreitol to a final concentration of
20 mM and incubation at 37 ◦C for 1 h with shaking at 800 rpm. Alkylation was achieved by the addition
of iodoacetamide to a final concentration of 40 mM with continued shaking at room temperature.
Prior to digestion, each sample was diluted 8-fold with 1.14 mM CaCl2 in 50 mM NH4CO3, bringing
the final CaCl2 concentration to 1 mM. Protein was then quantified via Pierce BCA (Thermo Scientific,
Cat# 23225, Waltham, MA, USA). Trypsin was added to each sample at a 1:50 w:w trypsin-to-protein
ratio followed by incubation at 37 ◦C for 3 h with shaking at 800 rpm. Each sample was then cleaned
with C-18 solid-phase extraction columns (Phenomenex, Cat# 8B-S001-DAK, Torrance, CA, USA),
and the resulting peptides were quantified by BCA. A total of 5 µL of 0.1 µg/µL peptide was injected
into Waters nanoAcquity liquid chromatography system and separated using a reverse-phase C-18
column (in-house prepared 70 cm × 70 µm i.d., 3 µm Jupiter C-18) in-line with a Q-Exactive Plus
mass spectrometer (Thermo Fisher, Waltham, MA, USA) at 300 nL/min. Separation occurred over
100 min using a linear gradient of 0.1% formic acid in water (A) to 0.1% formic acid in acetonitrile (B).
Eluent entered the mass spectrometer via electrospray ionization in the positive mode.

4.4. Data Analysis

The RAW files for each LC-MS/MS analysis can be accessed via ProtomeXchange with the dataset
identifier PXD018993 [85,86]. For all samples, a peptide search was performed via MaxQuant
(V1.6.5.0) [87] Andromeda [88] using a comprehensive FASTA generated from the UniProtKB [89]
database entries (Both Swiss-Prot and TrEMBL) for Solanum lycopersicum (Taxon identifier 4081,
SOLLC). The Maxquant search parameters included variable modifications of methionine oxidation
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and N-terminal protein acetylation, as well as fixed modifications of carbamidomethylation (maximum
of 5 modifications per peptide) using the re-quantify function. Global parameters also included a
“match between run” window of 1.4 min, a 1% protein false discovery rate, and protein abundance
estimation via iBAQ. The resulting combined protein groups file was then imported into Perseus [90],
where contaminants were removed from the dataset. To add confidence to our protein identifications,
the dataset was further reduced by filtering for proteins that were identified using ≥2 unique peptides.
Furthermore, only proteins that were detected in all three biological replicates of at least 1 treatment
group (e.g., all replicates from drought T1 or watered T1, etc.) were considered for subsequent
analyses. The resulting 2558 proteins were then log2-transformed, followed by missing value
imputation from a normal distribution with a width of 0.3 and a downshift of 1.8 [90]. Normalization
was achieved by a median subtraction for each sample (Figure 2). An ANOVA was performed with
a permutation-based FDR of 10% using 250 randomizations. For hierarchical clustering analysis
(HCA) and heatmap generation, proteins with an adjusted ANOVA p-value threshold < 0.01 were
Z-score transformed (z = χ − µ/σ) [90,91] and imported into Multiple Experiment Viewer MeV (v4.9.0).
The HCA was performed using average linkage and Euclidean distances [92]. Cluster number
was determined using the MeV Figure of Merit function [93]. An additional post-hoc t-test with
permutation-based 5% FDR correction was performed using the drought T1 versus watered T1 samples,
and recovered T2 versus watered T2 samples. Each identified protein, their abundance, and relevant
statistics can be found in Supplemental Table S1. When used, gene ontology enrichment analysis
was performed using the Panther [33] (v.15.0, Annotation version 15.0, Released 14-Feb-2020) GO-Slim
biological process terms. Panther settings for enrichment analysis of the entire phloem protein profile
(Supplemental Table S2), as well as the individual clusters (Supplemental Tables S3–S7), consisted
of a Fisher test-type and a Bonferroni multiple test correction using the entire tomato genome as a
background. Results of the Panther enrichment tests can be replicated using Column A of each
Supplemental Table.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/12/
4461/s1. Table S1: Main data analysis table containing protein IDs and normalized abundance estimations;
Table S2: Total phloem exudate protein profile GO term enrichment analysis output from Panther and REVIGO;
Tables S3–S7: GO term enrichment analysis output from Panther using proteins from hierarchical clustering
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