Table of Contents

Supplementary Figures	. 2
Supplementary Figure S1: EDC/sulfo-NHS cross-linked LDLK12 peptide	.2
Supplementary Figure S2: Shear stress (σ) measurements	.2
Supplementary Figure S3: CD spectrum of EDC/sulfo-NHS	.3
Supplementary Figure S4: 2D heights interpolation map	.3
Supplementary Figure S5: Nematic order parameter	.4
Supplementary Figure S6: CD spectra of KLPGWSG and	
LDLK12_EDC/NHS_KLPGWSG	.5
Supplementary Figure S7: FITC-KLPGWSG fluorescence intensity	.5
Supplementary Figure S8: HPLC and LC-MS analyses of LDLK12, KLPGWSG and	
FITC-KLPGWSG	.8
Supplementary Figure S9: HPLC and LC-MS analyses of cross-linked LDLK12	.9
Supplementary Figure S10: HPLC and LC-MS analyses of LDLK12 post-assembly	
functionalization with KLPGWSG	10
References	10

Supplementary Figure S1: EDC/sulfo-NHS cross-linked LDLK12 peptide. One-pot *in situ* LDLK12 (1% w/v) cross-linking via EDC/sulfo-NHS coupling: after cross-linking the self-supporting SAP scaffold can be appreciated.

Supplementary Figure S2: Shear stress (\sigma) measurements. Shear stress (σ) measurements at increasing shear rate of the wildtype and cross-linked LDLK12 peptides. Both SAPs exhibited non-Newtonian shear-thinning behavior.

Supplementary Figure S3: CD spectrum of EDC/sulfo-NHS. No CD signal was observed in EDC/sulfo-NHS alone, suggesting no assembly propensity for the cross-linker alone.

Supplementary Figure S4: 2D heights interpolation map. 2D heights interpolation map and height measurements of EDC/sulfo-NHS cross-linked LDLK12 peptide.

Supplementary Figure S5: Nematic order parameter. Nematic order parameter of cross-linked LDLK12 nanostructured scaffold, obtained by FiberApp software [60,61]. To calculate the 2D order parameter (i.e. S_{2D}) we divided the whole AFM image into square blocks of a certain size (*d*). Calculating and averaging S_{2D} values for all blocks results in one mean number, which is parametric with (*d*), yielding to the length scale-dependent S_{2D}(*d*)[62]. S_{2D}(*d*) function is further expressed as sum of the weighted components S_{2D}^{align} and S_{2D}^{rand}, corresponding to the alignment of the nematic and isotropic components, respectively: S_{2D}(*d*)=*a*S_{2D}^{align}(*d*) + (1 – a) S_{2D}^{rand}(*d*); where *a* is the relative surface fraction of the aligned (nematic) domains. By applying this analysis to the tracked nanofibrils, it is possible to quantify isotropic–nematic transitions rigorously.[61, 62].

Supplementary Figure S6: CD spectra of KLPGWSG and LDLK12_EDC/NHS_KLPGWSG. LDLK12 peptide after the EDC/sulfo-NHS reaction with KLPGWSG showed the presence of β -sheet secondary structures, while the KLPGWSG alone showed an unstructured conformation.

Supplementary Figure S7: FITC-KLPGWSG fluorescence intensity. Quantification of FITC-KLPGWSG fluorescence intensity on LDLK12 peptide nanostructures. EDC/sulfo-NHS-mediated conjugation of FITC-KLPGWSG peptide to LDLK12 nanofibers showed higher fluorescence intensity compared to the non-specific adsorption of FITC-KLPGWSG to nanofibers of standard LDLK12. As expected, LDLK12 alone did not show any detectable signal.

Ac-LDLKLDLKLDLK-CONH₂

Supplementary Figure S8: HPLC and LC-MS analyses of LDLK12, KLPGWSG and FITC-KLPGWSG. LDLK12: LC-MS calc. = 1468.89 g/mol, obs. = 1468.04 g/mol. KLPGWSG: LC-MS calc. = 744.4 g/mol, obs. = 743.63 g/mol. FITC- KLPGWSG: LC-MS calc. = 1133.32 g/mol, obs. = 1132.71 g/mol.

LDLK12_EDC/NHS

400		490,36															30	1.20			5/9	1.30					,	· · · · · · · ·												1.2566													
100	7			ĺ		I			ĺ		T	T	T		1	Ĩ			ľ.					Т				~l							L						l											1	
				1		Î		1	Î		T	Î			1	1			IN	10	no	m	er	T												580.	45													Din	ne	r	
				[1			Î		I	T			1	1			Ī					T																													
						Ì			Ì		1	1			1	1			İ									Ī				Ш		56	3.37												T						
											1	1			-				Î					1				Ì		28	5.50	Ш	1		Ĩ						1	1					T	T				1	
3	1					l			1		1	1							Ì								-	1			Ì					1580	J.89				1	1					T	1				1	
								734	.89		1	1			1	1			1					1				Ī		27	9.26		P	404:	39	580.	84				1	1					1	1				1	
	1			1					1		1				-	1			1					1				Ī	14	9.06			L	404:	.40						Ì						1	1					
		100.2	5	365.	02						1	1							1					1				Ī		LI		Ш.		h L		655	5.42	804	73 8	55 44		146.0	0.13	260 4	2		1	1	474	0.50		19	88.13
	1	193	36		104:07	1		4				T				1			1					1				.1	1	di la	n.		1		11	4.0	1	di Ar	чU	دارا	فارتك	<u>ما ب</u>		Ш.			ĥ	na la	4.1		u l		
		2	00	4	00	 ,	500		80	0	1 1	000		12	200	-11-1	140	00	·;	1600)	18	00		TT III	ı/z		0-4		20	0		400			600		80	0	10	000		120	0	14	00	4.1	1600)	180	00	-	m/z
-						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~	****															~		- · ·	1-																									-	

Supplementary Figure S9: HPLC and LC-MS analyses of cross-linked LDLK12. Monomer: LC-MS calc. = 734.95 g/mol, obs. = 734.89 g/mol. Dimer: LC-MS calc. = 2076 g/mol [1M+1H]+1, 1438 g/mol [1M+2H]+2 obs. = 1988.13 g/mol, 1482 g/mol. .

Supplementary Figure S10: HPLC and LC-MS analyses of LDLK12 post-assembly functionalization with KLPGWSG. 1°peak (KLPGWSG) LC-MS calc. = 744.4 g/mol, obs. = 743.55

g/mol; 2° peak (LDLK12) LC-MS calc. = 1468.89 g/mol, obs. = 1468.04 g/mol.; 3° peak (LDLK12_EDC/sulfoNHS_KLPGWSG) LC-MS calc. = 789.77 [1M + 4H] + 4 g/mol, obs. = 798.42 g/mol.

Reference

- 60. Jordens, S.; Schwenke, K.; Usov, I.; Del Gado, E.; Mezzenga, R. Nematic field transfer in a two-dimensional protein fibril assembly. Soft Matter 2016, 12, 1830–1835.
- 61. Usov, I.; Mezzenga, R. FiberApp: An Open-Source Software for Tracking and Analyzing Polymers, Filaments, Biomacromolecules, and Fibrous Objects. Macromolecules 2015, 48, 1269–1280.
- 62. Jordens, S.; Isa, L.; Usov, I.; Mezzenga, R., Non-equilibrium nature of two-dimensional isotropic and nematic coexistence in amyloid fibrils at liquid interfaces. *Nature Commun.* **2013**, *4*, 1917.