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Abstract: Cilastatin is a specific inhibitor of renal dehydrodipeptidase-1. We investigated whether
cilastatin preconditioning attenuates renal ischemia-reperfusion (IR) injury via hypoxia inducible
factor-1α (HIF-1α) activation. Human proximal tubular cell line (HK-2) was exposed to ischemia,
and male C57BL/6 mice were subjected to bilateral kidney ischemia and reperfusion. The effects of
cilastatin preconditioning were investigated both in vitro and in vivo. In HK-2 cells, cilastatin
upregulated HIF-1α expression in a time- and dose-dependent manner. Cilastatin enhanced
HIF-1α translation via the phosphorylation of Akt and mTOR was followed by the upregulation
of erythropoietin (EPO) and vascular endothelial growth factor (VEGF). Cilastatin did not affect
the expressions of PHD and VHL. However, HIF-1α ubiquitination was significantly decreased
after cilastatin treatment. Cilastatin prevented the IR-induced cell death. These cilastatin effects
were reversed by co-treatment of HIF-1α inhibitor or HIF-1α small interfering RNA. Similarly,
HIF-1α expression and its upstream and downstream signaling were significantly enhanced in
cilastatin-treated kidney. In mouse kidney with IR injury, cilastatin treatment decreased HIF-1α
ubiquitination independent of PHD and VHL expression. Serum creatinine level and tubular necrosis,
and apoptosis were reduced in cilastatin-treated kidney with IR injury, and co-treatment of cilastatin
with an HIF-1α inhibitor reversed these effects. Thus, cilastatin preconditioning attenuated renal IR
injury via HIF-1α activation.
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1. Introduction

Renal ischemia-reperfusion (IR) injury is a major cause of acute kidney injury [1]. Acute ischemic
injury produces excessive apoptotic cell death, and several studies have explored various stimuli to
reduce injury processes [2,3]. Hypoxia-inducible factor-1α (HIF-1α) is the master regulator of cell
response to hypoxia [4]. It increases the expression of several genes, including angiogenic growth
factors, erythropoietin, and nitric oxide synthases [5–7]. Activation of these genes enhances adaptation
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to hypoxia and improves cell survival. Therefore, it is reasonable that HIF-1α activation before IR
injury might exhibit protective effects.

Cilastatin is a molecule designed to inhibit brush border–sorted dehydrogenase peptide-1
(DHP-1). In current clinical settings, cilastatin is used to prevent the hydrolysis of antibiotics and
decrease antibiotic-induced nephrotoxicity [8]. Previous in vitro and in vivo experimental studies have
demonstrated that cilastatin has antioxidant and anti-apoptotic effects in drug-induced nephropathy,
such as cisplatin, calcineurin inhibitor, and vancomycin [9–12]. These effects of cilastatin were
associated with reduced accumulation of drug within the kidney and renal proximal tubular epithelial
cells. However, the cilastatin effect is rarely investigated in the non-pharmacological renal injury.
Moreover, it is unclear that cilastatin exhibits protective effects on kidney injuries.

Cilastatin binds to lipid raft in which DHP-1 is embedded. The lipid raft acts as a major platform for
signaling regulation and controls Akt signaling pathways [13,14]. The Akt/mammalian target of rapamycin
(mTOR) pathway is potent regulator of HIF-1α expression at translational or transcriptional level [15,16].
Therefore, cilastatin treatment can modulate the HIF-1α activity via lipid raft-related signaling pathway.
However, it is less known that the cilastatin as a preconditioning stimulus activates HIF-1α pathway and
the underlying mechanism of cilastatin treatment is not evaluated in the renal IR injury.

Therefore, we investigated whether preconditioning with cilastatin exhibits renoprotective effects
in a mouse model of IR injury, and whether cilastatin is effective in preventing proximal tubular cell
death after IR injury. We hypothesized that cilastatin treatment activates HIF-1α signaling pathway,
which leads to protective effects against renal IR injury.

2. Results

2.1. Cilastatin Upregulates HIF-1α and Its Downstream Effector in HK-2 Cells

Figure 1 shows the effects of cilastatin on HIF-1α expression in HK-2 cells. The expression of
HIF-1α was significantly increased after cilastatin treatment in a dose- and time-dependent manner
(Figure 1A,B). However, the HIF-1α mRNA level was not affected in cilastatin-treated HK-2 cells
(Figure S1). Downstream effectors of HIF-1α, such as erythropoietin (EPO) and vascular endothelial
growth factor (VEGF), were significantly upregulated after cilastatin treatment, respectively (Figure 1C).

2.2. Cilastatin Upregulates HIF-1α and Its Downstream Effector in HK-2 Cells

We studied the involved phase of protein synthesis for HIF-1α in HK-2 cells. The Akt/mTOR
pathway was evaluated to assess the upstream signaling of HIF-1α, which translated the HIF-1α protein.
The phosphorylation of Akt was significantly increased with maximal expression occurring at 6 h after
cilastatin treatment. The phosphorylation of mTOR was also enhanced in a time-dependent manner
(Figure 2A). To confirm whether HIF-1α upregulation was dependent on Akt/mTOR pathway, we exposed
the cells to cilastatin in the presence of rapamycin, an mTOR inhibitor. Cilastatin increased HIF-1α
expression, and co-treatment of rapamycin with cilastatin significantly reversed the HIF-1α upregulation
(Figure 2B).

We conducted further experiments to investigate whether HIF-1α upregulation is dependent
on lipid raft, because lipid raft modulates p-Akt/Akt signaling pathways [13,14]. The disruption of
lipid raft with methyl-β-cyclodextrin (MβCD) significantly suppressed the HIF-1α expression when
cilastatin increased HIF-1α expression (Figure 2C).

2.3. PHD/VHL-Independent Ubiquitination Pathway is Involved in Cilastatin-Mediated HIF-1α Upregulation
in HK-2 cells

To identify whether cilastatin preconditioning activates HIF-1α by impairing its degradation
pathway, the expression levels of prolyl hydroxylase domain (PHD) and von Hippel-Lindau (VHL)
protein were evaluated. Cilastatin did not significantly alter the expression of PHD and VHL (Figure 3)
compared to control. Therefore, cilastatin did not activate HIF-1α through the canonical HIF-1α
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degradation pathway. We further evaluated the interaction between HIF-1α and ubiquitin. In contrast
to previous results, HIF-1α/ubiquitin complex formation was decreased after cilastatin preconditioning
compared to control cells. These results suggested that cilastatin-induced HIF-1α activation was closely
associated with decreased ubiquitination independent of PHD and VHL expression.Int. J. Mol. Sci. 2020, 21, 3583 3 of 16 
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Figure 1. Cilastatin treatment upregulated the expressions of HIF-1α and its downstream pathway
in HK-2 cells. (A) Semiquantitative immunoblotting revealed upregulation of HIF-1α expression
by cilastatin treatment in a dose-dependent manner. (B) Semiquantitative immunoblotting revealed
upregulation of HIF-1α expression by treatment with 200 µg/mL cilastatin in a time-dependent manner.
(C) The expressions of VEGF and EPO proteins, determined by semiquantitative immunoblotting, were
significantly elevated by treatment with 200 µg/mL cilastatin in a time-dependent manner as compared
to untreated control. The data are presented as means ± SEM. * p < 0.05 vs. control.
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Figure 2. Cilastatin treatment induced HIF-1α expression via Akt/mTOR dependent pathway in HK-2
cells. (A) Semiquantitative immunoblotting revealed increase in Akt and mTOR expression by treatment
with 200 µg/mL cilastatin in a time-dependent manner. The data are presented as means± SEM. *p < 0.05
vs. control. (B) Cilastatin pretreatment increased HIF-1α expression and the treatment of rapamycin,
an mTOR inhibitor, significantly decreased HIF-1α expression despite cilastatin pretreatment. The data
are presented as means ± SEM. * p < 0.05 vs. control, † p < 0.05 vs. rapamycin, and ‡p < 0.05 vs.
cilastatin. (C) Cilastatin treatment increased HIF-1α expression and the destruction of lipid raft by
MβCD significantly decreased HIF-1α expression despite cilastatin treatment. The data are presented
as means ± SEM. * p < 0.05 vs. control, † p < 0.05 vs. MβCD, and ‡ p < 0.05 vs. cilastatin.
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Figure 3. Cilastatin preconditioning upregulated HIF-1α expression via the inhibition of ubiquitination in
HK-2 cells. Semiquantitative immunoblotting showed that cilastatin pretreatment did not affect the levels
of VHL and PHD expressions. Immunoprecipitation showed that HIF-1α/ubiquitin complex formation was
significantly suppressed in cilastatin-treated HK-2 cells compared to control in a time-dependent manner,
but it was significantly increased at 24 h after cilastatin pretreatment. The data are presented as means
± SEM. *p < 0.05 vs. control, †,‡,§ p < 0.05 vs. 3 h, 6 h, and 12 h after cilastatin treatment.

2.4. Cilastatin Preconditioning Enhances HIF-1α-Mediated Cell Survival in IR-Exposed HK-2 Cells

We evaluated whether cilastatin preconditioning provided protection against IR injury in HK-2
cells and whether HIF-1α mediated its protective effects. Cilastatin preconditioning and IR exposure
increased HIF-1α level compared with control group (Figure 4A). Cilastatin preconditioning further
enhanced the HIF-1α expression in IR-exposed cells than in non-exposed cells. IR exposure significantly
reduced cell viability compared to the control group and cilastatin prevented this IR-induced cell death.
The protective effect of cilastatin in IR-exposed cells was reversed by the co-treatment of YC-1, which
downregulated HIF-1α at the post-translational level (Figure 4B). To evaluate whether the enhanced
cell survival was associated with the specific activation of HIF-1α, we performed further experiments
using HIF-1α small interfering (si) RNA. The viability of cells treated with HIF-1α siRNA was similar to
that of control cells and HIF-1α siRNA treatment blocked the protective effects of cilastatin (Figure 4C).

2.5. Cilastatin Upregulates HIF-1α Expression Via Akt/mTOR Pathway in Mouse Kidney

Next, we investigated the effect of cilastatin treatment in mouse kidney. The expression of HIF-1α
was significantly increased after cilastatin treatment in a time-dependent pattern (Figure 5A). The effect
of cilastatin treatment on the ubiquitination pathway was evaluated in mouse kidney, and it was
found that cilastatin did not affect the expressions of PHD and VHL. The expression of VEGF, which
is downstream of HIF-1α, was also increased in mouse kidney. Similar to in vitro study, cilastatin
treatment significantly increased the phosphorylation of both Akt and mTOR (Figure 5B).

2.6. Cilastatin Preconditioning Activates HIF-1α Signaling Pathway in Renal IR Injury

As shown in Figure 6, HIF-1α/ubiquitin complex formation was significantly suppressed in
mice with IR injury, and cilastatin preconditioning further inhibited this complex formation. HIF-1α
expression in immunoblot was significantly increased in mice with IR injury, and it was further
increased after cilastatin preconditioning. The expression of EPO, a downstream effector of HIF-1α,
was significantly increased in sham-operated mice with cilastatin preconditioning. IR injury reduced
the EPO expression in mouse kidney, which recovered in cilastatin-treated mice with IR injury.
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2.7. Cilastatin Preconditioning Protects Against Renal IR Injury

Serum creatinine levels were significantly increased at 24 h after IR injury compared with those in
sham-operated mice (Figure 7A). Cilastatin preconditioning improved serum creatinine levels compared
with the mice without cilastatin preconditioning. Histologic examination of tissue sections indicated
extensive tubular necrosis in the kidneys of ischemic mice compared with those of sham-operated mice
(Figure 7B). Tubular necrosis was improved in the cilastatin-treated mice with IR injury compared with
those not treated with cilastatin.

2.8. Cilastatin Preconditioning Attenuates Apoptosis in Renal IR Injury

The number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling
(TUNEL)-positive cells was increased in mice with IR injury compared to those of sham-operated
mice, and it was decreased in cilastatin-treated mice with IR injury (Figure 8A). IR injury increased the
expression of the proapoptotic protein Bcl-2-associated X (Bax) and decreased the expression of the
antiapoptotic protein B-cell lymphoma 2 (Bcl-2). Cilastatin preconditioning significantly attenuated
Bax levels and increased Bcl-2 expression in ischemic mouse kidney (Figure 8B).

2.9. Cilastatin Protects Against Renal IR Injury Via HIF-1α Pathway

Cilastatin attenuates renal dysfunction in mouse kidney with IR injury, and co-treatment with
YC-1 restored IR injury to a great extent (Figure 9A). The quantitative tubular necrosis score of YC-1
co-treated ischemic mouse kidney was significantly higher than that of the mouse kidney treated with
only cilastatin (Figure 9B).Int. J. Mol. Sci. 2020, 21, 3583 6 of 16 
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Figure 4. Cilastatin preconditioning protected IR-induced cell death via the activation of HIF-1α
in HK-2 cells. (A) Semiquantitative immunoblotting of HIF-1α expression revealed that IR injury
upregulated HIF-1α expression and cilastatin pretreatment further enhanced HIF-1α expression in
IR-exposed cells. Cilastatin treatment also prevented IR-induced cell death. Co-treatment with cilastatin
and (B) HIF-1α inhibitor, YC-1, or (C) HIF-1α siRNA restored cell death similar to those of IR-exposed
cells without cilastatin treatment. The data are presented as means ± SEM. * p < 0.05.
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Figure 5. Cilastatin treatment upregulated HIF-1α expression and its upstream and downstream
signaling pathways in mouse kidney. (A) Cilastatin treatment enhanced HIF-1α and VEGF expression in
a time-dependent manner in mouse kidney, but it did not affect VHL and PHD expression. (B) Cilastatin
treatment enhanced Akt and mt Or phosphorylation in a time-dependent manner in mouse kidney.
The data are presented as means ± SEM. * p < 0.05.
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Figure 6. Cilastatin preconditioning upregulated HIF-1α expression and its downstream
signaling pathway and decreased the ubiquitination of HIF-1α in mouse kidney with IR injury.
Immunoprecipitation showed that HIF-1α/ubiquitin complex formation was significantly decreased in
mouse kidney with IR injury compared to sham-operated mice; however, it more significantly decreased
in cilastatin-treated mouse kidney with IR injury. Therefore, semiquantitative immunoblotting revealed
that HIF-1α expression markedly increased in cilastatin-treated mouse kidney with IR injury compared
to other groups. EPO expression was significantly increased in cilastatin-treated mouse kidney and
was decreased in mouse kidney with IR injury; however, it increased in cilastatin-treated mouse kidney
with IR injury. The data are presented as means ± SEM.* p < 0.05 vs. sham group; † p < 0.05 vs. Cila
group; ‡ p < 0.05 vs. IR group.
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Figure 7. Cilastatin preconditioning improved renal function and tubular necrosis in mouse kidney
with IR injury. (A) Serum creatinine levels were significantly increased at 24 h after IR injury compared
with serum creatinine levels in sham-operated mice. Cilastatin pretreatment improved serum creatinine
level in mouse kidney with IR injury. (B) The representative staining with hematoxylin and eosin
showed a decreased tubular necrosis (arrows) in the cilastatin-treated mouse kidney with IR injury
compared with mouse kidney with IR injury not treated with cilastatin (original magnification, × 200).
The data are presented as means ± SEM. * p < 0.05 vs. sham and Cila group; † p < 0.05 vs. IR group.
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Figure 8. Cilastatin preconditioning attenuates apoptosis in mouse kidney with IR injury. (A) TUNEL
assay revealed that cilastatin pretreatment significantly attenuated number of TUNEL-positive cells
in mouse kidney with IR injury (original magnification, ×400). (B) Semiquantitative immunoblotting
indicated that the level of pro-apoptotic marker, Bax, decreased in cilastatin-treated mouse kidney with IR
injury, compared with mouse kidney with IR injury alone. Significant increase in levels of anti-apoptotic
marker protein, Bcl-2, was noted after cilastatin pretreatment in mouse kidney with IR injury. The data are
presented as means ± SEM. * p < 0.05 vs. sham and cila group; † p < 0.05 vs. IR group.
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Figure 9. The co-treatment of YC-1, an HIF-1α inhibitor, with cilastatin worsened renal function and
tubular necrosis in mouse kidney with IR injury. (A) Serum creatinine levels were significantly increased
at 24 h after IR injury and decreased in mouse kidney with IR injury with cilastatin pretreatment.
Co-treatment with cilastatin and YC-1 exacerbated renal function in mouse kidney with IR injury.
(B) The representative staining with hematoxylin and eosin showed a decreased tubular necrosis
(arrows) in the cilastatin-treated mouse kidney with IR injury, and aggravated tubular necrosis in mouse
kidney with IR injury co-treated with cilastatin and YC-1 (original magnification, × 200). The data are
presented as means ± SEM. * p < 0.05 vs. sham; † p < 0.05 vs. IR group; ‡ p < 0.05 vs. IR + Cila group.

3. Discussion

Our study demonstrated that cilastatin preconditioning induced the upregulation of HIF-1α via
activation of Akt/mTOR pathway and inhibition of PHD/VHL-independent ubiquitination pathway.
The cilastatin-induced HIF-1α upregulation prevented proximal tubular cell death during IR injury.
In mouse kidney, cilastatin preconditioning again upregulated HIF-1α expression in the same fashion
and the activated HIF-1α pathway suppressed renal dysfunction, tubular damage, and apoptotic cell
death after IR injury. These findings suggested that cilastatin preconditioning exhibits protective effects
against renal IR injury via HIF-1α activation.

Preconditioning refers to exposure to a stimulus to protect organs or tissues before subjection
to ischemic injury, and HIF-1α has been implicated as an attractive target pathway for ischemic
preconditioning for prevention against acute kidney injury [17,18]. Our study demonstrated that
cilastatin preconditioning increased the expression of HIF-1α protein and enhanced its downstream
pathway. In addition, the destruction of lipid raft blocked cilastatin-induced HIF-1α expression.
These findings suggested that cilastatin effectively activates HIF-1α signaling pathway and that cell
membrane structure having an affinity with cilastatin is important to activate a preconditioning target.

HIF-1α is mainly located in proximal tubular cells and can be upregulated at transcriptional
or translational level [17,19]. Therefore, we investigated the mRNA level of HIF-1α and Akt/mTOR
pathway. We found that phosphorylated Akt/mTOR level was abundant after cilastatin preconditioning
and the inhibition of mTOR pathway reduced the HIF-1α expression in cilastatin-treated HK-2 cells.
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However, cilastatin preconditioning did not increase the HIF-1α mRNA level in HK-2 cells. These
findings demonstrated that cilastatin induces the expression of HIF-1α at the translational level, not at
the transcriptional level.

HIF-1α expression can be enhanced via the enhanced Akt/mTOR pathway or by impairment
of ubiquitin-proteasome degradation pathway [20,21]. Under normoxic conditions, PHD enzymes
hydroxylated a subunit of HIF-1α and VHL captured them to undergo ubiquitin-protease pathway
resulting in HIF-1α degradation [21,22]. However, ubiquitination of HIF-1α is also modulated via
an oxygen/PHD/VHL-independent pathway involving the p53, glycogen synthase kinase 3, and the
molecular chaperone 90 kDa heat-shock proteins [23–25]. In the present study, we demonstrated that
the expressions of PHD and VHL were not altered in both HK-2 cells and mouse kidney after cilastatin
preconditioning. On the other hand, immunoprecipitation analysis showed that the interactive binding
between HIF-1α and ubiquitin was significantly decreased in cilastatin-treated cells under normoxic
condition. Furthermore, the interaction between HIF-1α and ubiquitin was significantly decreased in
mouse kidney with IR injury, and was further suppressed in cilastatin-treated mouse kidney with IR
injury. These findings suggested that cilastatin may suppress HIF-1α degradation via the PHD and
VHL-independent ubiquitin pathway in both normoxic and hypoxic condition.

Upregulation of renal HIF-1α plays an important role in the protection against IR injury and
several studies reported HIF-1α as a potential therapeutic target [26,27]. Our study demonstrated that
IR injury increased the expression of HIF-1α in proximal tubular cells and mouse kidney, and cilastatin
preconditioning further increased the expression of HIF-1α. In addition, HIF-1α siRNA transfection or
co-treatment with an YC-1 significantly reversed the protective effects of cilastatin in terms of proximal
tubular cell death, renal dysfunction, and tubular necrosis. These data suggested that activation of
HIF-1α signaling pathway plays a pivotal role in the renoprotective effect of cilastatin in IR injury.

HIF-1α regulates the adaptive response to hypoxia and other stresses by orchestrating the
transcription of protective genes [17]. EPO, a representative downstream effector of HIF-1α, prevents
apoptotic cell death, and promotes tubular cell regeneration during renal IR injury [28,29]. HIF-1α
activation also activates the anti-apoptotic protein, bcl-2 in renal IR injury [30,31]. Our study showed
that cilastatin preconditioning upregulated the expression of EPO and decreased apoptosis in mouse
kidney with IR injury. These findings suggested that cilastatin-induced HIF-1α upregulation activates
downstream effectors to reduce apoptosis during renal IR injury.

There are some interesting points and limitation in this study. Nuclear factor-erythroid-2-related
factor 2 (Nrf2) is a transcription factor that regulates genes encoding antioxidant and detoxifying
molecules [32,33]. It is known that Nrf2 has preventive effects against drug nephrotoxicity and ischemia
reperfusion injury [34,35]. Therefore, cilastatin effects on Nrf2 is the attractive target as potential
protective mechanism. Furthermore, we found Akt phosphorylation was decreased at 12 and 24 hours
in cilastatin preconditioning. The reduced Akt activity was simply associated with limited working
time of cilastatin. Otherwise, feedback from mTOR activation might negatively regulate the Akt
activity [36,37]. The phosphorylation of mTOR at 12 h and 24 h in this experiment also supports this
hypothesis. Finally, preconditioning effect of cilastatin has limitation in the clinical setting, because
renal damage is already underway without preconditioning patients. Therefore, further experiments
on the rescue effect of cilastatin after IR injury are required to increase the clinical usefulness.

In conclusion, cilastatin preconditioning protects against renal IR injury via the HIF-1α dependent
pathway. Cilastatin preconditioning upregulated the HIF-1α expression by enhancing translational
efficiency involving the Akt/mTOR pathway and by suppressing PHD/VHL-independent ubiquitination
pathway. Our study provided evidence of the protective effects of cilastatin in non-pharmacological
renal injury and demonstrated that the wide clinical application of cilastatin could be expected to
prevent acute kidney injury.
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4. Materials and Methods

4.1. Human Proximal Tubular Cell Culturing

HK-2 cells were purchased from American Type Culture Collection (Manassas, VA, USA). The cells
were grown and passaged in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10%
fetal bovine serum, 50 U/mL penicillin, and 50 µg/mL streptomycin. The cells were cultivated in a
humidified 5% CO2 environment at 37 ◦C. HK-2 cells were plated and cultured to 80% confluence.

HK-2 cells were treated with different doses of cilastatin for different times. The control cells were
treated with distilled water. We also harvested the cells 24 h after co-treatment of cilastatin and MβCD
(Sigma-Aldrich, St Louis, MO, USA), or mTOR inhibitor (rapamycin, Sigma-Aldrich, St Louis, MO, USA).

HK-2 cells were placed in serum-free media for 16 h at 80% confluence and were pretreated with
cilastatin, HIF-1α inhibitor, YC-1 [38], or HIF-1α siRNA (Bioneer, Daejeon, Korea) for 1 h. Scrambled
siRNA were complexed with a transfection reagent (Invitrogen, Carlsbad, CA, USA). After washing
with phosphate-buffered saline (PBS), they were exposed to ischemia by immersing the cellular
monolayer in mineral oil (Sigma-Aldrich, St Louis, MO, USA) for 90 min [39]. Then, the cells were
washed twice and then received the same treatment.

4.2. Cell Viability

A commercially available MTT assay kit (EZ-Cytox; Daeil Lab Service, Seoul, Korea) determined
cell viability. After exposure to ischemia and 24 h reperfusion, 10 µL of cell viability assay reagent
was added. The optical densities of the samples were determined at 450 nm in a microplate reader
(Bio-Rad Laboratories, Hercules, CA, USA).

4.3. Animal Model of Renal IR Injury

Seven- to eight-week-old male C57BL/6J mice were housed under a 12 h light–dark cycle, and food
and water were freely available. Crystalline cilastatin was kindly provided by Im DS (Department of
Chemistry, Soonchunhyang University, Cheonan, Korea). The experimental protocol was approved
by the animal experiments’ ethics committee of Daejeon St. Mary‘s Hospital (1st February 2016,
CMCDJ-AP-2016-009).

Mice were divided into five groups (sham, sham + cilastatin, IR, IR + cilastatin, and IR + cilastatin +

YC-1) and each group consisted of six mice. Cilastatin was diluted in saline, and 300 mg/kg of cilastatin,
with or without YC-1 (5 mg/kg/day), was intraperitoneally injected daily for seven consecutive days
before ischemia induction. The sham and IR groups of mice received the same volume of saline.
Renal IR injury was performed under tiletamine–zolazepam (30 mg/kg) and xylazine (10 mg/kg)
anesthesia. The mice were subjected to renal IR injury using previously described methods [40–42].
The bilateral renal pedicles were occluded for 23 min using microvascular clamps. A homoeothermic
pad maintained the core body temperature of mice. The mice were sacrificed 24 h after ischemia and
tissue and blood samples were collected.

4.4. Functional and Morphological Changes due to Kidney Injury

Serum creatinine level was measured by an IDEXX VetTest® Chemistry Analyzer (IDEXX
Laboratories, Inc., Westbrook, ME, USA). The kidney tissues were fixed in 10% formalin buffer,
embedded in paraffin, and then, cut into 3.5 mm-thick sections. Hematoxylin and eosin staining was
performed to evaluate the degree of tubular damage. Markers of tubular damage were scored by
calculating the percentage of tubules in the corticomedullary junction that displayed cell necrosis, loss
of brush border, cast formation, and tubular dilation, as follows: 0, none; 1, ≤10%; 2, 11–25%; 3, 26–50%;
4, 51–75% and 5, ≥76%. The tubular necrosis score was quantified per high power field of each kidney
and at least 20 fields were reviewed from each slide.
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4.5. Immunofluorescence Staining

The number of apoptotic HK-2 cells was counted by TUNEL using a TUNEL Apoptosis Detection
kit (Intergen, Purchase, NY, USA). The immunofluorescence images for TUNEL assay were captured
by confocal microscopy (LSM5 Live Configuration Variotwo VRGB; Zeiss, Oberkochen, Germany).
The number of positive cells was quantified per high-power field (HPF) of each kidney, and at least 20
fields were reviewed for each slide.

4.6. Immunoblotting Analyses of HK-2 Cells And Kidney Tissue

We performed the immunoblotting analyses for mouse kidneys and HK-2 cell lysates as
described previously [42]. Kidney tissues were homogenized and resolved by SDS-polyacrylamide gel
electrophoresis (SDS-PAGE) after centrifugation. HK-2 cells were harvested, washed with cold PBS,
and resuspended in lysis buffer. Equal amounts of protein were electroblotted onto a nitrocellulose
membrane. The membrane was blocked and incubated with primary antibodies directed against
HIF-1α (Abcam, Cambridge, UK), Akt (Cell Signaling Technology, Beverly, MA, USA), pS473 Akt
(Cell Signaling Technology), mTOR (Cell Signaling Technology), pSer2448 mTOR (Cell Signaling
Technology), PHD (Cell Signaling Technology), VHL (von Hippel-Lindau, Santa Cruz Biotechnology),
EPO (Abcam), VEGF (Abcam, Cambridge, UK), Bax (Cell Signaling Technology), Bcl-2 (Cell Signaling
Technology), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Cell Signaling Technology).
They were then incubated with horseradish peroxidase-conjugated anti-rabbit IgG or anti-mouse
IgG antibody (Invitrogen, Carlsbad, CA, USA). Positive bands were detected and analyzed using the
ChemiDoc XRS Image system (Bio-Rad Laboratories, Hercules, CA, USA).

4.7. Real-Time Reverse Transcription PCR

Total RNA was isolated from kidney tissues and HK-2 cells using a NucleoSpin® RNA II kit
(Macherey-Nagel, Düren, Germany). cDNA was synthesized using Reverse Transcriptase Premix
(Elpis Biotech, Daejeon, Korea) and amplified in a Power SYBR®Green polymerase chain reaction
(PCR) Master Mix (Applied Biosystems, Warrington, UK) with gene-specific primer pairs (HIF-1α: F;
5’-TGCCCCAGATTCAAGATCAGC-3’, R; 5’-GGCTGGGAAAAGT TAGGAGTGT-3’) Quantitative
real-time PCR was performed on an ABI 7500 FAST instrument (Applied Biosystems, Warrington, UK).
The expression levels of mRNAs were normalized to the expression of GAPDH.

4.8. Immunoprecipitation

Cultured HK-2 cells and kidney tissues were lysed with kinase buffer and then 1 mg of lysate was
immunoprecipitated using 1 µg of anti-ubiquitin antibody (Santa Cruz Biotechnology) and protein G
Sepharose 4 Fast Flow (GE Healthcare, Danderyd, Sweden). After washing with KB without 1% NO40,
immunoblotting was performed using HIF-1α antibody (Biorbyt Ltd., Cambridge, UK).

4.9. Statistical Analysis

Data are expressed as the mean± standard error of the mean (SEM) of≥3 independent experiments.
Differences between the two groups were determined using Student’s t test or the Mann–Whitney U
test. Multiple comparisons were performed using one-way analysis of variance and Tukey’s post hoc
test. Statistical analysis was performed using SPSS software (version 22.0; IBM, Armonk, NY). Results
were considered significant when p < 0.05.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/10/
3583/s1.
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IR Ischemia–reperfusion
HIF-1α Hypoxia-inducible factor-1α
DHP-1 Dehydrogenase peptide-1
mTOR Mammalian target of rapamycin
EPO Erythropoietin
VEGF Vascular endothelial growth factor
MβCD Methyl-β-cyclodextrin
PHD Prolyl hydroxylase
VHL Von Hippel-Lindau
si Small interfering
TUNEL terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling
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References

1. Liano, F.; Pascual, J. Epidemiology of acute renal failure: A prospective, multicenter, community-based study.
Madrid Acute Renal Failure Study Group. Kidney Int. 1996, 50, 811–818. [CrossRef] [PubMed]

2. Smith, S.F.; Hosgood, S.A.; Nicholson, M.L. Ischemia-reperfusion injury in renal transplantation: 3 key
signaling pathways in tubular epithelial cells. Kidney Int. 2019, 95, 50–56. [CrossRef] [PubMed]

3. Baer, P.C.; Koch, B.; Geiger, H. Kidney Inflammation, Injury and Regeneration. Int. J. Mol. Sci. 2020, 21, 1164.
[CrossRef] [PubMed]

4. Semenza, G.L. Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends Mol. Med.
2001, 7, 345–350. [CrossRef]

5. Haase, V.H. Hypoxic regulation of erythropoiesis and iron metabolism. Am. J. Physiol. Renal Physiol. 2010,
299, F1–F13. [CrossRef]

6. Sethi, K.; Rao, K.; Bolton, D.; Patel, O.; Ischia, J. Targeting HIF-1α to Prevent Renal Ischemia-Reperfusion
Injury: Does It Work? Int. J. Cell Biol. 2018, 2018, 9852791. [CrossRef]

7. Kaelin, W.G.; Ratcliffe, P.J., Jr. Oxygen sensing by metazoans: The central role of the HIF hydroxylase
pathway. Mol. Cell 2008, 30, 393–402. [CrossRef]

8. Buckley, M.M.; Brogden, R.N.; Barradell, L.B.; Goa, K.L. Imipenem/Cilastatin: A Reappraisal of its
Antibacterial Activity, Pharmacokinetic Properties and Therapeutic Efficacy. Drugs 1992, 44, 408–444.
[CrossRef]

9. Perez, M.; Castilla, M.; Torres, A.M.; Lázaro, J.A.; Sarmiento, E.; Tejedor, A. Inhibition of brush border
dipeptidase with cilastatin reduces toxic accumulation of cyclosporin A in kidney proximal tubule epithelial
cells. Nephrol. Dial. Transplant. 2004, 19, 2445–2455. [CrossRef]

10. Camano, S.; Lazaro, A.; Moreno-Gordaliza, E.; Torres, A.M.; de Lucas, C.; Humanes, B.; Lazaro, J.A.; Milagros
Gomez-Gomez, M.; Bosca, L.; Tejedor, A. Cilastatin attenuates cisplatin-induced proximal tubular cell
damage. J. Pharmacol. Exp. Ther. 2010, 334, 419–429. [CrossRef]

11. Luo, K.; Lim, S.W.; Jin, J.; Jin, L.; Gil, H.W.; Im, D.S.; Hwang, H.S.; Yang, C.W. Cilastatin protects against
tacrolimus-induced nephrotoxicity via anti-oxidative and anti-apoptotic properties. BMC Nephrol. 2019,
20, 221. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/ki.1996.380
http://www.ncbi.nlm.nih.gov/pubmed/8872955
http://dx.doi.org/10.1016/j.kint.2018.10.009
http://www.ncbi.nlm.nih.gov/pubmed/30606429
http://dx.doi.org/10.3390/ijms21031164
http://www.ncbi.nlm.nih.gov/pubmed/32050569
http://dx.doi.org/10.1016/S1471-4914(01)02090-1
http://dx.doi.org/10.1152/ajprenal.00174.2010
http://dx.doi.org/10.1155/2018/9852791
http://dx.doi.org/10.1016/j.molcel.2008.04.009
http://dx.doi.org/10.2165/00003495-199244030-00008
http://dx.doi.org/10.1093/ndt/gfh397
http://dx.doi.org/10.1124/jpet.110.165779
http://dx.doi.org/10.1186/s12882-019-1399-6
http://www.ncbi.nlm.nih.gov/pubmed/31200653


Int. J. Mol. Sci. 2020, 21, 3583 15 of 16

12. Im, D.S.; Shin, H.J.; Yang, K.J.; Jung, S.Y.; Song, H.Y.; Hwang, H.S.; Gil, H.W. Cilastatin attenuates
vancomycin-induced nephrotoxicity via P-glycoprotein. Toxicol. Lett. 2017, 277, 9–17. [CrossRef] [PubMed]

13. Reis-Sobreiro, M.; Roué, G.; Moros, A.; Gajate, C.; de la Iglesia-Vicente, J.; Colomer, D.; Mollinedo, F. Lipid
raft-mediated Akt signaling as a therapeutic target in mantle cell lymphoma. Blood Cancer J. 2013, 3, e118.
[CrossRef] [PubMed]

14. Parkin, E.T.; Turner, A.J.; Hooper, N.M. Differential effects of glycosphingolipids on the detergent-insolubility
of the glycosylphosphatidylinositol-anchored membrane dipeptidase. Biochem. J. 2001, 358, 209–216.
[CrossRef]

15. Harada, H.; Itasaka, S.; Kizaka-Kondoh, S.; Shibuya, K.; Morinibu, A.; Shinomiya, K.;
Hiraoka, M. The Akt/mTOR pathway assures the synthesis of HIF-1alpha protein in a glucose- and
reoxygenation-dependent manner in irradiated tumors. J. Biol. Chem. 2009, 284, 5332–5342. [CrossRef]

16. Pore, N.; Jiang, Z.; Shu, H.K.; Bernhard, E.; Kao, G.D.; Maity, A. Akt1 activation can augment
hypoxia-inducible factor-1alpha expression by increasing protein translation through a mammalian target of
rapamycin-independent pathway. Mol. Cancer Res. 2006, 4, 471–479. [CrossRef]

17. Bernhardt, W.M.; Campean, V.; Kany, S.; Jürgensen, J.S.; Weidemann, A.; Warnecke, C.; Arend, M.; Klaus, S.;
Günzler, V.; Amann, K.; et al. Preconditional activation of hypoxia-inducible factors ameliorates ischemic
acute renal failure. J. Am. Soc. Nephrol. 2006, 17, 1970–1978. [CrossRef]

18. Kapitsinou, P.P.; Haase, V.H. Molecular mechanisms of ischemic preconditioning in the kidney. Am. J. Physiol.
Renal Physiol. 2015, 309, F821–F834. [CrossRef]

19. Rosenberger, C.; Mandriota, S.; Jürgensen, J.S.; Wiesener, M.S.; Hörstrup, J.H.; Frei, U.; Ratcliffe, P.J.;
Maxwell, P.H.; Bachmann, S.; Eckardt, K.U. Expression of hypoxia-inducible factor-1alpha and -2alpha in
hypoxic and ischemic rat kidneys. J. Am. Soc. Nephrol. 2002, 13, 1721–1732. [CrossRef]

20. Lee, J.W.; Bae, S.H.; Jeong, J.W.; Kim, S.H.; Kim, K.W. Hypoxia-inducible factor (HIF-1)alpha: Its protein
stability and biological functions. Exp. Mol. Med. 2004, 36, 1–12. [CrossRef]

21. Salceda, S.; Caro, J. Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the
ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on
redox-induced changes. J. Biol. Chem. 1997, 272, 22642–22647. [CrossRef] [PubMed]

22. Schofield, C.J.; Ratcliffe, P.J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 2004, 5, 343–354.
[CrossRef] [PubMed]

23. Chen, D.; Li, M.; Luo, J.; Gu, W. Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function.
J. Biol. Chem. 2003, 278, 13595–13598. [CrossRef] [PubMed]

24. Flugel, D.; Gorlach, A.; Michiels, C.; Kietzmann, T. Glycogen synthase kinase 3 phosphorylates
hypoxia-inducible factor 1alpha and mediates its destabilization in a VHL-independent manner. Mol.
Cell Biol. 2007, 27, 3253–3265. [CrossRef] [PubMed]

25. Van de Sluis, B.; Groot, A.J.; Vermeulen, J.; van der Wall, E.; van Diest, P.J.; Wijmenga, C.; Klomp, L.W.;
Vooijs, M. COMMD1 Promotes pVHL and O2-Independent Proteolysis of HIF-1alpha via HSP90/70. PLoS
ONE 2009, 4, e7332. [CrossRef] [PubMed]

26. Hill, P.; Shukla, D.; Tran, M.G.; Aragones, J.; Cook, H.T.; Carmeliet, P.; Maxwell, P.H. Inhibition of hypoxia
inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 2008,
19, 39–46. [CrossRef]

27. Ong, S.G.; Hausenloy, D.J. Hypoxia-inducible factor as a therapeutic target for cardioprotection.
Pharmacol. Ther. 2012, 136, 69–81. [CrossRef]

28. Zhang, Y.B.; Wang, X.; Meister, E.A.; Gong, K.R.; Yan, S.C.; Lu, G.W.; Ji, X.M.; Shao, G. The effects of CoCl2
on HIF-1α protein under experimental conditions of autoprogressive hypoxia using mouse models. Int. J.
Mol. Sci. 2014, 18, 10999–11012. [CrossRef]

29. Imamura, R.; Moriyama, T.; Isaka, Y.; Namba, Y.; Ichimaru, N.; Takahara, S.; Okuyama, A. Erythropoietin
protects the kidneys against ischemia reperfusion injury by activating hypoxia inducible factor-1alpha.
Transplantation 2007, 83, 1371–1379. [CrossRef]

30. Yang, C.C.; Lin, L.C.; Wu, M.S.; Chien, C.T.; Lai, M.K. Repetitive hypoxic preconditioning attenuates renal
ischemia/reperfusion induced oxidative injury via upregulating HIF-1 alpha-dependent bcl-2 signaling.
Transplantation 2009, 88, 1251–1260. [CrossRef]

http://dx.doi.org/10.1016/j.toxlet.2017.05.023
http://www.ncbi.nlm.nih.gov/pubmed/28549670
http://dx.doi.org/10.1038/bcj.2013.15
http://www.ncbi.nlm.nih.gov/pubmed/23727661
http://dx.doi.org/10.1042/bj3580209
http://dx.doi.org/10.1074/jbc.M806653200
http://dx.doi.org/10.1158/1541-7786.MCR-05-0234
http://dx.doi.org/10.1681/ASN.2005121302
http://dx.doi.org/10.1152/ajprenal.00224.2015
http://dx.doi.org/10.1097/01.ASN.0000017223.49823.2A
http://dx.doi.org/10.1038/emm.2004.1
http://dx.doi.org/10.1074/jbc.272.36.22642
http://www.ncbi.nlm.nih.gov/pubmed/9278421
http://dx.doi.org/10.1038/nrm1366
http://www.ncbi.nlm.nih.gov/pubmed/15122348
http://dx.doi.org/10.1074/jbc.C200694200
http://www.ncbi.nlm.nih.gov/pubmed/12606552
http://dx.doi.org/10.1128/MCB.00015-07
http://www.ncbi.nlm.nih.gov/pubmed/17325032
http://dx.doi.org/10.1371/journal.pone.0007332
http://www.ncbi.nlm.nih.gov/pubmed/19802386
http://dx.doi.org/10.1681/ASN.2006090998
http://dx.doi.org/10.1016/j.pharmthera.2012.07.005
http://dx.doi.org/10.3390/ijms150610999
http://dx.doi.org/10.1097/01.tp.0000264200.38926.70
http://dx.doi.org/10.1097/TP.0b013e3181bb4a07


Int. J. Mol. Sci. 2020, 21, 3583 16 of 16

31. Jamadarkhana, P.; Chaudhary, A.; Chhipa, L.; Dubey, A.; Mohanan, A.; Gupta, R.; Deshpande, S. Treatment
with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates ischemic acute kidney
injury. Am. J. Nephrol. 2012, 36, 208–218. [CrossRef] [PubMed]

32. Ruiz, S.; Pergola, P.E.; Zager, R.A.; Vaziri, N.D. Targeting the transcription factor Nrf2 to ameliorate oxidative
stress and inflammation in chronic kidney disease. Kidney Int. 2013, 83, 1029–1041. [CrossRef] [PubMed]

33. Nezu, M.; Suzuki, N. Roles of Nrf2 in Protecting the Kidney from Oxidative Damage. Int. J. Mol. Sci. 2020,
21, 2951. [CrossRef] [PubMed]

34. Jakobs, P.; Serbulea, V.; Leitinger, N.; Eckers, A.; Haendeler, J. Nuclear Factor (Erythroid-Derived 2)-Like 2
and Thioredoxin-1 in Atherosclerosis and Ischemia/Reperfusion Injury in the Heart. Antioxid. Redox Signal.
2017, 26, 630–644. [CrossRef]

35. Limonciel, A.; Jennings, P. A review of the evidence that ochratoxin A is an Nrf2 inhibitor: Implications for
nephrotoxicity and renal carcinogenicity. Toxins 2014, 6, 371–379. [CrossRef]

36. Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell 2017, 169, 381–405. [CrossRef]
37. Hsu, P.P.; Kang, S.A.; Rameseder, J.; Zhang, Y.; Ottina, K.A.; Lim, D.; Peterson, T.R.; Choi, Y.; Gray, N.S.;

Yaffe, M.B.; et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated
inhibition of growth factor signaling. Science 2011, 332, 1317–1322. [CrossRef]

38. Yeo, E.J.; Chun, Y.S.; Cho, Y.S.; Kim, J.; Lee, J.C.; Kim, M.S.; Park, J.W. YC-1: A potential anticancer drug
targeting hypoxia-inducible factor 1. J. Natl. Cancer Inst. 2003, 95, 516–525. [CrossRef]

39. Meldrum, K.K.; Meldrum, D.R.; Hile, K.L.; Burnett, A.L.; Harken, A.H. A novel model of ischemia in renal
tubular cells which closely parallels in vivo injury. J. Surg. Res. 2001, 99, 288–293. [CrossRef]

40. Hwang, H.S.; Yang, K.J.; Park, K.C.; Choi, H.S.; Kim, S.H.; Hong, S.Y.; Jeon, B.H.; Chang, Y.K.; Park, C.W.;
Kim, S.Y.; et al. Pretreatment with paricalcitol attenuates inflammation in ischemia-reperfusion injury via
the up-regulation of cyclooxygenase-2 and prostaglandin E2. Nephrol. Dial. Transplant. 2013, 28, 1156–1166.
[CrossRef]

41. Imtiazul, I.M.; Asma, R.; Lee, J.H.; Cho, N.J.; Park, S.; Song, H.Y.; Gil, H.W. Change of surfactant protein D
and A after renal ischemia reperfusion injury. PLoS ONE 2019, 14, e0227097. [CrossRef] [PubMed]

42. Hong, Y.A.; Yang, K.J.; Jung, S.Y.; Park, K.C.; Choi, H.; Oh, J.M.; Lee, S.J.; Chang, Y.K.; Park, C.W.; Yang, C.W.;
et al. Paricalcitol Pretreatment Attenuates Renal Ischemia-Reperfusion Injury via Prostaglandin E2 Receptor
EP4 Pathway. Oxid. Med. Cell. Longev. 2017, 2017, 5031926. [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1159/000341870
http://www.ncbi.nlm.nih.gov/pubmed/22948183
http://dx.doi.org/10.1038/ki.2012.439
http://www.ncbi.nlm.nih.gov/pubmed/23325084
http://dx.doi.org/10.3390/ijms21082951
http://www.ncbi.nlm.nih.gov/pubmed/32331329
http://dx.doi.org/10.1089/ars.2016.6795
http://dx.doi.org/10.3390/toxins6010371
http://dx.doi.org/10.1016/j.cell.2017.04.001
http://dx.doi.org/10.1126/science.1199498
http://dx.doi.org/10.1093/jnci/95.7.516
http://dx.doi.org/10.1006/jsre.2001.6201
http://dx.doi.org/10.1093/ndt/gfs540
http://dx.doi.org/10.1371/journal.pone.0227097
http://www.ncbi.nlm.nih.gov/pubmed/31877195
http://www.ncbi.nlm.nih.gov/pubmed/28465762
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Cilastatin Upregulates HIF-1 and Its Downstream Effector in HK-2 Cells 
	Cilastatin Upregulates HIF-1 and Its Downstream Effector in HK-2 Cells 
	PHD/VHL-Independent Ubiquitination Pathway is Involved in Cilastatin-Mediated HIF-1 Upregulation in HK-2 cells 
	Cilastatin Preconditioning Enhances HIF-1-Mediated Cell Survival in IR-Exposed HK-2 Cells 
	Cilastatin Upregulates HIF-1 Expression Via Akt/mTOR Pathway in Mouse Kidney 
	Cilastatin Preconditioning Activates HIF-1 Signaling Pathway in Renal IR Injury 
	Cilastatin Preconditioning Protects Against Renal IR Injury 
	Cilastatin Preconditioning Attenuates Apoptosis in Renal IR Injury 
	Cilastatin Protects Against Renal IR Injury Via HIF-1 Pathway 

	Discussion 
	Materials and Methods 
	Human Proximal Tubular Cell Culturing 
	Cell Viability 
	Animal Model of Renal IR Injury 
	Functional and Morphological Changes due to Kidney Injury 
	Immunofluorescence Staining 
	Immunoblotting Analyses of HK-2 Cells And Kidney Tissue 
	Real-Time Reverse Transcription PCR 
	Immunoprecipitation 
	Statistical Analysis 

	References

