
 International Journal of 

Molecular Sciences

Review

Lipopolysaccharide-Induced Neuroinflammation as a
Bridge to Understand Neurodegeneration

Carla Ribeiro Alvares Batista 1,† , Giovanni Freitas Gomes 1,†, Eduardo Candelario-Jalil 2 ,
Bernd L. Fiebich 3,*,† and Antonio Carlos Pinheiro de Oliveira 1,*,†

1 Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo
Horizonte 31270-901, Brazil; cacaribeiro@gmail.com (C.R.A.B.); gvnngomes@gmail.com (G.F.G.)

2 Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; ecandelario@ufl.edu
3 Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy,

Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg,
Germany

* Correspondence: bernd.fiebich@uniklinik-freiburg.de (B.L.F.); antoniooliveira@icb.ufmg.br or
acpoliveira@gmail.com (A.C.P.d.O.); Tel.: +49-761-270-68980 (B.L.F.); +55-31-3409-2727 (A.C.P.d.O.);
Fax: +49-761-270-69170 (B.L.F.); +55-31-3409-2695 (A.C.P.d.O.)

† These authors contributed equally to this work.

Received: 4 April 2019; Accepted: 5 May 2019; Published: 9 May 2019
����������
�������

Abstract: A large body of experimental evidence suggests that neuroinflammation is a key
pathological event triggering and perpetuating the neurodegenerative process associated with
many neurological diseases. Therefore, different stimuli, such as lipopolysaccharide (LPS), are used
to model neuroinflammation associated with neurodegeneration. By acting at its receptors, LPS
activates various intracellular molecules, which alter the expression of a plethora of inflammatory
mediators. These factors, in turn, initiate or contribute to the development of neurodegenerative
processes. Therefore, LPS is an important tool for the study of neuroinflammation associated with
neurodegenerative diseases. However, the serotype, route of administration, and number of injections
of this toxin induce varied pathological responses. Thus, here, we review the use of LPS in various
models of neurodegeneration as well as discuss the neuroinflammatory mechanisms induced by this
toxin that could underpin the pathological events linked to the neurodegenerative process.

Keywords: lipopolysaccharide; inflammation; neurodegeneration; Alzheimer’s disease; Parkinson’s
disease; amyotrophic lateral sclerosis; Huntington’s disease

1. Introduction

Neurodegenerative diseases are devastating conditions for which there is no cure so far. In general,
the mechanisms involved in disease onset and development are still poorly understood. Therefore,
increasing efforts are being made to better comprehend their pathogenesis. Among the different
factors involved in these conditions, inflammation is considered a key contributor. Several lines of
experimental evidence have demonstrated that neuronal cell death may induce an inflammatory
process, and inflammation by itself may lead to cell death [1]. Thus, it is necessary to induce
inflammation in models of neurodegeneration in order to evaluate its intricate consequences.

Induction of inflammation may be achieved in different manners, and lipopolysaccharide (LPS) is
an important tool for this purpose. LPS is a molecule present in the outer membrane of Gram-negative
bacteria. Its main target is the toll-like receptor (TLR) 4, although it is known to act on other
receptors [2–4]. The activation of TLR4 by LPS recruits a series of downstream adaptors, such as
myeloid differentiation primary response protein 88 (MyD88), TIR-domain-containing adaptor-inducing
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interferon-β (TRIF) and TRIF-related adaptor molecule (TRAM), which are crucial for the signaling of
the receptor [5,6]. The recruitment of these adaptors can further activate downstream pathways which
culminate in the activation of transcription factors, which, in turn, induce a plethora of pro-inflammatory
genes [6–8]. The TLR4 signaling pathway has been fully reviewed elsewhere [9].

Although most of the work in this field uses LPS in order to stimulate glial cells, mainly microglia,
it is known that neurons also express TLR4. Indeed, activation of this receptor leads to the neuronal
production of different inflammatory mediators [10–13].

LPS is used in a variety of in vivo and in vitro protocols. This compound not only is used to
stimulate cell cultures, but also is injected either in the central nervous system (CNS) or in the periphery
by single or multiple injections. Thus, its effects may vary according to the experimental protocol.
Therefore, here, we review the various protocols that use LPS in order to provide an overview of
the current state of the art. We also discuss the advantages and limitations of the LPS models used
to understand the complex molecular and cellular mechanisms underlying the neuroinflammatory
process associated with neurodegeneration.

2. LPS-Induced Inflammation in Models of Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common neurodegenerative disorder worldwide, and its
main clinical manifestation is progressive dementia [14]. It is characterized by the inability to form new
memories, reflecting the dysfunction of the episodic memory system [15,16]. AD is associated with
neuropathological changes such as the formation of tau aggregates seen as intraneuronal neurofibrillary
tangles and the presence of extracellular amyloid-beta (Aβ) plaques [17,18]. It was demonstrated that
activated microglia are present in regions of the brain where there are Aβ deposition and neuronal loss,
which culminates in memory impairment. Published data showed that chronic LPS administration
produced impaired spatial memory in Sprague Dawley [19] and Fisher rats [20].

Neuroinflammation frequently precedes the development of neurodegenerative pathologies such
as AD [21] and is one of the pathogenic factors for neurodegeneration [22]. Significant studies from
basic cellular neuroscience and human genetics support the important role of inflammation in the
pathogenesis of AD [23–25]. The myeloid cells of the CNS, microglia, can be beneficial and detrimental
to AD pathogenesis, since they can degrade amyloid plaques and promote neurotoxicity due to
excessive inflammatory cytokine release [23,26]. LPS-induced inflammation is used in experimental
in vitro and in vivo models of neuroinflammation and has been shown to also promote amyloid
deposition in vivo [27,28].

Some studies have associated AD neuropathology with LPS levels in the brain. The presence of LPS
and Aβ1–40/42 in amyloid plaques in gray and white matter of AD brains has been demonstrated [29].
Another study showed that LPS is abundant in the neocortex and hippocampus of AD-affected brains
and that there is a strong adherence of LPS to the nuclear periphery in AD brain cell nuclei [30]. Finally,
LPS was also found in lysates from the hippocampus and superior temporal lobe neocortex of AD
brains [31]. The role of LPS in the development of AD is reviewed by [32,33].

In this context, experimental models using LPS could serve as a link between neuroinflammation
and AD and are useful to understand the disease process and some events that occur in human AD.

2.1. Contribution of Central LPS Injection Models to Our Understanding AD Pathology

Animals can respond to LPS stimuli differently depending on age and species. In addition, the
source of the stimulus, the dose, the route, and the duration of the administration used in each study
may also influence the outcome [34]. LPS injection in different regions of the CNS leads to a variety of
responses in animals. In this section, we will discuss the data obtained from LPS-induced inflammation
in the CNS associated with AD.

Single intracerebroventricular (i.c.v.) injections of LPS resulted in increased levels of interleukin-1β
(IL-1β) in the brainstem and diencephalon of rats 2 h after injection, and in all the brain regions, except
cerebellum, 6 h after injection [35]. Besides, the induction of IL-1β mRNA in the nucleus basalis
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magno-cellularis and hippocampus was observed, as well as the presence of mRNA for tumor necrosis
factor-α (TNF-α) in the nucleus basalis magno-cellularis [19].

Microglia play an important role in immune defense and inflammatory responses in the CNS [36].
When microglia are exposed to stimulatory molecules such as LPS, their receptors such as TLRs
recognize LPS, inducing a series of intracellular signaling pathways [37,38]. Activation of microglia
and astrocytes was observed after both single i.c.v. LPS injection and chronic LPS injection in the 4th
ventricle with osmotic pumps [19,39]. In addition, single intrahippocampal LPS injections produced
elevations of glial fibrillary acidic protein (GFAP) after 24 h [40]. On the other hand, 28 days after a
single intrahippocampal LPS injection, chronic microglial activation was observed, marked by the
increase of CR3 and CD45 in the mouse hippocampus [40]. These are important findings, since glial
activation after intrahippocampal LPS injection has been related to AD-like amyloidogenic axonal
pathology and dendritic degeneration [41]. Chronic i.c.v. administration of LPS induced β-amyloid
precursor protein (β-APP) mRNA in the nucleus basalis magno-cellularis of rats [19]. In a marmoset
monkey model, LPS co-injected with Aβ fibrils in frontal, sensorimotor, and parietal cortices accelerated
the amyloidosis process, with all monkeys showing an early AD immune blood cell expression profile
of the apoptosis receptor CD95 [42], suggesting a potential synergic action.

In many neuroinflammatory conditions, including in mouse models of AD, microglia activation
and infiltration of peripheral immune cells are found in the brain parenchyma [43]. Microglia activation
is also associated with hyperphosphorylation and aggregation of the protein tau, another important
AD marker. Single intrahippocampal injection of LPS enhanced tau phosphorylation by about 2.5-fold
via microglial activation in rTg4510 mice, which carry a mutant tau [44].

Microglia response after stimulation with LPS may differ between transgenic and non-transgenic
mice. Although microglia in 12-month-old non-transgenic mice showed a stronger response to
LPS than in 2-month-old mice of the same strain, microglia in transgenic APP/PS1 mice exhibited
diminished immune response to LPS during aging. Microglial TLR4 signaling was altered in transgenic
mice, suggesting that changes in TLR4 signaling may have impaired the Aβ clearance capacity of
microglia [45]. In Tg2576 mice, which express a mutant form of APP, a single LPS intrahippocampal
injection reduced hippocampal Aβ levels in a time- and glial activation-dependent manner [46,47].
Another study showed that intrahippocampal LPS injection increased by about sixfold the bone marrow
cells recruitment from the periphery and reduced Aβ clearance in bone marrow-transplanted AD
transgenic mice [48].

2.2. Systemic LPS Challenge Models Utilized to Understand AD Pathology

Systemic inflammation may affect the brain. Cytokines, such as IL-1β, IL-6, and TNF-α,
produced by a systemic inflammatory response, can reach the CNS through the blood circulation [49].
The intraperitoneal (i.p.) injection of LPS, for example, leads to the detection of IL-1 in the plasma
and brain regions [35]. The levels of TNF-α, IL-1α, IL-1β, and IL-6 mRNAs were increased in the
hippocampus and cerebral cortex of mutated presenilin (PS) 1 transgenic mice compared to wild-type
mice after i.p. injection of LPS [50]. The increase in mRNAs levels of IL-1β and IL-6 due to a single LPS
i.p. injection was associated with changes in APP expression in the cerebellum of Staggerer mutant
mice, which show a severe Purkinje cell deficiency in the cerebellum, whereas the cerebral cortex
is not affected [51]. Similarly, a single LPS injection increased IL-1β and TNF-α by about twofold
in cortices and hippocampi of aged Tg2576 mice 1, 2, 4, and 6 h after stimulus [52] and increased
the blood and brain levels of IL-1β, IL-6, and TNF-α in Sprague Dawley rats [53]. In addition, in a
model of LPS-induced cognitive impairment in rats, TNF-α levels were increased by about 1.6-fold in
the hippocampus and frontal cortex after 7 days of a single LPS injection. Interestingly, TNF-α and
IL-18 were increased in the same areas after 10 months of a single LPS injection [54]. TNF-α plays an
important role in the induction of inflammatory processes, being recruited after the LPS stimulus and
inducing the production of pro-inflammatory cytokines, which are involved in the pathophysiology of
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neurodegeneration. IL-18 might act later, when the disease is already established, participating in the
progression of neurodegeneration and cognitive dysfunction.

Systemic administration of LPS also induces microglial activation. A single LPS injection increased
microglial density in Sprague Dawley rats [53]. The brain metabolic response to LPS-inducing
microglial activation was studied using magnetic resonance spectroscopy. Intraperitoneal injection
of LPS also increased the number of Iba-1(+) microglia and induced Aβ(1–16)(+) neurons in the
hippocampus in C57/CJ mice [55].

LPS has been used in different studies to stimulate the production of β-APP. Peripheral stimulation
with LPS induced an increase in IL-1β and IL-6 mRNAs, followed by changes in the expression of APP
isoforms in the cerebellum [51]. LPS administration for 7 days increased Aβ 1–42 cerebral expression
and triggered AD-like neuronal degeneration [56]. On the other hand, chronic LPS administration
increased by about twofold the number of Aβ and APP immunoreactive neurons in the neocortex
of APPswe mice [28]. A similar increase in Aβ was seen in the hippocampus of EFAD mice (a
model that expresses human APOE3 or APOE4 and overproduces human Aβ42) [57] and in the
hippocampus, cortex, and amygdala of APPswe mice receiving chronic LPS administration [28]. In all
these transgenic models, increased Aβ neuronal immunoreactivity was associated with an elevated
number of F4/80-immunoreactive microglia [28] and an increase in the 6E10-immunoreactive protein,
which contains Aβ fragments [58]. Repeated LPS systemic injections (three or seven times) promoted
Aβ 1–42 accumulation in the hippocampus and cerebral cortex of ICR albino mice, as a result of an
increase in beta- and gamma-secretase activities as well as in the activation of astrocytes in parallel to
cognitive impairment [59]. A reduction of Aβ accumulation in hippocampus, cortex, and amygdala
was demonstrated by chronic LPS injection in 3xTgAD mice, which exhibit both Aβ and tau pathologies,
in combination with an inhibitor of soluble TNF-α signaling [58]. In addition, young and old transgenic
mice showed an increase in Aβ 1–40 in the cortices between 4 and 6 h after LPS administration,
which returned to baseline 18 h after a single injection [52]. However, LPS once a week for 13 weeks
ameliorated amyloid pathology in the neocortex of APPSWE/PS11∆E9 mice [60], which was associated
with increased aggregation of activated microglia around the Aβ deposits and by CNS myeloid cells
inducing Aβ clearance pathways and elevated levels of the lysosomal protease cathepsin Z as well as
clusterin [60]. Contradictory data suggest that there are differences in the amyloid production and that
the accumulation depends on the degree of severity of inflammatory stimuli and the animal model
used to evaluate the consequences of LPS injection. Indeed, it has been demonstrated that LPS-induced
inflammation can contribute to the progression of a series of neurodegenerative processes [61,62].
On the other hand, immune system stimulation with low doses of LPS can induce the activation of
cells that act on the resolution of the pathology in neurodegeneration [63–65].

A deficiency in Aβ clearance due to an impairment of the blood–brain barrier (BBB) has been
associated with AD development [66]. In this way, the integrity of the BBB is important, since Aβ

clearance ameliorates AD neuropathology [67]. Besides, an association between AD and lipoprotein
receptor-related protein-1 (LRP-1)—a member of the low-density lipoprotein receptor family—has been
demonstrated to participate in Aβ metabolism [68]. In this sense, some studies demonstrated that LPS
induced an Aβ transport dysfunction at the BBB dependent on LRP-1 [67,69]. Repeated i.p. injection
of LPS altered the BBB transport of Aβ by increasing the brain influx and decreasing the efflux of the
peptide. In addition, LPS also increased the expression of neuronal LRP-1, which can be responsible for
the increased production and accumulation of Aβ in the brain [69]. Similarly, another study showed a
decrease in Aβ efflux by LPS-induced dysfunction of LRP-1 at the BBB [70]. A disruption of the BBB by
LPS was observed in aging 5XFAD mice, which overexpress both mutant human APP and presenilin 1.
On the other hand, inflammation induced by LPS may also be an interesting tool for the crossing of
drugs through the BBB. Indeed, Barton et al. (2018) demonstrated that LPS may disrupt the BBB in
5XFAD mice, which improved the delivery of small molecules, such as thioflavin S, to the brain [71].
Therefore, the neuroinflammatory process could also play an important role in the pathophysiology of
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AD by disrupting the BBB and impairing the removal of Aβ from the brain, as well as in facilitating a
pharmacological treatment.

Increased levels of Aβ induced by LPS can promote tangle formation [53]. In fact, single
LPS injection increased the levels of soluble Aβ and phosphorylated tau in the brain of rats [53]
and mice [72]. Acute systemic LPS administration enhanced tau phosphorylation in wild-type and
corticotropin-releasing-factor-receptors (CRFR)-deficient mice, which was associated with the activation
of glycogen synthase kinase-3 (GSK-3) and cyclin-dependent kinase-5 (CDK5) [73]. Similarly, tau
hyperphosphorylation in 3xTgAD mice was also mediated by the activation of CDK5 after chronic LPS
administration [74].

Cognitive deficits were shown by studies using single LPS i.p. administration in rats [56] and by
repeated LPS injection in EFAD mice [57]. Besides the cognitive impairment and the increase by more
than tenfold in the levels of Aβ with a single i.p. administration of LPS, the elevation of nitric oxide
(NO) concentrations and the overexpression of N-methyl-d-aspartate receptor subunit 2B (NMDAR2B)
in the brain were described [75].

Finally, neuroinflammation is regulated through the cholinergic anti-inflammatory pathway by
the α7 nicotinic acetylcholine receptor (α7 nAChR), involved in regulating cognitive functions and
inflammatory reactions. It was demonstrated that systemic LPS injection in mice decreased α7 nAChR
in the brain [76,77]. Thus, this may be another mechanism by which LPS induces neuroinflammation
and cognitive impairment in models of AD.

The data presented in Section 2 demonstrate the large number of studies using LPS to induce
neuroinflammation in models associated with AD. There is enough evidence to support the singular
role of neuroinflammation in neurodegeneration in addition to the importance of animal models to
study Aβ accumulation and tau hyperphosphorylation. In summary, it can be assumed that LPS
injection models mimic memory loss and the neuropathology observed in AD. All these studies help
understand the role of neuroinflammation in the progression of AD.

3. LPS-Induced Models of Parkinson’s Disease

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder [78], and
its neuropathology is characterized by the degeneration of dopaminergic neurons in the substantia
nigra (SN), followed by the loss of axonal projections to the striatum, resulting in malfunction
of the dopaminergic system [79,80]. Dopaminergic dysfunction manifests in the characteristic
motor disabilities found in the disease, such as tremor, rigidity, bradykinesia, postural, and gait
abnormalities [81,82]. Cytoplasmic inclusions, known as Lewy bodies, which are essentially constituted
by protein deposits of α-synuclein [83], are the main hallmark feature of PD. Although the etiology of
PD is not well known, it has been described that inflammation contributes to PD progression and is an
important factor related to neuronal loss [84–86].

To focus on the potential role of inflammation in PD, several LPS-induced Parkinson models have
been validated and used. Different routes of injection, doses, species models, and sources of endotoxin
are described. In the following two sections, we will present the main contributions of LPS-induced
models to providing more insights into the pathophysiology of PD.

3.1. Contribution of Central LPS Injection Models to the Elucidation of PD Pathology

Part of the knowledge about the involvement of neuroinflammation in PD was obtained from
models of central injection of LPS into the SN or striatum (ST). Both models of injection can induce
the dopaminergic neurodegeneration and motor symptoms characteristic of the disease. A first
intranigral LPS injection was established in 1998, inducing microglial activation after 2 days, followed
by a reduction in dopamine levels in the SN and ST and a decrease in tyrosine hydroxylase (TH)
activity up to at least 21 days [87]. Later studies tested the impact of LPS injection on dopaminergic
neurodegeneration and microglial activation. A permanent dopaminergic neuron loss after a single
LPS injection into the SN was observed up to one year after the injection. Neuronal loss was associated
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with a strong macrophage/microglial reaction in the SN [88–91]. The inflammatory involvement was
supported by the use of drugs that reduce the effects mediated by microglia. Intranigral or systemic
administration of naloxone, an opioid receptor antagonist, prevented neuronal loss induced by local
LPS injection in the SN [92]. Eight or 15 days of systemic dexamethasone administration prevented the
reduction of TH activity and TH immunostaining induced by intranigral LPS injection, suggesting a
reduction of dopamine dysfunction in addition to the reduction of microglia activation [93]. This first
set of investigations supported the idea that microglia-mediated neuroinflammation plays an important
role in the neurodegenerative process of PD.

LPS injection into the CNS clearly increased the expression of inflammatory mediators in the brain.
Elevated levels of TNF-α and IL-6 in the SN and elevated IL-6 in the ST 90 minutes after intranigral LPS
injection were found in C57BL/6 mice. Interestingly, the authors observed a 29-fold and 36-fold increase
in peripheral circulating levels of TNF-α and IL-6, respectively. The peripheral levels of IL-2 and IFN-γ
were also increased at day 7 post-injection, whereas no changes in these inflammatory mediators were
detected in the SN. These effects were accompanied by increased CD11b immunostaining in the SN [94],
which suggests an ongoing microglial activation and neuroinflammation. A comparable cytokine
profile was observed after intranigral LPS injection [95,96]. In a chronic LPS injection approach that
mimics the early stages of many chronic neurodegenerative diseases, the injection of LPS into the
4th ventricle for 21 or 56 days induced different responses that depended on the animal’s age and
the stimulus duration [97]. Gene expression and protein levels of both pro- and anti-inflammatory
parameters were upregulated in the brainstem, with IL-1β, TNF-α, TGF-β, and CX3CR1 being the most
important ones. Importantly, these changes in cytokine expression and loss of TH-positive neurons
were more pronounced in middle-aged and aged rats compared to young rats.

A recent study evaluated the time-dependent expression of pro- and anti-inflammatory cytokines
after intranigral LPS injection in adult Wistar rats. The levels of TNF-α and IL-1β mRNA were
significantly increased at early time points, with a maximum after 5 h (~threefold and ~fourfold
increase, respectively), while IL-6 mRNA levels were maximal after 8 h (about fivefold increase).
Interestingly, IL-1β mRNA levels remained significantly increased up to 168 h after LPS injection [98].
On the other hand, anti-inflammatory mRNA expression was altered only at late time points (after
24 h and 168 h for IL-10 and IL-4, respectively). These effects were followed by microglial and
astrocytic activation and dopaminergic neurodegeneration in the SN [98]. Moreover, the changes in
the inflammatory mediator profile were in line with the increased expression of nuclear factor kappa B
(NF-κB) after intracerebral LPS injection, which can lead to a significant increase in the transcription of
pro-inflammatory cytokines (e.g., TNF-α and IL-1β) [99–102]. Furthermore, LPS intrastriatal injection
caused an oxidative stress response and apoptosis, which are strongly associated with the activation
of TLR/NF-κB signaling and the inhibition of the anti-oxidant Nrf/HO-1 pathway [103]. These data
suggest that the LPS injection models induce an acute initial pro-inflammatory profile and that the
neuronal degeneration process in the SN and ST are mediated by these inflammatory mediators, which
are therefore crucial for the progression of the pathology.

Mitochondrial dysfunction is also associated with neuronal cell death in the pathogenesis of
PD [104,105]. In this way, LPS injection models can contribute to evaluate possible impairments in
mitochondrial activity to elucidate their impact in the pathophysiology of PD. Intrastriatal LPS injection
induced changes in the mitochondrial respiratory chain, evidenced by increased levels of oxidative
stress markers including protein carbonyls, 4-hydroxynonenal (4-HNE), and 3-nitrotyrosine (3-NT),
and caused structural modifications in the mitochondrial cristae, leading to energy dysfunction and
neuronal loss in the striatum [106]. Mitochondrial dysfunction was also supported by increased PPAR-γ,
UCP2, and mitoNEET expression—three proteins involved in energy metabolism—in the SN [107].
Moreover, intrastriatal injection of LPS induced extensive S-nitrosylation/nitration of the mitochondrial
complex prior to dopaminergic neuronal loss [108]. Related to this previous finding, inhibition of
inducible nitric oxide synthase (iNOS) by l-N6-(l-iminoethyl)-lysine reduced mitochondrial injury and
dopaminergic degeneration induced by LPS injection into the SN, indicating that iNOS-derived NO is
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associated with mitochondrial dysfunction. iNOS activation is mediated by p38 MAP kinase, and cell
death was reduced by the inhibition of p38 [109].

Intranigral LPS injection upregulated iNOS expression (~twofold) and elevated total reactive
oxygen species (ROS) production (~twofold) and NADPH oxidase activity (~fivefold) [99]. Supranigral
administration of LPS induced an intense expression of NADPH-diaphorase and iNOS-immunoreactivity
in macrophage-like cells, followed by an important decrease of tyrosine hydroxylase-positive
neurons [110]. Pre-treatment of animals with the iNOS inhibitors S-methylisothiourea or L-NIL
prevented dopaminergic neuronal loss, suggesting that NO mediates the neurodegeneration observed
in the LPS-induced PD model [110,111]. Moreover, a single intrastriatal LPS injection was found
to be associated with increased striatal cyclooxygenase-2 (COX-2) and iNOS expression three days
post-injection and, in the SN, dopaminergic neuronal loss and an increase in microglia activation were
observed seven days post-injection [102,112]. Furthermore, a two-week intracerebral infusion of LPS
(5 ng/h, delivered using osmotic minipumps) induced a rapid activation of microglia that reached a
plateau at the end of the treatment, followed by a delayed and gradual loss of nigral dopaminergic
neurons starting between four and six weeks after treatment [90], suggesting that the initial activation
of the immune response preceded neuronal loss.

In line with the studies described above, LPS injection was shown to alter iron and ferritin levels in
glial cells of the SN of rats, which was associated with 1.5-fold and 2.5-fold decreases in TH expression
in the globus pallidus [113] and in the striatum [107], respectively. It was also demonstrated that iron
chelation with desferrioxamine attenuated behavior deficits, neuronal loss of dopaminergic neurons,
and striatal dopamine (DA) reduction induced by intrastriatal LPS injection in C57BL/6 mice [114].
The data from studies involving mitochondrial activity and the NO cascade suggest that oxidative
stress and mitochondrial dysfunction are important in PD progression, including dopaminergic
dysfunction and α-syn accumulation, which can promote neurodegeneration in SN and deficits in
locomotor activity.

Familial PD cases account for 10% of total cases of the disease [115,116], but the molecular
mechanisms involved in the onset of familial forms still need to be elucidated. Neuroinflammation
can also contribute to the progression of the genetic forms of PD. Mutations in the gene encoding for
leucine-rich repeat kinase 2 (LRRK2) are associated with familial PD [117], with an increased lifetime
risk for developing sporadic PD [118]. In an intranigral LPS-injection model of neuroinflammation, a
robust induction of LRRK2 in microglial cells was observed [119]. In addition, injection of LPS into the
SNpc of LRRK2 KO rats resulted in less pronounced TH-positive neuron loss, microglial activation,
and elevated level of iNOS compared to wild-type rats [120]. A morphological evaluation revealed
that the fractal dimension—a quantitative computer-based analysis for cell complexity evaluation—of
Lrrk2−/− microglia was significantly lower than that of Lrrk2+/+ cells in the striatum injected with
LPS [121]. The expression of the protein deglycase DJ-1 (PARK7)—whose gene is related to autosomal
recessive forms of PD [122,123]—can be also impacted by inflammatory challenges. It is known that
mutations in the PARK7 gene are associated with loss of dopaminergic neurons due to the upregulation
of inflammatory mediators within the SN, which was demonstrated by LPS intranigral injection in
PARK7 DJ-1−/− KO mice [124]. These data suggest that inflammatory events that occur throughout life
can contribute to the progression of diseases related to autosomal dominant or autosomal recessive
mutations, as shown by results from several experimental investigations.

Experimental data obtained from local injections of LPS into the CNS have contributed to the
elucidation of the pathophysiology of PD, including the familial form of the disease. In the next section,
data from models that used systemic LPS challenges will be presented. Inflammatory processes in
the periphery can induce both acute and adaptive responses and contribute to deleterious effects
on the CNS because of the action of inflammatory mediators from the periphery that are released
into the brain [35,125,126]. Thus, peripheral inflammatory challenges can contribute to a better
understanding of the crosstalk between inflammation, neuroinflammation, and basic aspects involved
in neurodegenerative conditions.
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3.2. Contribution of Systemic LPS Challenge Models to the Elucidation of PD Pathology

Systemic LPS challenge is another model to elucidate neuroinflammation in PD. Single or multiple
LPS injections were used to provide valuable insights into the potential pathogenesis of PD. Molecular
and cellular alterations were found after LPS i.p. injection in C57BL/6 mice. Brain TNF-α was elevated
for up to 10 months after LPS injection, suggesting a sustained brain TNF-α overproduction that was
parallel to microglial activation and delayed and progressive loss of nigral TH-positive neurons [127].
Extensive neuronal loss, decline in dopamine levels, glial activation, altered cytokine profile on SN,
and deficits in locomotor behavior were also observed after four consecutive days of peripheral LPS
injections [128]. Additionally, authors described a time-course shift of cytokine profiles from pro- to
anti-inflammatory. Five to 19 days after exposure, pro-inflammatory mediators were predominant, in
parallel with neuronal loss, while anti-inflammatory molecules were predominant between days 19
and 38 post-injection. Interestingly, a single dose of LPS failed to elicit neuroinflammatory responses
in female mice [129]. On the other hand, i.p. injections of LPS for five weeks (one injection per week)
or for five months (one injection per month) could cause loss of TH-positive neurons in the SN 9
and 20 months after injection, respectively. In addition, motor impairment as well as a more intense
immuno-staining for α-syn and inflammatory markers were observed [129]. The augmentation of
protein aggregation and nigral inflammatory process was also observed in a study that compared
the effect of LPS i.p. injections in wild-type mice and in transgenic mice that overexpressed α-syn.
It was demonstrated that transgenic mice, but not wild-type mice, developed a delayed chronic and
progressive degeneration of nigral TH-positive DA neurons, with a more prominent effect five months
after LPS injection. In addition, transgenic mice treated with LPS accumulated ~1.3-fold more α-syn
aggregation than non-treated or wild-type mice [61]. The synergic impact of α-syn and inflammation
on the BBB was also evaluated. Knockout mice for α-syn (Snca−/−) were subjected to LPS exposure, and
it was noticed that α-syn did not alter BBB permeability in the absence of an LPS challenge. However,
LPS injection induced significant augmentation in BBB permeability in normal wild-type, but not in
knockout, mice [130].

α-Syn overproduction and its accumulation appear to be associated with an impaired autophagy
process. Alterations in autophagic protein levels were noticed after LPS injection. Early-period
evaluations (starting at day 1) revealed increased levels of microtubule-associated protein 1 light chain
3-II (LC3-II) and histone deacetylase (HDAC) 6. On the other hand, p62 level remained increased until
late stages (from one day to seven months after LPS injection). A significant increase in α-syn protein
in the midbrain was also found in this study, suggesting that LPS might cause an impairment of α-syn
clearance [131]. Therefore, peripheral inflammatory stimuli may be an important synergic factor for
α-syn-induced pathology in PD, and autophagy activity failure might be involved in the increased
protein aggregation induced by the LPS challenge.

The participation of NO, oxidative stress, and mitochondrial impairment was also investigated
after peripheral LPS injection. Wide ultrastructural changes were observed in SN neuronal cells,
including axons alterations, the swelling of mitochondria and the Golgi complex, and the presence
of autophagolysosomes, lysosomes, and dense bodies in the cytoplasm. In addition, the presence
of apoptotic cells and glial activation was also observed [132]. iNOS induction was observed at the
initial phase of response to the peripheral LPS injection [128]. NOS activity in the midbrain and
in SN was increased 6 h after LPS treatment [132]. Furthermore, exposure of C57BL/6 mice to LPS
resulted in a large increase in NOX2 mRNA expression in the midbrain 24 h after exposure, associated
with a rapidly increased ROS production at 1 and 24 h [133]. Treatment of NOX2−/− mice with LPS
demonstrated the contribution of this mediator to the pathology-associated neuroinflammation, since
knockout mice presented less dopaminergic neuronal loss and reduction of microglial activation in the
midbrain after LPS i.p. injection [133]. It was also observed that, despite a lack of changes in caspase-3
activity, LPS injection induced apoptosis-inducing factor (AIF) translocation from the mitochondria to
the nucleus. Moreover, iNOS and nNOS (the neuronal constitutive form of NOS) inhibition prevented
LPS-evoked release of AIF from the mitochondria, indicating that the increased synthesis of NO
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occurring in the brain during systemic inflammation might be responsible for the activation of apoptotic
pathways [132]. Lastly, iNOS and NADPH oxidase inhibition was also associated with the reduction
of chronic neuroinflammation and prevented α-syn pathology and dopaminergic neuronal loss in
transgenic mice that overexpressed human A53T mutant α-syn submitted to LPS i.p. injection [61].

The role of oxidative stress in PD seems to be age-dependent. The upregulation of pro-oxidant and
inflammatory factors was shown in the midbrain of aged C57BL/6 mice submitted to acute i.p. injection
of LPS, compared with young mice injected with LPS [134]. In addition, LPS induced a more severe
loss of DA neurons in aged female C57BL/6 mice. The upregulation of TLR2, p-NF-κB-p65, IL-1β,
TNF-α, iNOS, and gp91phox was also associated with aging [135]. These data indicate an important
aspect of aging in the neuroinflammatory process found in PD and evidence the overexpression and
overproduction of factors associated with oxidative stress in aged rodents injected with LPS.

In summary, SN and ST are highly sensitive and strongly affected by systemic LPS administration.
Findings from studies using peripheral LPS injection can contribute to the understanding of the
progression of PD, in particular, to the comprehension of its neuroinflammatory aspect.

4. LPS Models to Understanding Inflammatory and Neuroinflammatory Aspects in Amyotrophic
Lateral Sclerosis and Huntington’s Disease

4.1. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a neuromuscular disorder associated with the voluntary
motor system, characterized by the progressive degeneration of anterior-lateral horn spinal cord motor
neurons leading to weakness and eventual death of the affected individuals by paralysis in a few
years [136,137]. The degenerating neurons present an abnormal accumulation of cytoplasmic inclusions
containing ubiquitinated proteins [138]. A role of inflammation in the pathogenesis of ALS has been
suggested [139,140]. In this sense, LPS-induced inflammation may contribute to the knowledge of the
involvement of neuroinflammation in the pathophysiology of ALS.

The overexpression of mutant copper, zinc superoxide dismutase (SOD) in mice is utilized as a
model of ALS, inducing severe hind limb motor deficits in animals [141]. These G93A-SOD1 mice
were challenged with LPS to evaluate the possible impact of systemic inflammation in this model. LPS
injection increased the nuclear expression of the transcription factor CCAAT/enhancer binding protein
δ (C/EBPδ), whose gene is associated with familial ALS, in the spinal cord of G93A-SOD1 mice [142].
Moreover, astroglial and microglial activation were also associated with LPS-induced inflammation in
an ALS experimental model [142,143].

About 5% of ALS cases are familial forms of the disease [144]. TAR DNA-binding protein (TDP-43),
a major component of cytoplasmic inclusions in sporadic and most familial ALS cases, appeared
accumulated and aggregated in the cytoplasm of spinal motor neurons of TDP-43A315T transgenic mice
after chronic LPS administration [145].

However, there are only a few studies using LPS to induce inflammation in animal models
of ALS, despite the knowledge about the role of immune and inflammatory components in this
neurodegenerative disease [146,147]. More studies are necessary to clarify the gaps associated with
this disorder.

4.2. Huntington’s Disease

Huntington’s disease (HD) is a neurodegenerative disease characterized by motor, cognitive, and
behavioral dysfunctions [148,149]. HD is originated by an autosomal mutation that is characterized by
an increase in the number of CAG repeats in the huntingtin (HTT) gene [150], resulting in the expansion
of a polyglutamine tract in the resulting mutated HTT (mHTT) protein that is neurotoxic. mHTT
aggregates are abundant in the nuclei and processes of neuronal cells and lead to several damages,
including protein malformation, transcriptional dysfunction, irregular protein and vesicle transport,
altered secretion of neurotrophic factors, and others [151–154]. The immune and inflammatory
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component has also been linked to the progression of HD. Changes in the cytokine profile were
reported in the post-mortem brain [155] and in the plasma and serum of patients [156], and several
lines of evidence of inflammation involvement have been provided by animal models [62,157–159].

Studies on the impact of inflammatory challenges in this neurodegenerative disease are rare.
Peripheral injection of LPS enhanced some aspects of HD, such as microglial alterations and vascular
dysfunction, as shown in 12-month-old YAC128 transgenic mice—a model that expresses human mutant
huntingtin protein—challenged chronically (four months) with LPS. Changes were characterized by
an increased number and morphological changes of microglia in the ST. Furthermore, an increased
vessel diameter and wall thickness in the same region and disruption of the BBB permeability were
observed [159]. These data indicate that LPS enhances the inflammatory response in this model of
HD. Levels of proinflammatory cytokines after a single LPS i.p. injection were higher in the cortex
and ST of brains obtained from Hdh150Q mice (which carry 150 CAG repeats in the first exon of the
endogenous gene) and R6/2 mice (which express exon 1 of the human HD gene with 150 CAG repeats)
compared with wild-type animals [62]. The authors observed that LPS exposure caused an increased
nuclear localization of p65—a NF-κB subunit—in both astrocytes and microglia in the cortex of R6/2
mice compared with wild-type mice, contributing to neuroinflammation. In addition, the levels of
TNF-α remained elevated in brain, serum, and liver of the two HD mouse models after systemic LPS
injection [62]. Thus, a peripheral inflammatory process contributed to the progression of HD and to a
more prolonged neuroinflammation mediated by glial cells.

Interestingly, a sex-dependent response of HD R6/1 mice to an LPS single injection was
demonstrated. Authors noticed that LPS-induced TNF-α expression was ~1.5-fold higher in the
hypothalamus of female HD mice as compared with female wild-type mice. In contrast, LPS treatment
induced an opposite effect in male HD subjects, with largely diminished TNF-α gene expression,
compared with wild-type mice [160]. More lines of evidence are necessary for a better exploration
of these sex-dependent aspects, but these observations might suggest differences in HD patients,
depending on their gender.

Nevertheless, chronically low-dose LPS injections activating the immune system showed a
significantly prolonged survival of HD R6/2 animals, less pronounced body weight loss, and an
attenuated clinical score of the clasping phenotype compared with wild-type animals treated with the
endotoxin [65]. Therefore, the role of inflammatory processes in HD needs to be further elucidated,
and the link between neuroinflammation and HD progression may be dependent on age, gender, and
severity of the inflammatory challenge.

As it can be observed by reading the reports mentioned above, different factors may be important
for the outcome of the studies, which include the source of LPS, dose, route and scheme of administration.
Therefore, we built tables (Tables 1–6) that further detail all these differences that must be considered
for the planning of an experimental protocol design. In the tables, only papers that provide full
information about the type of LPS used were included.

5. LPS in Cell Culture Models

The basic aspects of the neurodegenerative process were elucidated by numerous in vitro studies.
Inflammation triggered by microglia plays an important role in promoting neurodegeneration
by inducing the expression of pro-inflammatory factors [102,161–163]. In this way, LPS-induced
inflammatory neurotoxicity depends on the excessive production of pro-inflammatory factors by
microglia [164]. Activation of TLR4 on the cell membrane by LPS activates various signal cascades,
including NF-κB via the MyD88–IRAK–TRAF6–TAK1 signaling complex [38,165–167]. Upon LPS
stimulation, the transcription factor NF-κB plays an important role in the expression of pro-inflammatory
genes via its translocation to the nucleus [168] which can trigger a series of inflammatory pathways.

LPS stimulation of BV-2 microglial cells [169], co-cultures of neurons, astrocytes, and microglia [170],
or hippocampal neurons cultures [171] resulted in increased synthesis and release of IL-1β and
TNF-α. Besides its pro-inflammatory activity, LPS affected the viability of neurons, leading to
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highly condensed nuclei and the absence/retraction of neurites [170]. Treatment with LPS activated
microglia also in rat basal forebrain mixed neuron–glial cultures. Additionally, the number of choline
acetyltransferase-immunopositive neurons were decreased in these cultures treated with LPS [172].
Recently, a study also showed the activation of microglia by LPS, which induced corpus callosum
nerve fiber malfunction and fast axonal transport [173]. Microglial response induced by LPS was also
associated with the activation of COX-2 and the NOS pathway, resulting in a dramatic increase in
prostaglandin E2 (PGE2) and nitric oxide production [172,174–183], which contributed to neurotoxicity
and cellular dysfunction in neuron-glia cultures.

In mesencephalic mixed neuron–glia cultures, LPS exposure induced the reduction of TH-positive
neurons in the presence of glia. However, LPS treatment did not affect dopaminergic cells when neurons
were cultured in the absence of glia [89,184], suggesting that the glial-mediated neuronal damage was
induced by LPS. Moreover, the increased release of inflammatory mediators IL-1β and TNF-α induced
by LPS was associated with decreased TH-positive cells in primary mesencephalic cultures, which was
prevented by using neutralizing antibodies against IL-1β or TNF-α [185]. In contrast, pretreatment
with the anti-inflammatory cytokine IL-10 prevented dopaminergic neuron loss induced by LPS in
primary ventral mesencephalic cultures due to a reduced production of proinflammatory cytokines
and protection against a reduction of neurotrophic factors [186].

Finally, LPS treatment reduced the DA reuptake capacity of dopaminergic neurons in the
neuron–glia cultures [187], exposing other aspects that might contribute to PD pathology.

Many protein kinases, such as p38 mitogen-activated protein kinases (p38 MAPK) and protein kinase
C-δ (PKCδ) have been implicated in the release of inflammatory mediators from glia, resulting in neuronal
death [188–190]. p38 MAPK mediates LPS-induced neurodegeneration in mesencephalic neuron–glia
cultures through the induction of nitric oxide synthase resulting in increased NO production [179].
Another study using U373 cells showed an increased IL-6 production by stimulation with LPS, mediated
by the p38/Src kinase inhibitors-dependent pathway [77]. Treatment of primary and BV-2 microglial
cultures with LPS resulted in increased activation of phospho-p38 MAPK [178,181–183,191–193].
In addition, PKCδ was highly upregulated during chronic microglial activation, and a significant
increase in PKCδ kinase activity was observed [190], followed by ROS generation, NO production,
and proinflammatory cytokine and chemokine release. Proteolytic activation of PKCδ occurred during
dopaminergic degeneration and was mediated by caspase-3 [194–196]. Silencing of caspase-3 or AIF by
small interfering RNAs, exclusively in DA MN9D cells, protected DA cells from LPS-induced death,
demonstrating the key role of these molecules in LPS-induced neurotoxicity [96].

Finally, LPS increased the expression levels ofβ-site APP cleaving enzyme 1 (BACE-1), PS-1, β-APP,
and Aβ1-42 in neuron cultures treated with LPS [171]. LPS exposure also contributed synergistically
to the negative effects of α-synuclein on progressive dopaminergic degeneration, associated with
increased microglial superoxide production [197]. In addition, LPS could also induce conformational
changes in α-synuclein protein, which might accelerate the progression of PD [198].

It is noteworthy that in vitro investigations are widely used for the evaluation of mechanisms
associated with cell homeostasis or dysfunction. Data from cell cultures therefore also
contribute to the better understanding of gaps in intracellular signaling, molecular aspects, gene
transcription, mRNA translation, and protein synthesis involved in cell physiology. In this context,
LPS-induced in vitro models are very relevant to support the elucidation of the pathophysiology of
neurodegenerative diseases.
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Table 1. Lipopolysaccharide (LPS) source, species used, dose and route of administration, duration, evaluated parameters of models of central LPS challenges for the
elucidation of Alzheimer’s disease (AD).

LPS Species Used Dose and Route of
Administration

LPS Injection
(Duration) Evaluated Parameters References

E. coli O127:B8
(Sigma-Aldrich) Charles River CD-VAF rats 10 ng/animal

(intracerebroventricular) Acute IL-1 in brain regions: cerebellum, cortex, brainstem,
diencephalon, or hippocampus [35]

E. coli O55:B5
(Sigma-Aldrich) Sprague Dawley 1.0 µg/mL (4th ventricle) Chronic (four

weeks)
Spatial working memory
Activation of astrocytes and microglia [19]

E. coli O55:B5
(Sigma-Aldrich) Fisher-344 rats 0.25 µL/h (4th ventricle) Chronic (28 days)

Long-term depression (LTD)
Underlying mechanism of LTD impairment by
neuroinflammation

[20]

S. abortus equi
(Sigma-Aldrich) Tg2576 APP mice 4 µg/µL or 10 µg/µL

(intrahippocampal) Acute Amyloid-beta (Aβ) load
Microglial and astrocytes activation over time [46]

S. abortus equi
(Sigma-Aldrich)

Nontransgenic mice obtained
during breeding of our amyloid

precursor protein (APP)1 +
presenilin (PS)1 transgenic mouse

colony

1 µL of 4 µg/µL
(intrahippocampal; bilateral) Acute

Time course of microgliosis
Time course of astrogliosis
Time course of TLR4 levels
Quantification of glial markers (GFAP, CD45)
TNF-α and IL-1β levels

[40]

S. abortus equi
(Sigma-Aldrich) Tg2576 APP mice 10 µg/µL (intrahippocampal;

unilateral) Acute
Brain amyloid burden
Markers of microglial activation (CD45, CR3 or
CD11b, CD68, Fcg receptor, and scavenger receptor A)

[47]

S. typhimurium
(Sigma-Aldrich)

APP1PS1 transgenic mice were
transplanted with

eGFP-over-expressing bone
marrow

4 µg of LPS (4 µg/µL in saline);
(intrahippocampal; unilateral) Acute

Proliferation, expression of markers for activated
microglia
Aβ removal

[48]

S. abortus equii
(Sigma-Aldrich)

rTg4510 mice and non-transgenic
mice

5 µg/µL (frontal cortex and
hippocampus) Acute Activation of CD45 and arginase 1

Expression of Ser199/202 and phospho-tau Ser396 [44]

E. coli O55:B5
(Sigma-Aldrich) Sprague Dawley rats 2.5 µg/µL (intrahippocampal;

unilateral) Acute

β-secretase-1 (BACE1) and GFAP levels
Amyloidogenic protein expression
Golgi preparations of cortical layer III pyramidal
neurons

[41]

S. abortus equi
(Sigma-Aldrich) TgAPP/PS1 and C57BL/6

4 µg/µL (2-month-old mice)
or 2 µg/µL (12-month-old
mice) (intrahippocampal)

Acute Aβ deposits in the hippocampus and cortex
Activation of microglia [45]
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Table 2. LPS source, species used, dose and route of administration, duration, evaluated parameters of models of systemic LPS challenges for the elucidation of AD.

LPS Species Used Dose and Route of
Administration

LPS Injection
(Duration) Evaluated Parameters References

E. coli O127:B8
(Sigma-Aldrich) Charles River CD-VAF rats 1 mg/kg (intraperitoneal) Acute Detection of IL-1 by

thymocyte stimulation [35]

E. coli O111:B4
(Sigma-Aldrich) TgN(APP-Sw) 2576 0.25 µg/µL (intravenously) Acute Aβ levels in cortex and hippocampus

IL-1β levels in cortex and hippocampus [52]

E. coli O55:B5
(Sigma-Aldrich)

3xTg-AD or nontransgenic
mice

0.1 mg/mL; 0.5 mg/kg body
weight (intraperitoneal)

Chronic (twice a week
for six weeks)

Characterization of time course of microglia activation in the
brain
Microglial activation and tangle pathology

[74]

E. coli O55:B5
(Sigma-Aldrich) ICR mice 250 µg/kg (intraperitoneal) Acute (daily for three

or seven days)

Memory impairment
Aβ accumulation in the cortex and hippocampus
Expression of amyloidogenic proteins
Astrocytes activation

[59]

E. coli O111:B4
(Sigma-Aldrich) 3xTgAD mice 0.25 mg/kg (intraperitoneal) Chronic (twice weekly

for four weeks)

Effect of inhibition of soluble TNF signaling on accumulation of
6E10-immunoreactive protein in hippocampus, cortex, and
amygdala and amyloid-associated pathology

[58]

S. typhimurium
(Sigma-Aldrich) CD-1 mice 3, 30, 300, or 3000 µg/kg

(intraperitoneal) Acute Transport of Aβ across the blood–brain barrier [69]

E. coli O55:B5
(Sigma-Aldrich) Wistar 5 mg/kg (intraperitoneal) Acute

Cognitive functions (amnesic, discriminative, and attentional
functions)
Anxiety
TNF and IL-18 protein levels in frontal cortex, hippocampus,
striatum, cerebellum, and hypothalamus

[54]

S. typhimurium
(Sigma-Aldrich) CD-1 mice 3 mg/kg (intraperitoneal) Acute

Aβ transporter across the blood-brain barrier
Oxidative stress markers in brain and serum
Brain influx of I-albumin
IL-1α, IL-1β, IL-6, IL-12, IL-13, MIP-1α, MIP-1β, G-CSF, KC,
MCP-1, RANTES, and TNF-α levels in cortex and hippocampus

[67]

S. typhimurium
(Sigma-Aldrich) CD-1 mice 3 mg/kg (intraperitoneal) Acute Quantification of LRP-1 LRP-1-dependent partitioning between

the brain vasculature and parenchyma and peripheral clearance [70]

E. coli O55:B5
(Sigma-Aldrich) Wistar rats 500 µg/kg/day

(intraperitoneal)
For seven consecutive

days.

Nitric oxide (NO) production
NO synthase (NOS2)
Aβ 1-42 cerebral expression
Memory

[56]
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Table 2. Cont.

LPS Species Used Dose and Route of
Administration

LPS Injection
(Duration) Evaluated Parameters References

E. coli O8:K27
(Innaxon)

EFAD mice (express human
APOE3 or APOE4 and

overproduce human Aβ

0.5 mg/kg/week
(intraperitoneal)

Chronic (from 4 to 6
months of age)

Cognitive dysfunction
Cerebrovascular leakiness
Aβ42 levels
Cerebral amyloid angiopathy-like deposition
IL-10, G-CSF, RANTES, IL-12, IL-17, KC levels

[57]

E. coli O111:B4
(Sigma-Aldrich)

APPSWE/PS11∆E9 Tg and
wild-type 0.5 mg/kg (intraperitoneal) Chronic (Once a week

for 13 weeks)

TNF and IL-1β mRNA levels
Amyloid pathology in the neocortex
CD11b+ cells clustering around Aβ plaques
APP, APOE, Clu, and Hexb protein expression in neocortex

[60]

E. coli O111:B4
(Sigma-Aldrich) 5XFAD and C57BL/6 mice

0.01 mg/kg, 0.1 mg/kg,
1 mg/kg, 3 mg/kg
(intravenously)

Acute
Disruption of blood–brain barrier
Delivery of large molecules through the blood–brain barrier
Weight loss

[71]

Table 3. LPS source, species used, dose and route of administration, duration, evaluated parameters of models of central LPS challenges for the elucidation of
Parkinson’s disease (PD).

LPS Species Used Dose and Route of
Administration

LPS Injection
(Duration) Evaluated Parameters References

E. coli O26:B6
(Sigma-Aldrich) Wistar 1 mg/mL

(2 µL intranigral) Acute

Dopamine (DA) and DA metabolites
Loss of tyrosine hydroxylase (TH)-positive cells
TH activity
Microglial activation
NOS inhibition

[87,88]

E. coli O111:B4
(Life Technologies) Fischer 344

5 or 10 µg in 2 µL (intrastriatal,
intrahippocampal or

intracortical)
Acute

Loss of TH-positive cells
MAP-2-positive cell loss
Microglial activation

[89]

E. coli O111:B4
(Sigma-Aldrich) Sprague–Dawley rats 5 µg in 2 µL (intranigral) Acute

Loss of TH-positive cells
Microglial activation
Naloxone effects on LPS consequences

[92]
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Table 3. Cont.

LPS Species Used Dose and Route of
Administration

LPS Injection
(Duration) Evaluated Parameters References

E. coli O26:B6
(Sigma-Aldrich) Wistar 5 µg (intranigral) Acute

Dopamine and DA metabolites
Serotonin and DA metabolites
TH activity
Loss of TH-positive cells
Glial reaction
Effects of dexamethasone on LPS consequences

[93]

E. coli O111:B4
(Sigma-Aldrich) Fischer 344 5 ng/h (intranigral) Chronic (2 weeks)

Loss of TH-positive cells
Loss of NeuN-positive cells
Microglial activation

[90]

E. coli O26:B6
(Sigma-Aldrich) Wistar 10 µg (intranigral) Acute

Loss of TH-positive cells
Loss of FG-labelled neurons
NADPH-d expression
iNOS expression

[110]

E. coli O55:B5
(Calbiochem) Wistar 10 µg (supranigral) Acute

Loss of TH-positive cells
Motor evaluation
Astrocyte reaction
Microglial activation
iNOS expression
Neurotophin-3 expression

[91]

E. coli O111:B4
(Sigma-Aldrich) Fischer 344 10 µg (intrapallidal) Acute

Loss of TH-positive cells
Microglial activation
Ferritin expression
Iron levels
A-synuclein expression
Ubiquitin expression
Effect of aging on LPS consequences

[113]

E. coli O26:B6
(Sigma-Aldrich) Wistar 2 mg/mL (intranigral) Acute

Loss of TH-positive cells
Microglial activation
TH expression
Cytokine mRNA expression
iNOS expression
Caspase-11 expression
Effects of p38 MAPK inhibition in LPS consequences
Effects of iNOS blockage on LPS consequences

[109]
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Table 3. Cont.

LPS Species Used Dose and Route of
Administration

LPS Injection
(Duration) Evaluated Parameters References

S. minnesota
(Sigma-Aldrich) Sprague-Dawley 16, 32 or 60 µg (intrastriatal) Acute

DA and DA metabolites
Loss of TH-positive cells
Microglial activation
Pro-inflammatory cytokine expression
Insulin receptor expression
Mitochondrial activity
Effects of cyclooxygenase-2 (COX-2) inhibition and PPAR-c
agonist on LPS consequences

[112]

S. minnesota
(Sigma-Aldrich) Sprague-Dawley 16 µg (intrastriatal) Acute

UCP2 expression
mitoNEET expression
Effects of PPAR-c agonist on LPS consequences

[107]

S. minnesota
(Sigma-Aldrich) C57BL/6 5, 7.5, or 10 µg (intrastriatal) Acute

Loss of TH-positive cells
Motor evaluation
NOS expression
Effects of NOS inhibition in LPS consequences
Effects of iNOS knockout on LPS consequences

[111]

S. minnesota
(Sigma-Aldrich) Wistar 2.5 µg/µL (intrastriatal) Acute

DA
Nigrostriatal system evaluation
a-synuclein expression
Ubiquitin expression
Motor evaluation
Microglial activation
iNOS expression
Mitochondrial activity

[108]

E. coli O111:B4
(Calbiochem) Fischer 344 5 µg (intranigral) Acute

Loss of TH-positive cells
Microglial activation
Effects of IκB Kinase-β inhibition on LPS consequences

[187]

E. coli O26:B6
(Sigma-Aldrich) ABH-Biozzi 0.5 mg/kg Acute NFκB mRNA expression

Cell death evaluation [95]

E. coli
(Sigma-Aldrich) C57BL/6 10 µg (intrastriatal) Acute

Motor evaluation
DA neuron loss
DA and DA metabolites
Microglial activation
Iron concentration
Effects of desferrioxamine on the LPS consequences

[114]
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Table 3. Cont.

LPS Species Used Dose and Route of
Administration

LPS Injection
(Duration) Evaluated Parameters References

E. coli O55:B5
(Sigma-Aldrich) Fischer 344 0.25 µg/h

(intracerebroventricular)
Chronically (21 or

56 days)

Cytokine protein levels
Cytokine mRNA expression
Loss of TH-positive cells
MHC II-IR microglial density
Effects of aging on LPS consequences

[97]

E. coli O111:B4
(Sigma-Aldrich) Sprague-Dawley 5 µg/5 µL (intranigral) Acute

Astrocyte reaction
Microglial activation
NFκB transcription
Cytokine transcription
NOX2 activation
NADPH-Oxidase Activity
Reactive oxygen species (ROS) production
Lipid peroxidation
iNOS and NO expression.
DA and DA metabolites
Effects of NADPH-oxidase inhibition on LPS consequences

[99]

E. coli
(Sigma-Aldrich) SD rats 5 mg/mL (intrastriatal) Acute

Motor evaluation
Glial activation
Oxidative stress
Apoptosis

[103]

S. minnesota
(Sigma-Aldrich) Sprague-Dawley 32 µg (intrastriatal) Acute

Mitochondrial activity and structure
Oxidative stress
Loss of TH-positive cells

[106]

E. coli O55:B5
(Sigma-Aldrich) Wistar 5 µg/2 µL (intranigral) Acute

Fever and Sickness
Microglial Activation and phagocytic activity
Astrocyte Activation
Oxidative Stress
Cytokine levels
Leukocyte brain Infiltration

[98]

E. coli O111:B4
(Enzo Life Science)

LRRK2 KO C57BL/6 and
wild-type 5 mg/mL (intrastriatal) Acute Microglial activation

Role of LRRK2 on LPS consequences [121]

E. coli
(Sigma-Aldrich)

DJ-1 KO C57BL/6 and
wild-type 1 µg/µL (intranigral) Acute

Dopaninergic normal loss
sICAM-1, IFN-γ, IL-1β, IL-1Ra, IL-16, IL-17, and I-TAC
expression
Role of DJ-1 on LPS consequences

[124]
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Table 4. LPS source, species used, dose and route of administration, duration, evaluated parameters of models of systemic LPS challenges for the elucidation of PD.

LPS Species Used Dose and Route of
Administration LPS Injection (Duration) Evaluated Parameters References

E. coli O55:B5
(Sigma-Aldrich) C57BL/6 1 mg/kg

(intraperitoneal) Acute (single dose)

Ultrastructural Alterations in SN
NOS Activity
NOS and TNF expression
Apoptotic Pathways

[132]

E. coli O111:B4
(Calbiochem)

C57BL/6, TNFR1/R2−/− KO,
TNFR1/R2+/+ WT

5 mg/kg
(intraperitoneal) Acute (single dose)

TNFα level
Loss of TH-positive cells
Effects of TNFR knock-out on LPS consequences

[127]

E. coli O111:B4
(Sigma-Aldrich) C57BL/6 5 mg/kg

(intraperitoneal)

Weekly injected with five
doses of LPS

Monthly injected with two
to five doses of LPS

Motor evaluation
Loss of TH-positive cells
α-synuclein accumulation
Microglial activation
Sex differences in LPS consequences

[129]

E. coli O111:B4
(Sigma-Aldrich)

B6C3F1 WT and transgenic
mice for mutant α-synuclein

3 × 106 EU/kg
(intraperitoneal)

Acute (single injection)

Nigral TH-positive cells evaluation
α-synuclein aggregation
Cytokine levels
Microglial activation
Differences in acute and chronic neuroinflammation
Effects iNOS inhibition of iNOS inhibition and NADPH oxidase
blockage on LPS consequences

[61]

E. coli O111:B4 C57BL/6 0.2 mg/kg
(intraperitoneal) Acute (single injection)

Cytokine expression.
TH-positive cells evaluation
Microglial activation
iNOS mRNA expression
NF-κB mRNA expression.
gp91phox level
Oxidative stress
Effects of HCT1026 on LPS consequences

[134]

E. coli O55:B5
(Sigma-Aldrich)

129/SvEv and α-syn
gene-ablated mice

1 mg/kg
(intraperitoneal) Acute (single dose) Blood–brain barrier integrity [130]

E. coli O111:B4
(Calbiochem)

B6.129S6-Cybbtm1Din
(NOX2−/−) and C57BL/6

000664 (NOX2+/+)

5 mg/kg
(intraperitoneal) Acute (single injection)

NOX2 expression
ROS production
Microglial activation
Effects of oxidases inhibition on LPS consequences

[133]
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Table 4. Cont.

LPS Species Used Dose and Route of
Administration LPS Injection (Duration) Evaluated Parameters References

E. coli
(Sigma-Aldrich) C57BL/6 5 mg/kg

(intraperitoneal) Acute (single injection)

TH-positive cells evaluation
α-syn aggregation and levels
Microglial activation
Autophagic activity

[131]

E. coli O111:B4
(Sigma-Aldrich) C57BL/6 and PKCδ KO mice 5 mg/kg

(intraperitoneal) Acute (single injection)
Motor evaluation
Cytokine release and expression.
Effects of PKCδ KO on LPS consequences

[190]

S. abortus equi
(Enzo Life
Sciences)

C57BL/6 1 µg/g
(intraperitoneal)

Motor evaluation
TH-positive cells evaluation
DA and DA metabolites
Microglial and astrocytic activation
Cytokine levels and expression

[128]

Table 5. LPS source, species used, dose and route of administration, duration, evaluated parameters of models of systemic LPS challenges for the elucidation of
amyotrophic lateral sclerosis (ALS).

LPS Species Used Dose and Route of
Administration LPS Injection (Duration) Evaluated Parameters References

E. coli O55:B5
(Calbiochem) C57BL/6 EP4 floxed mice 5 mg/kg (intraperitoneal) Acute Quantification of COX-2, iNOS, TNF-α, IL-6, and IL-1β mRNA

levels in hippocampus [175]

E. coli O55:B5
(Sigma-Aldrich)

G93A-SOD1
C/EBPδ(−/−) mice

200 µg/animal
(intraperitoneal)

1 µg/µL (intraperitoneal)

Acute
2, 8, 16, 24, and 48 h

C/EBPδ expression in mouse brain
Quantification of NOS-2, COX-2, TNF-α, IL-1β, and IL-6 mRNA
TNF-α, IL-1β and IL-6 serum levels

[142]

E. coli O55:B5
(Sigma-Aldrich)

TDP-43A315T and C57BL/6
mice

1 mg/kg of body weight
(intraperitoneal)

Chronic (Once a week for
two months)

TDP-43 accumulation in the cytoplasm of spinal motor neurons
TDP-43 aggregation [145]
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Table 6. LPS source, species used, dose and route of administration, duration, evaluated parameters of models of systemic LPS challenges for the elucidation of
Huntington’s disease (HD).

LPS Species Used Dose and Route of
Administration LPS Injection (Duration) Evaluated Parameters References

E. coli
(Sigma-Aldrich)

Transgenic YAC128 and wild
type 1 mg/kg (intraperitoneal) Chronic (Once a week for

four months)

Microglial activation
Neurovascular integrity

Blood brain barrier integrity
[159]

E. coli O111:B4
(Sigma-Aldrich) Transgenic R6/2 and wild type 2 mg/kg (intraperitoneal) Acute

NF-κB activation
Inflammatory evaluation

Motor evaluation
[62]

E. coli O127:B8
(Sigma-Aldrich) Transgenic R6/2 and wild type 0.3 mg/kg (intraperitoneal) Acute

TNF gene expression.
IL-6 gene expression

Sex-dependent effects of LPS injection
[160]

E. coli O111:B4
(Sigma-Aldrich) Transgenic R6/2 and wild type 2 µg/animal (intraperitoneal) Chronic (Once a week for

seven weeks)

Splenic immune cells evaluation
T-cell activity

Motor evaluation
[65]
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6. Final Considerations and Conclusions

In the context of AD, models that use LPS contribute to the understanding of the intricate
relationship between neuroinflammation and the progression of the disease, mainly in regard to Aβ

processing and deposition. Besides, activation of TLR4 and of the inflammatory pathways leads to
glial reaction and neuronal loss, which contributes to memory impairment and behavioral changes.
Importantly, both acute and chronic inflammation seem to play a role in this neurodegenerative disease.

On the other hand, injection of LPS per se may be used as an animal model of PD, mainly because
of the high susceptibility of mesencephalic neurons to this toxin [89,131,199]. In this sense, injection
of LPS can contribute to the elucidation of the inflammatory pathways that induce glial activation
and the additional causes of neuronal death, dopamine signaling disbalance, α-syn aggregation, and
behavioral symptoms. Finally, in regard to ALS and HD, the role of inflammatory processes in these
two neurodegenerative diseases needs to be better studied and elucidated. The studies may consider
to include the use of the already established models to evaluate the impact of inflammatory challenges
in the development of these pathological conditions.

Importantly, the variety of protocols and serotypes of LPS used in the studies may induce a
plethora of results. This wide range of outcomes may contribute to the better understanding of the
intricate link between neurodegenerative diseases and peripheral and central inflammation.

In conclusion, LPS is an important tool for the evaluation of different parameters associated with
inflammatory processes and may be used in studies that aim to investigate the pathophysiological
mechanisms of neurodegenerative diseases. However, the serotype, route of administration, doses,
and other parameters should be considered when planning experimental protocols because of the
varied responses induced by the endotoxin.
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